Skip to main content

Finding the roots of a non-linear equation: history and reliability

  • Conference paper
  • First Online:
Research in History and Philosophy of Mathematics

Abstract

Finding the roots of a non-linear equation \( f(x)=0 \) is one of the most commonly occurring problems of applied mathematics. This work concerns the nineteenth century history of the fixed point and the bisection methods of root finding. We present the linear convergence properties of the fixed point technique as explained by Sancery in 1862 and Schröder in 1870. The bisection method does not have the prestigious past of other methods of root finding, however because the bisection method is linked to the intermediate value theorem, we examine the Bolzano (1817), Cauchy (1821), and Sarrus (1841) approaches. We conclude by looking at some contemporary approaches to the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that Picard’s fixed point theorem concerns differential equations.

  2. 2.

    For example, this property M can correspond to \( f(x)<0 \), \( \forall x<U \).

  3. 3.

    Gaston Darboux, in his Mémoire sur les fonctions discontinues (1975), follows Cauchy’s method by dividing an interval (A, B) in n parts. It is clear that neither Cauchy nor Darboux was aware of Bolzano’s work.

  4. 4.

    Bradley said that Cauchy gave a first proof of the Intermediate Value Theorem in Chapter II, but it was rather unsatisfactory.

  5. 5.

    Already, in 1833, Sarrus published an article “Nouvelle méthode pour la résolution des équations numériques.”

References

  • Alexander DS (1994) A history of complex dynamics: from Schröder to Fatou and Julia. Vieweg, Braunschweig/Wiesbaden

    Book  MATH  Google Scholar 

  • Alexander DS, Iavernaro F, Rosa A (2012) Early days in complex dynamics, a history of complex dynamics in one variable during 1906–1942. American Mathematical Society, Providence

    MATH  Google Scholar 

  • Banach S (1922) Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fund Math 3:133–181

    MATH  Google Scholar 

  • Bradley R (2008) Cauchy’s analysis: a break with the past? Proc CSHPM 21:36–52

    Google Scholar 

  • Bradley R, Sandifer E (2009) Cauchy’s Cours d’analyse: an annotated translation. Springer, Paris

    Book  MATH  Google Scholar 

  • Cauchy AL (1829) Sur la détermination approximative des racines d’une équation algébrique ou transcendante. In: Leçons sur le calcul différentiel. de Bure, Paris. Oeuvres, 2e série, Gauthier-Villars, Paris, t. IV, (1899): 573–609

    Google Scholar 

  • Cauchy LA (1847) Analyse mathématique- Méthode générale pour la résolution des systèmes d’équations simultanées. Comptes Rendus de Acad Sci 25:536–538

    Google Scholar 

  • Cayley AL (1879) The Newton-Fourier imaginary problem. Am J Math 2:97

    Article  MathSciNet  MATH  Google Scholar 

  • Chabert J-L (1990) Un demi-siècle de fractales: 1870–1920. Hist Math 1(17):339–365

    Article  MathSciNet  MATH  Google Scholar 

  • Chabert J-L, Barbin E, Guillemot M, Michel-Pajus A, Borowczyk J, Djebbar A, Martzloff J-C (1993) Histoire d’algorithmes, du caillou à la puce, Paris, Belin. English translation (1999): A history of algorithms. Springer, Berlin

    Google Scholar 

  • Chaudhry ML, Harris CM, Marchal WG (1990) Robustness of rootfinding in a single-server queueing models. ORSA J Comput 2:273–285

    Article  MATH  Google Scholar 

  • Dennis JE Jr, Schnabel RB (1983) Numerical methods to unconstrained optimization and nonlinear equations. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  • Dhombres J (1978) Nombre, mesure et continu. Épistémologie et histoire. CEDIC/Fernand Nathan, Paris

    MATH  Google Scholar 

  • Dold-Samplonius Y, Dauben JW, Folkerts M, van Dalen B (eds) (2002) From China to Paris: 2000 years transmission of mathematical ideas. Franz Steiner Verlag, Stuttgart

    MATH  Google Scholar 

  • Fourier J (1818) Question d’analyse algébrique. Bulletin des sciences par la Société phimathique: 61–67

    Google Scholar 

  • Gauss C-F (1809) Theoria Motus Corporum Coelestium in Sectionibus Conicis Solem Ambientium. Werke, VII:150–152

    Google Scholar 

  • Gilain C (1989) Cauchy et le cours d’analyse de l’École Polytechnique. Bull Soc Amis Bibl École Polytech 5:1–145

    MATH  Google Scholar 

  • Godard R (2010) Some mathematical tools for numerical methods from 1805 to 1855. In: Proceedings of the 6th ESU conference, Vienna

    Google Scholar 

  • Goldstine H (1977) A history of numerical analysis: from the 16th through the 19th century. Springer, New York

    Book  MATH  Google Scholar 

  • Hadamard J (1902) Sur le problème des dérivées partielles et leur signification physique. Bull Princeton Univ 13:49–52

    MathSciNet  Google Scholar 

  • Hadamard J (1932) Le problème de Cauchy et les équations aux dérivées partielles linéaires Hyperboliues. Herman, Paris

    MATH  Google Scholar 

  • Hairer E, Wanner G (2008) Analysis by its history. Springer, New York

    Book  MATH  Google Scholar 

  • Hamming RW (1973) Numerical methods for scientists and engineers. McGraw-Hill Book Company, New York

    MATH  Google Scholar 

  • Heath TL (1908) The thirteen books of Euclid Elements, III, Book X-XIII. Cambridge University Press, Cambridge

    Google Scholar 

  • Higham NJ (2002) Accuracy and stability of numerical algorithms. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  • Kantorovich LV (1952) Functional analysis and applied mathematics, translated from Russian by Benster CD, Forsythe GE (eds). National Bureau of Standards, report 1101-10-5100, Los Angeles

    Google Scholar 

  • Kennedy ES (1969) An early method of successive approximations. Centaurus 13:248–250

    Article  MATH  Google Scholar 

  • Knuth DE (1998) The art of computer programming, 2nd edn. Addison-Wesley, Reading

    MATH  Google Scholar 

  • Korganoff A (1960) Méthodes de calcul numérique, Tome 1, Algèbre non-linéaire. Dunod, Paris

    MATH  Google Scholar 

  • Lagrange JL (1771) Sur le problème de Kepler. Mémoires de l’Académie royale des Sciences et Belles-Lettres de Berlin, t. XXV:15–147

    Google Scholar 

  • Lagrange JL (1879) In: Serret JA, Darboux G (eds) Oeuvres de Lagrange. Gauthier-Villars, Paris

    Google Scholar 

  • Ostrowski AM (1966) Solutions of equations and systems of equations. Academic Press, New York

    MATH  Google Scholar 

  • Picard E (1890) Mémoire sur la théorie des équations différentielles partielles et la méthode des approximations successives. J. de Liouville 6:145–210, 231

    Google Scholar 

  • Plofker K (1996) An example of the secant method of iterative approximation in a fifteenth century Sanskrit text. Hist Math 23:246–256

    Article  MathSciNet  MATH  Google Scholar 

  • Plofker K (2002) Use and transmission of iterative approximations in India and the Islamic world. In: Dold-Samplonius Y, Dauben JW, Folkerts M, van Dalen B (eds) From China to Paris: 2000 years transmission of mathematical ideas. Franz Steiner Verlag, Stuttgart, pp 167–186

    Google Scholar 

  • Plofker K (2009) Mathematics in India. Princeton/Oxford University Press, Princeton

    MATH  Google Scholar 

  • Rashed R (1994) The development of Arabic mathematics: between arithmetic and algebra. Kluwer, Dordrecht

    Book  MATH  Google Scholar 

  • Riahi F (2004) An early iterative method for the determination of sin1o. In: Katz V, Anderson M, Wilson R (eds) Sherlock Holmes in Babylon and other tales of mathematical history. The Mathematical Association of America, Washington

    Google Scholar 

  • Russ SB (1990) A translation of Bolzano’s paper on the intermediate value theorem. Hist Math 7:156–195

    Article  MathSciNet  MATH  Google Scholar 

  • Russ SB (2004) The mathematical works of Bernard Bolzano. Oxford University Press, Oxford

    Google Scholar 

  • Sancery L (1862) De la méthode des substitutions successives pour le calcul des racines des équations. Nouvelles Ann. de Math, 2e série 1:305–312

    Google Scholar 

  • Sarrus F (1841) Sur la résolution des équations numériques à une ou plusieurs inconnues et de forme quelconque. J de math pures et appliquées 6:171–190

    Google Scholar 

  • Schröder E (1869) Ueber unendlich viele Algorithmen zur Auflösung der Gleichungen. Math Annalen II:317–365

    Google Scholar 

  • Schröder E (1870) Ueber Iterirte Functionen. Math Annalen II:297–322

    Google Scholar 

  • Sebestik J (1964) Bernard Bolzano et son Mémoire sur le théorème fondamental de l’analyse. Revue d’histoire des sciences et de leurs applications 17(2):129–164

    Article  MathSciNet  MATH  Google Scholar 

  • Turing A (1948) Rounding-off errors in matrix processes. Quart J Mech Appl Math 1:287–308

    Article  MathSciNet  MATH  Google Scholar 

  • van Brummelen G (2000) Sin (1°): from Ptolemy to al-Kashi. Proc CSHPM 13:211–215

    Google Scholar 

  • van Wijgaarden A, Zonneveld JA, Dijkstra EW (1963) In: Dekker TJ (ed) Programs AP 200 and AP 230 de serie AP 200. The Mathematical Centre. Amsterdam

    Google Scholar 

  • Weyl H (1924) Randbemerkungen zu Hauptproblemen de Mathematik. Math Z 20:131–150

    Article  MathSciNet  MATH  Google Scholar 

  • Wilkinson JH (1963) Rounding errors in algebraic processes. Her Majesty’s Stationery Office, London

    MATH  Google Scholar 

  • Wilkinson JH (1980) Turing’s work at the National Physical Laboratory and the Construction of Pilot ACE, DEUCE, and ACE. In: Metropolis N, Howlett J, Gian-Carlo R (eds) A history of computing in the twentieth century. Academic Press, New York

    Google Scholar 

  • Yamamoto T (2001) Historical developments in convergence analysis for Newton’s and Newton’s like methods. In: Brezinski C, Wuytack L (eds) Numerical analysis: historical developments in the 20th century. Elsevier, Amsterdam

    Google Scholar 

  • Ypma TJ (1995) Historical developments of the Newton–Raphson method. SIAM Rev 37(4): 531–551

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger Godard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Godard, R. (2016). Finding the roots of a non-linear equation: history and reliability. In: Zack, M., Landry, E. (eds) Research in History and Philosophy of Mathematics. Proceedings of the Canadian Society for History and Philosophy of Mathematics/La Société Canadienne d’Histoire et de Philosophie des Mathématiques. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-46615-6_5

Download citation

Publish with us

Policies and ethics