DAE Aspects of Multibody System Dynamics

Part of the Differential-Algebraic Equations Forum book series (DAEF)


The dynamical simulation of mechanical multibody systems has stimulated the development of theory and numerical methods for higher index differential-algebraic equations (DAEs) for more than three decades. The equations of motion are linearly implicit second order differential equations. For constrained systems, they form an index-3 DAE with a specific structure that is exploited in theoretical investigations as well as in the numerical solution. In the present survey paper, we give an introduction to this field of research with focus on classical and more recent solution techniques for the time integration of constrained mechanical systems in multibody system dynamics. Part of the material is devoted to topics of current research like multibody system models with nonlinear configuration spaces or systems with redundant constraints.


Constrained mechanical systems DAE time integration Multibody formalisms Rank-deficient mass matrix Redundant constraints Stabilized index-2 formulation 

Mathematics Subject Classification (2010):

34A09 34A12 65F50 65L05 65L80 70E55 


  1. 1.
    Arnold, V.I.: Mathematical Methods of Classical Mechanics. Graduate Texts in Mathematics, vol. 60, 2nd edn. Springer, New York, Berlin, Heidelberg (1989)Google Scholar
  2. 2.
    Arnold, M.: A perturbation analysis for the dynamical simulation of mechanical multibody systems. Appl. Numer. Math. 18, 37–56 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Arnold, M.: Numerical problems in the dynamical simulation of wheel-rail systems. Z. Angew. Math. Mech. 76 (S3), 151–154 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Arnold, M.: Half-explicit Runge–Kutta methods with explicit stages for differential-algebraic systems of index 2. BIT Numer. Math. 38, 415–438 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Arnold, M.: Zur Theorie und zur numerischen Lösung von Anfangswertproblemen für differentiell-algebraische Systeme von höherem Index. Fortschritt-Berichte VDI Reihe 20, vol. 264. VDI, Düsseldorf (1998)Google Scholar
  6. 6.
    Arnold, M.: Numerical methods for simulation in applied dynamics. In: Arnold, M., Schiehlen, W. (eds.) Simulation Techniques for Applied Dynamics. CISM Courses and Lectures, vol. 507, pp. 191–246. Springer, Wien, New York (2009)CrossRefGoogle Scholar
  7. 7.
    Arnold, M.: A recursive multibody formalism for systems with small mass and inertia terms. Mech. Sci. 4, 221–231 (2013)CrossRefGoogle Scholar
  8. 8.
    Arnold, M.: Algorithmic aspects of singularly perturbed multibody system models. GACM Report. Summer 2013, 10–16 (2013)Google Scholar
  9. 9.
    Arnold, M., Brüls, O.: Convergence of the generalized-α scheme for constrained mechanical systems. Multibody Sys. Dyn. 18, 185–202 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Arnold, M., Murua, A.: Non-stiff integrators for differential-algebraic systems of index 2. Numer. Algorithms 19, 25–41 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Arnold, M., Schiehlen, W. (eds.) Simulation Techniques for Applied Dynamics. CISM Courses and Lectures, vol. 507. Springer, Wien, New York (2009)Google Scholar
  12. 12.
    Arnold, M., Fuchs, A., Führer, C.: Efficient corrector iteration for DAE time integration in multibody dynamics. Comp. Meth. Appl. Mech. Eng. 195, 6958–6973 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Arnold, M., Burgermeister, B., Eichberger, A.: Linearly implicit time integration methods in real-time applications: DAEs and stiff ODEs. Multibody Sys. Dyn. 17, 99–117 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Arnold, M., Burgermeister, B., Führer, C., Hippmann, G., Rill, G.: Numerical methods in vehicle system dynamics: state of the art and current developments. Veh. Syst. Dyn. 49, 1159–1207 (2011)CrossRefGoogle Scholar
  15. 15.
    Arnold, M., Brüls, O., Cardona, A.: Error analysis of generalized-α Lie group time integration methods for constrained mechanical systems. Numer. Math. 129, 149–179 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Arnold, M., Cardona, A., Brüls, O.: Order reduction in time integration caused by velocity projection. In: Proceedings of the 3rd Joint International Conference on Multibody System Dynamics and the 7th Asian Conference on Multibody Dynamics, June 30–July 3, 2014, BEXCO, Busan (2014). In revised version online available as Technical Report 02-2015, Martin Luther University Halle-Wittenberg, Institute of Mathematics (2015)Google Scholar
  17. 17.
    Arnold, M., Cardona, A., Brüls, O.: A Lie algebra approach to Lie group time integration of constrained systems. In: Betsch, P. (ed.) Structure-Preserving Integrators in Nonlinear Structural Dynamics and Flexible Multibody Dynamics, vol. 565. CISM Courses and Lectures, pp. 91–158. Springer International Publishing, Cham (2016)CrossRefGoogle Scholar
  18. 18.
    Ascher, U.M., Chin, H., Reich, S.: Stabilization of DAEs and invariant manifolds. Numer. Math. 67, 131–149 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Bae, D.S., Haug, E.J.: A recursive formulation for constrained mechanical system dynamics: part II. Closed loop systems. Mech. Struct. Mach. 15, 481–506 (1987)CrossRefGoogle Scholar
  20. 20.
    Bauchau, O.A.: Flexible Multibody Dynamics. Springer, Dordrecht, Heidelberg, London, New York (2011)CrossRefzbMATHGoogle Scholar
  21. 21.
    Baumgarte, J.: Stabilization of constraints and integrals of motion in dynamical systems. Comput. Methods Appl. Mech. Eng. 1, 1–16 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Bottasso, C.L., Borri, M.: Integrating finite rotations. Comput. Methods Appl. Mech. Eng. 164, 307–331 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Bottasso, C.L., Bauchau, O.A., Cardona, A.: Time-step-size-independent conditioning and sensitivity to perturbations in the numerical solution of index three differential algebraic equations. SIAM J. Sci. Comp. 29, 397–414 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Brandl, H., Johanni, R., Otter, M.: A very efficient algorithm for the simulation of robots and similar multibody systems without inversion of the mass matrix. In: Kopacek, P., Troch, I., Desoyer, K. (eds.) Theory of Robots, pp. 95–100. Pergamon Press, Oxford (1988)Google Scholar
  25. 25.
    Brasey, V.: A half-explicit method of order 5 for solving constrained mechanical systems. Computing 48, 191–201 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Brenan, K.E., Campbell, S.L., Petzold, L.R.: Numerical Solution of Initial–Value Problems in Differential–Algebraic Equations, 2nd edn. SIAM, Philadelphia (1996)zbMATHGoogle Scholar
  27. 27.
    Brüls, O., Cardona, A.: On the use of Lie group time integrators in multibody dynamics. J. Comput. Nonlinear Dyn. 5, 031002 (2010)CrossRefGoogle Scholar
  28. 28.
    Brüls, O., Golinval, J.C.: The generalized-α method in mechatronic applications. J. Appl. Math. Mech./Z. Angew. Math. Mech. 86, 748–758 (2006)Google Scholar
  29. 29.
    Brüls, O., Arnold, M., Cardona, A.: Two Lie group formulations for dynamic multibody systems with large rotations. In: Proceedings of IDETC/MSNDC 2011, ASME 2011 International Design Engineering Technical Conferences, Washington (2011)Google Scholar
  30. 30.
    Campbell, S.L., Gear, C.W.: The index of general nonlinear DAEs. Numer. Math. 72, 173–196 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Cardona, A., Géradin, M.: Time integration of the equations of motion in mechanism analysis. Comput. Struct. 33, 801–820 (1989)CrossRefzbMATHGoogle Scholar
  32. 32.
    Celledoni, E., Owren, B.: Lie group methods for rigid body dynamics and time integration on manifolds. Comput. Methods Appl. Mech. Eng. 192, 421–438 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Chung, J., Hulbert, G.: A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-α method. ASME J. Appl. Mech. 60, 371–375 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Dormand, J.R., Prince, P.J.: A family of embedded Runge–Kutta formulae. J. Comp. Appl. Math. 6, 19–26 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Eich, E.: Convergence results for a coordinate projection method applied to mechanical systems with algebraic constraints. SIAM J. Numer. Anal. 30, 1467–1482 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Eichberger, A.: Transputer–based multibody system dynamic simulation: part I. The residual algorithm – a modified inverse dynamic formulation. Mech. Struct. Mach. 22, 211–237 (1994)Google Scholar
  37. 37.
    Eich-Soellner, E., Führer, C.: Numerical Methods in Multibody Dynamics. Teubner, Stuttgart (1998)CrossRefzbMATHGoogle Scholar
  38. 38.
    Featherstone, R.: The calculation of robot dynamics using articulated-body inertias. Int. J. Robot. Res. 2, 13–30 (1983)CrossRefGoogle Scholar
  39. 39.
    Frączek, J., Wojtyra, M.: On the unique solvability of a direct dynamics problem for mechanisms with redundant constraints and Coulomb friction in joints. Mech. Mach. Theory 46, 312–334 (2011)CrossRefzbMATHGoogle Scholar
  40. 40.
    Führer, C.: Differential-algebraische Gleichungssysteme in mechanischen Mehrkörpersystemen. Theorie, numerische Ansätze und Anwendungen. Ph.D. thesis, TU München, Mathematisches Institut und Institut für Informatik (1988)Google Scholar
  41. 41.
    Führer, C., Leimkuhler, B.J.: Numerical solution of differential-algebraic equations for constrained mechanical motion. Numer. Math. 59, 55–69 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    García de Jalón, J., Gutiérrez-López, M.D.: Multibody dynamics with redundant constraints and singular mass matrix: existence, uniqueness, and determination of solutions for accelerations and constraint forces. Multibody Sys. Dyn. 30, 311–341 (2013)Google Scholar
  43. 43.
    Gear, C.W.: Maintaining solution invariants in the numerical solution of ODEs. SIAM J. Sci. Stat. Comput. 7, 734–743 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Gear, C.W., Leimkuhler, B., Gupta, G.K.: Automatic integration of Euler–Lagrange equations with constraints. J. Comp. Appl. Math. 12&13, 77–90 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Géradin, M.D., Cardona, A.: Flexible Multibody Dynamics: A Finite Element Approach. Wiley, Chichester (2001)Google Scholar
  46. 46.
    Golub, G.H., van Loan, Ch.F.: Matrix Computations, 3rd edn. Johns Hopkins University Press, Baltimore (1996)zbMATHGoogle Scholar
  47. 47.
    Hairer, E., Lubich, Ch., Roche, M.: The Numerical Solution of Differential-Algebraic Systems by Runge–Kutta Methods. Lecture Notes in Mathematics, vol. 1409. Springer, Berlin, Heidelberg, New York (1989)Google Scholar
  48. 48.
    Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations. I. Nonstiff Problems, 2nd edn. Springer, Berlin, Heidelberg, New York (1993)Google Scholar
  49. 49.
    Hairer, E., Lubich, Ch., Wanner, G.: Geometric Numerical Integration. Structure–Preserving Algorithms for Ordinary Differential Equations, 2nd edn. Springer, Berlin, Heidelberg, New York (2006)Google Scholar
  50. 50.
    Hairer, E., Wanner, G.: Solving Ordinary Differential Equations. II. Stiff and Differential-Algebraic Problems, 2nd edn. Springer, Berlin, Heidelberg, New York (1996)Google Scholar
  51. 51.
    Hilber, H.M., Hughes, T.J.R., Taylor, R.L.: Improved numerical dissipation for time integration algorithms in structural dynamics. Earthq. Eng. Struct. Dyn. 5, 283–292 (1977)CrossRefGoogle Scholar
  52. 52.
    Hoschek, M., Rentrop, P., Wagner, Y.: Network approach and differential-algebraic systems in technical applications. Surv. Math. Ind. 9, 49–75 (1999)MathSciNetzbMATHGoogle Scholar
  53. 53.
    Iserles, A., Munthe-Kaas, H.Z., Nørsett, S., Zanna, A.: Lie-group methods. Acta Numer. 9, 215–365 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  54. 54.
    Jansen, K.E., Whiting, C.H., Hulbert, G.M.: A generalized-α method for integrating the filtered Navier-Stokes equations with a stabilized finite element method. Comput. Methods Appl. Mech. Eng. 190, 305–319 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  55. 55.
    Jay, L.O., Negrut, D.: Extensions of the HHT-method to differential-algebraic equations in mechanics. Electron. Trans. Numer. Anal. 26, 190–208 (2007)MathSciNetzbMATHGoogle Scholar
  56. 56.
    Jay, L.O., Negrut, D.: A second order extension of the generalized-α method for constrained systems in mechanics. In: Bottasso, C. (ed.) Multibody Dynamics. Computational Methods and Applications. Computational Methods in Applied Sciences, vol. 12, pp. 143–158. Springer, Dordrecht (2008)Google Scholar
  57. 57.
    Kalker, J.J.: Three-Dimensional Elastic Bodies in Rolling Contact. Kluwer, Dordrecht, Boston, London (1990)CrossRefzbMATHGoogle Scholar
  58. 58.
    Kunkel, P., Mehrmann, V.: Differential-Algebraic Equations. Analysis and Numerical Solution. EMS Textbooks in Mathematics. European Mathematical Society, Zurich (2006)CrossRefzbMATHGoogle Scholar
  59. 59.
    Lötstedt, P.: Mechanical systems of rigid bodies subject to unilateral constraints. SIAM J. Appl. Math. 42, 281–296 (1982)MathSciNetCrossRefGoogle Scholar
  60. 60.
    Lötstedt, P., Petzold, L.R.: Numerical solution of nonlinear differential equations with algebraic constraints I: convergence results for backward differentiation formulas. Math. Comp. 46, 491–516 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  61. 61.
    Lubich, Ch., Nowak, U., Pöhle, U., Engstler, Ch.: MEXX – Numerical software for the integration of constrained mechanical multibody systems. Technical Report SC 92–12, ZIB Berlin (1992)Google Scholar
  62. 62.
    Lubich, Ch., Engstler, Ch., Nowak, U., Pöhle, U.: Numerical integration of constrained mechanical systems using MEXX. Mech. Struct. Mach. 23, 473–495 (1995)CrossRefGoogle Scholar
  63. 63.
    Lunk, C., Simeon, B.: Solving constrained mechanical systems by the family of Newmark and α-methods. Z. Angew. Math. Mech. 86, 772–784 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  64. 64.
    Möller, M., Glocker, C.: Rigid body dynamics with a scalable body, quaternions and perfect constraints. Multibody Sys. Dyn. 27, 437–454 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  65. 65.
    Müller, A., Terze, Z.: The significance of the configuration space Lie group for the constraint satisfaction in numerical time integration of multibody systems. Mech. Mach. Theory 82, 173–202 (2014)CrossRefGoogle Scholar
  66. 66.
    Negrut, D., Rampalli, R., Ottarsson, G., Sajdak, A.: On the use of the HHT method in the context of index 3 differential algebraic equations of multi-body dynamics. In: Goicolea, J.M., Cuadrado, J., García Orden, J.C. (eds.) Proceedings of Multibody Dynamics 2005 (ECCOMAS Thematic Conference), Madrid (2005)Google Scholar
  67. 67.
    Orlandea, N.: Development and application of node–analogous sparsity–oriented methods for simulation of mechanical dynamic systems. Ph.D. thesis, University of Michigan (1973)Google Scholar
  68. 68.
    Petzold, L.R.: Differential/algebraic equations are not ODEs. SIAM J. Sci. Stat. Comput. 3, 367–384 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  69. 69.
    Petzold, L.R.: Order results for implicit Runge–Kutta methods applied to differential/algebraic systems. SIAM J. Numer. Anal. 23, 837–852 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  70. 70.
    Petzold, L.R., Lötstedt, P.: Numerical solution of nonlinear differential equations with algebraic constraints II: practical implications. SIAM J. Sci. Stat. Comput. 7, 720–733 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  71. 71.
    Rheinboldt, W.C.: Differential-algebraic systems as differential equations on manifolds. Math. Comp. 43, 473–482 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  72. 72.
    Rheinboldt, W.C.: On the existence and uniqueness of solutions of nonlinear semi-implicit differential-algebraic equations. Nonlinear Anal. Theory Methods Appl. 16, 647–661 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  73. 73.
    Rulka, W.: Effiziente Simulation der Dynamik mechatronischer Systeme für industrielle Anwendungen. PhD Thesis, Vienna University of Technology, Department of Mechanical Engineering (1998)Google Scholar
  74. 74.
    Schiehlen, W.O. (ed.): Multibody Systems Handbook. Springer, Berlin, Heidelberg, New York (1990)zbMATHGoogle Scholar
  75. 75.
    Schiehlen, W.: Multibody system dynamics: roots and perspectives. Multibody Sys. Dyn. 1, 149–188 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  76. 76.
    Schiehlen, W., Eberhard, P.: Applied Dynamics. Springer, Dordrecht (2014)CrossRefzbMATHGoogle Scholar
  77. 77.
    Schwertassek, R., Wallrapp, O.: Dynamik Flexibler MehrKÖrperSysteme. Vieweg, Wiesbaden (1999)CrossRefGoogle Scholar
  78. 78.
    Shabana, A.A.: Flexible multibody dynamics: Review of past and recent developments. Multibody Sys. Dyn. 1, 189–222 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  79. 79.
    Shabana, A.A.: Dynamics of Multibody Systems, 2nd edn. Cambridge University Press, Cambridge (1998)zbMATHGoogle Scholar
  80. 80.
    Simeon, B.: MBSPACK – Numerical integration software for constrained mechanical motion. Surv. Math. Ind. 5, 169–202 (1995)MathSciNetzbMATHGoogle Scholar
  81. 81.
    Simeon, B.: On the numerical solution of a wheel suspension benchmark problem. Comp. Appl. Math. 66, 443–456 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  82. 82.
    Simeon, B.: Computational Flexible Multibody Dynamics: A Differential-Algebraic Approach. Differential-Algebraic Equations Forum. Springer, Berlin Heidelberg (2013)CrossRefzbMATHGoogle Scholar
  83. 83.
    Simeon, B.: On the history of differential-algebraic equations. In: Ilchmann, A., Reis, T. (eds.) Surveys in Differential-Algebraic Equations, vol. III. Springer, Cham (2016)Google Scholar
  84. 84.
    Simeon, B., Führer, C., Rentrop, P.: Differential-algebraic equations in vehicle system dynamics. Surv. Math. Ind. 1, 1–37 (1991)MathSciNetzbMATHGoogle Scholar
  85. 85.
    Simo, J.C., Vu-Quoc, L.: On the dynamics in space of rods undergoing large motions – A geometrically exact approach. Comput. Methods Appl. Mech. Eng. 66, 125–161 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  86. 86.
    Udwadia, F.E., Phohomsiri, P.: Explicit equations of motion for constrained mechanical systems with singular mass matrices and applications to multi-body dynamics. Proc. R. Soc. A 462, 2097–2117 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  87. 87.
    Valášek, M., Šika, Z., Vaculín, O.: Multibody formalism for real-time application using natural coordinates and modified state space. Multibody Sys. Dyn. 17, 209–227 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  88. 88.
    von Schwerin, R.: MultiBody System SIMulation – Numerical Methods, Algorithms, and Software. Lecture Notes in Computational Science and Engineering, vol. 7. Springer, Berlin, Heidelberg (1999)Google Scholar
  89. 89.
    Wehage, R.A., Haug, E.J.: Generalized coordinate partitioning for dimension reduction in analysis of constrained dynamic systems. J. Mech. Design 104, 247–255 (1982)CrossRefGoogle Scholar
  90. 90.
    Wehage, R.A., Shabana, A.A., Hwang, Y.L.: Projection methods in flexible multibody dynamics. part II: Dynamics and recursive projection methods. Int. J. Numer. Methods Eng. 35, 1941–1966 (1992)Google Scholar
  91. 91.
    Yen, J., Petzold, L.R., Raha, S.: A time integration algorithm for flexible mechanism dynamics: The DAE α-method. Comput. Methods Appl. Mech. Eng. 158, 341–355 (1998)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Institute of MathematicsMartin Luther University Halle-WittenbergHalle (Saale)Germany

Personalised recommendations