Advertisement

The Geometry of Doubly-Coupled Bigravity

  • Adam Ross SolomonEmail author
Chapter
  • 583 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

The existence of a consistent bimetric theory raises an intriguing question: which is the physical metric? In Chaps.  3 and  4 we chose to couple only one of the two metric, \(g_{\mu \textit{v}}\), directly to matter, while the other dynamical metric, \(f_{\mu \textit{v}}\), only interacts with matter fields indirectly through its interactions with \(g_{\mu \nu }\).

Keywords

Line Element Point Particle Matter Field Geodesic Equation Null Geodesic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    S. Hassan, R.A. Rosen, Resolving the ghost problem in non-linear massive gravity. Phys. Rev. Lett. 108, 041101 (2012). arXiv:1106.3344
  2. 2.
    S. Hassan, R.A. Rosen, A. Schmidt-May, Ghost-free massive gravity with a general reference metric. J. High Energ. Phys. 1202, 026 (2012). arXiv:1109.3230
  3. 3.
    S. Hassan, R.A. Rosen, Confirmation of the secondary constraint and absence of ghost in massive gravity and bimetric gravity. J. High Energ. Phys. 1204, 123 (2012). arXiv:1111.2070
  4. 4.
    Y. Yamashita, A. De Felice, T. Tanaka, Appearance of Boulware-Deser ghost in bigravity with doubly coupled matter. Int. J. Mod. Phys. D23, 3003 (2014). arXiv:1408.0487
  5. 5.
    C. de Rham, L. Heisenberg, R.H. Ribeiro, On couplings to matter in massive (bi-)gravity. Class. Quant. Grav. 32, 035022 (2015). arXiv:1408.1678
  6. 6.
    S. Hassan, M. Kocic, A. Schmidt-May, Absence of ghost in a new bimetric-matter coupling. arXiv:1409.1909
  7. 7.
    C. de Rham, L. Heisenberg, R.H. Ribeiro, Ghosts and matter couplings in massive gravity, bigravity and multigravity. Phys. Rev. D90(12), 124042 (2014). arXiv:1409.3834
  8. 8.
    M. Berg, I. Buchberger, J. Enander, E. Mörtsell, S. Sjörs, Growth histories in bimetric massive gravity. J. Cosmol. Astropart. Phys. 1212, 021 (2012). arXiv:1206.3496
  9. 9.
    Y. Akrami, T.S. Koivisto, D.F. Mota, M. Sandstad, Bimetric gravity doubly coupled to matter: theory and cosmological implications. J. Cosmol. Astropart. Phys. 1310, 046 (2013). arXiv:1306.0004
  10. 10.
    J. Noller, S. Melville, The coupling to matter in massive, bi- and multi-gravity. J. Cosmol. Astropart. Phys. 1501, 003 (2014). arXiv:1408.5131
  11. 11.
    L. Heisenberg, Quantum corrections in massive bigravity and new effective composite metrics. arXiv:1410.4239
  12. 12.
    A. Vainshtein, To the problem of nonvanishing gravitation mass. Phys. Lett. B39, 393–394 (1972)ADSCrossRefGoogle Scholar
  13. 13.
    Y. Akrami, T.S. Koivisto, M. Sandstad, Accelerated expansion from ghost-free bigravity: a statistical analysis with improved generality. J. High Energ. Phys. 1303, 099 (2013). arXiv:1209.0457
  14. 14.
    C. Brans, R. Dicke, Mach’s principle and a relativistic theory of gravitation. Phys. Rev. 124, 925–935 (1961)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    E. Cartan, Les Espaces de Finsler (Herman, Paris, 1934)zbMATHGoogle Scholar
  16. 16.
    J.D. Bekenstein, The Relation between physical and gravitational geometry. Phys. Rev. D48, 3641–3647 (1993). arXiv:gr-qc/9211017
  17. 17.
    C. Pfeifer, The Finsler spacetime framework: backgrounds for physics beyond metric geometry. Ph.D. thesis, University of Hamburg (2013)Google Scholar
  18. 18.
    T.S. Koivisto, D.F. Mota, M. Zumalacárregui, Screening modifications of gravity through disformally coupled fields. Phys. Rev. Lett. 109, 241102 (2012). arXiv:1205.3167
  19. 19.
    M. Zumalacárregui, T.S. Koivisto, D.F. Mota, DBI Galileons in the Einstein frame: local gravity and cosmology. Phys. Rev. D87, 083010 (2013). arXiv:1210.8016
  20. 20.
    K. Hinterbichler, R.A. Rosen, Interacting spin-2 fields. J. High Energ. Phys. 1207, 047 (2012). arXiv:1203.5783
  21. 21.
    N. Tamanini, E.N. Saridakis, T.S. Koivisto, The cosmology of interacting spin-2 fields. J. Cosmol. Astropart. Phys. 1402, 015 (2014). arXiv:1307.5984
  22. 22.
    S.N. Gupta, Gravitation and electromagnetism. Phys. Rev. 96, 1683–1685 (1954)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    S. Weinberg, Photons and gravitons in perturbation theory: derivation of Maxwell’s and Einstein’s equations. Phys. Rev. 138, B988–B1002 (1965)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Center for Particle CosmologyUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations