Advertisement

Cosmological Stability of Massive Bigravity

  • Adam Ross SolomonEmail author
Chapter
  • 586 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

In the previous chapter, and in particular in Sect.  2.1, we discussed an approach to modifying gravity in which its force-carrier particle, the graviton, is given a small mass. In particular, by specialising to the dRGT interaction potentials ( 2.22) we ensure that the notorious Boulware-Deser ghost mode is absent, and by allowing both metrics to be dynamical and taking the graviton mass to be of the order of the present-day Hubble rate, we can obtain cosmological solutions which agree well with observations of the cosmic expansion history. These solutions are self-accelerating: the Hubble parameter goes to a constant at late times even in the absence of a cosmological constant. The action of this bimetric theory, or bigravity, is given by Eq. ( 2.30), and the associated modified gravitational field equations were presented as Eqs. ( 2.39) and ( 2.40).

Keywords

Cosmological Constant Auxiliary Variable Bimetric Theory Perturbation Variable Hubble Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    M. von Strauss, A. Schmidt-May, J. Enander, E. Mörtsell, S. Hassan, Cosmological Solutions in Bimetric Gravity and their Observational Tests. JCAP 1203, 042 (2012). arXiv:1111.1655
  2. 2.
    Y. Akrami, T.S. Koivisto, M. Sandstad, Accelerated expansion from ghost-free bigravity: a statistical analysis with improved generality. JHEP 1303, 099 (2013). arXiv:1209.0457
  3. 3.
    F. Könnig, A. Patil, L. Amendola, Viable cosmological solutions in massive bimetric gravity. JCAP 1403, 029 (2014). arXiv:1312.3208
  4. 4.
    D. Comelli, M. Crisostomi, L. Pilo, Perturbations in massive gravity cosmology. JHEP 1206, 085 (2012). arXiv:1202.1986
  5. 5.
    A. De Felice, A.E. Gümrükçüoğlu, S. Mukohyama, N. Tanahashi, T. Tanaka, Viable cosmology in bimetric theory. JCAP 1406, 037 (2014). arXiv:1404.0008
  6. 6.
    D. Comelli, M. Crisostomi, L. Pilo, FRW Cosmological perturbations in massive bigravity. Phys. Rev. D90(8), 084003 (2014). arXiv:1403.5679
  7. 7.
    M. Fasiello, A.J. Tolley, Cosmological stability bound in massive gravity and bigravity. JCAP 1312, 002 (2013). arXiv:1308.1647
  8. 8.
    M. Berg, I. Buchberger, J. Enander, E. Mörtsell, S. Sjörs, Growth histories in bimetric massive gravity. JCAP 1212, 021 (2012). arXiv:1206.3496
  9. 9.
    F. Könnig, Y. Akrami, L. Amendola, M. Motta, A.R. Solomon, Stable and unstable cosmological models in bimetric massive gravity. Phys. Rev. D 90, 124014 (2014). arXiv:1407.4331
  10. 10.
    M. Lagos, M. Bañados, P.G. Ferreira, S. García-Sáenz, Noether identities and gauge-fixing the action for cosmological perturbations. Phys. Rev. D89(2), 024034 (2014). arXiv:1311.3828
  11. 11.
    M. Lagos, P.G. Ferreira, Cosmological perturbations in massive bigravity. JCAP 1412(12), 026 (2014). arXiv:1410.0207
  12. 12.
    V.F. Mukhanov, H. Feldman, R.H. Brandenberger, Theory of cosmological perturbations. Part 1. Classical perturbations. Part 2. Quantum theory of perturbations. Part 3. Extensions. Phys. Rep. 215, 203–333 (1992)Google Scholar
  13. 13.
    D. Langlois, S. Mukohyama, R. Namba, A. Naruko, Cosmology in rotation-invariant massive gravity with non-trivial fiducial metric. Class. Quantum Gravity 31, 175003 (2014). arXiv:1405.0358
  14. 14.
    A.R. Solomon, Y. Akrami, T.S. Koivisto, Linear growth of structure in massive bigravity. JCAP 1410, 066 (2014). arXiv:1404.4061
  15. 15.
    A. Vainshtein, To the problem of nonvanishing gravitation mass. Phys. Lett. B 39, 393–394 (1972)ADSCrossRefGoogle Scholar
  16. 16.
    E. Babichev, C. Deffayet, An introduction to the Vainshtein mechanism. Class. Quantum Gravity 30, 184001 (2013). arXiv:1304.7240

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Center for Particle CosmologyUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations