Skip to main content

Sustainable Biocomposites: Challenges, Potential and Barriers for Development

  • Chapter
  • First Online:
Green Biocomposites

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Since natural fibers have many advantages, modern societies start switching for new green materials including natural fibers to contribute meeting the demand of weight reduction, environmental issues as well as customer satisfaction attributes. However, fully replacement of green bio-composites has many challenges. Inadequate availability of data regarding the performance of bio-composites due to the large variety of their constituents is the most challenging barrier in this field. A gap in the way of assessing bio-composites relative to comprehensive desired criteria for various industrial applications have been revealed. Therefore, processing consideration and proper selection of the composite constituents and their characteristics should be extensively investigated in order to achieve good part design with bio-composites. Moreover, high coefficients of safety factors are still required in such green products. Inconsistency of natural fibers properties as a major drawback as well as others that limit their applications in bio-composites are comprehensively discussed here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alamri H, Low IM (2012) Effect of water absorption on the mechanical properties of nano-filler reinforced epoxy nanocomposites. Mater Des 42:214–222

    Article  CAS  Google Scholar 

  • Alexandre M, Dubois P (2000) Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng R Rep 28(1):1–63

    Article  Google Scholar 

  • AL-Oqla FM, Hayajneh MT (2007) A design decision-making support model for selecting suitable product color to increase probability. In: Design challenge conference: managing creativity, innovation, and entrepreneurship, Amman, Jordan

    Google Scholar 

  • Al-Oqla FM, Omar AA (2012) A decision-making model for selecting the GSM mobile phone antenna in the design phase to increase over all performance. Prog Electromagnet Res C 25:249–269. doi:10.2528/PIERC11102702

    Article  Google Scholar 

  • AL-Oqla FM, Sapuan SM (2014a) Date palm fibers and natural composites. In: Postgraduate symposium on composites science and technology 2014 & 4th postgraduate seminar on natural fibre composites 2014, 28/01/2014, Putrajaya, Selangor, Malaysia

    Google Scholar 

  • AL-Oqla FM, Sapuan SM (2014b) Enhancement selecting proper natural fiber composites for industrial applications. In: Postgraduate symposium on composites science and technology 2014 & 4th postgraduate seminar on natural fibre composites 2014, 28/01/2014, Putrajaya, Selangor, Malaysia

    Google Scholar 

  • AL-Oqla FM, Sapuan SM (2014c) Natural fiber reinforced polymer composites in industrial applications: feasibility of date palm fibers for sustainable automotive industry. J Clean Prod 66:347–354. doi:10.1016/j.jclepro.2013.10.050

  • Al-Oqla FM, Omar AA (2015) An expert-based model for selecting the most suitable substrate material type for antenna circuits. Int J Electron 102(6):1044–1055

    Article  CAS  Google Scholar 

  • Al-Oqla FM, Sapuan SM (2015) Polymer selection approach for commonly and uncommonly used natural fibers under uncertainty environments. JOM 67(10):2450–2463

    Article  CAS  Google Scholar 

  • AL-Oqla FM, Alothman OY, Jawaid M, Sapuan SM, Es-Saheb M (2014a) Processing and properties of date palm fibers and its composites. In: Biomass and bioenergy. Springer, pp 1–25

    Google Scholar 

  • AL-Oqla FM, Sapuan SM, Ishak MR, Aziz NA (2014b) Combined multi-criteria evaluation stage technique as an agro waste evaluation indicator for polymeric composites: date palm fibers as a case study. BioResources 9(3):4608–4621. doi:10.15376/biores.9.3.4608-4621

  • AL-Oqla FM, Sapuan SM, Ishak MR, Nuraini AA (2014c) A novel evaluation tool for enhancing the selection of natural fibers for polymeric composites based on fiber moisture content criterion. BioResources 10(1):299–312

    Google Scholar 

  • AL-Oqla FM, Sapuan SM, Ishak MR, Nuraini AA (2015a) Decision making model for optimal reinforcement condition of natural fiber composites. Fibers Polym 16(1):153–163

    Google Scholar 

  • AL-Oqla FM, Sapuan SM, Ishak MR, Nuraini AA (2015b) Selecting natural fibers for bio-based materials with conflicting criteria. Am J Appl Sci 12(1):64–71

    Google Scholar 

  • AL-Oqla FM, Sapuan SM, Anwer T, Jawaid M, Hoque M (2015c) Natural fiber reinforced conductive polymer composites as functional materials: a review. Synth Met 206:42–54

    Google Scholar 

  • AL-Oqla FM, Sapuan SM, Ishak M, Nuraini A (2015d) A model for evaluating and determining the most appropriate polymer matrix type for natural fiber composites. Int J Polym Anal Charact 20(just-accepted):191–205

    Google Scholar 

  • AL-Oqla FM, Sapuan SM, Ishak M, Nuraini A (2015e) Predicting the potential of agro waste fibers for sustainable automotive industry using a decision making model. Comput Electron Agric 113:116–127

    Google Scholar 

  • AL-Oqla FM, Sapuan SM, Ishak M, Nuraini A (2016) A decision-making model for selecting the most appropriate natural fiber–polypropylene-based composites for automotive applications. J Compos Mater 50(4):543–556

    Google Scholar 

  • Alves C, Ferrão PMC, Silva AJ, Reis LG, Freitas M, Rodrigues LB, Alves DE (2010) Ecodesign of automotive components making use of natural jute fiber composites. J Clean Prod 18(4):313–327. doi:10.1016/j.jclepro.2009.10.022

    Article  CAS  Google Scholar 

  • Al-Widyan MI, Al-Oqla FM (2011) Utilization of supplementary energy sources for cooling in hot arid regions via decision-making model. Int J Eng Res Appl 1(4):1610–1622

    Google Scholar 

  • Al-Widyan MI, Al-Oqla FM (2014) Selecting the most appropriate corrective actions for energy saving in existing buildings A/C in hot arid regions. Build Simul 7(5):537–545. doi:10.1007/s12273-013-0170-3

    Article  Google Scholar 

  • Arbelaiz A, Fernandez B, Ramos J, Retegi A, Llano-Ponte R, Mondragon I (2005) Mechanical properties of short flax fibre bundle/polypropylene composites: Influence of matrix/fibre modification, fibre content, water uptake and recycling. Compos Sci Technol 65(10):1582–1592

    Article  CAS  Google Scholar 

  • Aridi N, Sapuan SM, Zainudin E, AL-Oqla FM (2016) Mechanical and morphological properties of injection-molded rice husk polypropylene composites. Int J Polym Anal Charact 21(4):305–313

    Google Scholar 

  • Ashby MF, Johnson K (2013) Materials and design: the art and science of material selection in product design. Butterworth-Heinemann

    Google Scholar 

  • Ashori A, Nourbakhsh A (2010) Bio-based composites from waste agricultural residues. Waste Manag 30(4):680–684

    Article  CAS  Google Scholar 

  • Azwa Z, Yousif B, Manalo A, Karunasena W (2013) A review on the degradability of polymeric composites based on natural fibres. Mater Des 47:424–442

    Article  CAS  Google Scholar 

  • Babu KF, Subramanian SS, Kulandainathan MA (2013) Functionalisation of fabrics with conducting polymer for tuning capacitance and fabrication of supercapacitor. Carbohydr Polym 94(1):487–495

    Article  Google Scholar 

  • Bendahou A, Kaddami H, Sautereau H, Raihane M, Erchiqui F, Dufresne A (2008) Short palm tree fibers polyolefin composites: effect of filler content and coupling agent on physical properties. Macromol Mater Eng 293(2):140–148

    Article  CAS  Google Scholar 

  • Benhamou K, Dufresne A, Magnin A, Mortha G, Kaddami H (2014) Control of size and viscoelastic properties of nanofibrillated cellulose from palm tree by varying the TEMPO-mediated oxidation time. Carbohydr Polym 99:74–83

    Article  CAS  Google Scholar 

  • Bora M, Baruah G, Talukdar C (1993) Studies on the dielectric properties of some natural (plant) and synthetic fibres in audio frequency range and their DC conductivity at elevated temperature. Thermochim Acta 218:435–443

    Article  CAS  Google Scholar 

  • Cheng Q, Wang J, Wen J, Liu C, Jiang K, Li Q, Fan S (2010) Carbon nanotube/epoxy composites fabricated by resin transfer molding. Carbon 48(1):260–266

    Article  CAS  Google Scholar 

  • Dalalah D, Al-Oqla FM, Hayajneh M (2010) Application of the analytic hierarchy process (AHP) in multi-criteria analysis of the selection of cranes. Jordan J Mech Ind Eng JJMIE 4(5):567–578

    Google Scholar 

  • Dittenber DB, GangaRao HV (2011) Critical review of recent publications on use of natural composites in infrastructure. Compos A Appl Sci Manuf 43(8):1419–1429

    Article  Google Scholar 

  • Dweiri F, Al-Oqla FM (2006) Material selection using analytical hierarchy process. Int J Comput Appl Technol 26(4):182–189. doi:10.1504/IJCAT.2006.010763

    Article  Google Scholar 

  • Faruk O, Bledzki AK, Fink H-P, Sain M (2012a) Biocomposites reinforced with natural fibers: 2000–2010. Prog Polym Sci 37:1552–1596

    Article  CAS  Google Scholar 

  • Faruk O, Bledzki AK, Fink H-P, Sain M (2012b) Biocomposites reinforced with natural fibers: 2000–2010. Prog Polym Sci 37(11):1552–1596. doi:10.1016/j.progpolymsci.2012.04.003

    Article  CAS  Google Scholar 

  • Friedrich K, Almajid AA (2013) Manufacturing aspects of advanced polymer composites for automotive applications. Appl Compos Mater 20(2):107–128

    Article  CAS  Google Scholar 

  • George G, Joseph K, Nagarajan E, Tomlal Jose E, George K (2013) Dielectric behaviour of PP/jute yarn commingled composites: Effect of fibre content, chemical treatments, temperature and moisture. Compos Part A Appl Sci Manuf 47:12–21

    Google Scholar 

  • Hardy JG, Lee JY, Schmidt CE (2013) Biomimetic conducting polymer-based tissue scaffolds. Curr Opin Biotechnol 24(5):847–854

    Article  CAS  Google Scholar 

  • Hassan ML, Hassan EA, Oksman KN (2011) Effect of pretreatment of bagasse fibers on the properties of chitosan/microfibrillated cellulose nanocomposites. J Mater Sci 46(6):1732–1740

    Article  CAS  Google Scholar 

  • Ho M-P, Wang H, Lee J-H, Ho C-K, Lau K-T, Leng J, Hui D (2012) Critical factors on manufacturing processes of natural fibre composites. Compos B Eng 43(8):3549–3562

    Article  CAS  Google Scholar 

  • Holbery J, Houston D (2006) Natural-fiber-reinforced polymer composites in automotive applications. J Miner Met Mater Soc 58(11):80–86

    Article  CAS  Google Scholar 

  • Ibrahim H, Farag M, Megahed H, Mehanny S (2014) Characteristics of starch-based biodegradable composites reinforced with date palm and flax fibers. Carbohydr Polym 101:11–19

    Article  CAS  Google Scholar 

  • Jabbour CJC, Jabbour ABLDS, Govindan K, Teixeira AA, Freitas WRDS (2013) Environmental management and operational performance in automotive companies in Brazil: the role of human resource management and lean manufacturing. J Clean Prod 47:129–140

    Google Scholar 

  • Jahan A, Ismail MY, Sapuan S, Mustapha F (2010) Material screening and choosing methods–a review. Mater Des 31(2):696–705

    Article  Google Scholar 

  • Jawaid M (2011) Abdul Khalil, H.: Cellulosic/synthetic fibre reinforced polymer hybrid composites: a review. Carbohydr Polym 86(1):1–18

    Article  CAS  Google Scholar 

  • John MJ, Thomas S (2008) Biofibres and biocomposites. Carbohydr Polym 71(3):343–364

    Article  CAS  Google Scholar 

  • Kalia S, Dufresne A, Cherian BM, Kaith B, Avérous L, Njuguna J, Nassiopoulos E (2011a) Cellulose-based bio- and nanocomposites: a review. Int J Polym Sci 2011:1–35

    Google Scholar 

  • Kalia S, Avérous L, James Njuguna J, Alain Dufresne A, Cherian BM (2011b) Natural fibers, bio- and nanocomposites. Int J Polym Sci 2011(Article ID 735932). 10.1155/2011/735932

  • Khalid Rehman H, Mohammad J, Rashid U (2014) Biomass and bioenergy: processing and properties, vol 1. Springer International Publishing, Cham

    Google Scholar 

  • Koronis G, Silva A, Fontul M (2013) Green composites: a review of adequate materials for automotive applications. Compos Part B Eng 44(1):120–127

    Article  CAS  Google Scholar 

  • Majeed K, Jawaid M, Hassan A, Abu Bakar A, Abdul Khalil H, Salema A, Inuwa I (2013) Potential materials for food packaging from nanoclay/natural fibres filled hybrid composites. Mater Des 46:391–410. doi:10.1016/j.matdes.2012.10.044

  • Matsumoto R, Arakawa M, Yoshida H, Akuzawa N (2012) Alkali-metal-graphite intercalation compounds prepared from flexible graphite sheets exhibiting high air stability and electrical conductivity. Synth Met 162(23):2149–2154

    Article  CAS  Google Scholar 

  • Mir A, Zitoune R, Collombet F, Bezzazi B (2010) Study of mechanical and thermomechanical properties of jute/epoxy composite laminate. J Reinf Plast Compos 29(11):1669–1680

    Article  CAS  Google Scholar 

  • Mohanty A, Misra M, Drzal L (2002) Sustainable bio-composites from renewable resources: opportunities and challenges in the green materials world. J Polym Environ 10(1–2):19–26

    Article  CAS  Google Scholar 

  • Najar SS, Kaynak A, Foitzik RC (2007) Conductive wool yarns by continuous vapour phase polymerization of pyrrole. Synth Met 157(1):1–4

    Article  CAS  Google Scholar 

  • Prajer M, Ansell MP (2014) Bio‐composites for structural applications: poly‐l‐lactide reinforced with long sisal fiber bundles. J Appl Polym Sci

    Google Scholar 

  • Rashedi A, Sridhar I, Tseng KJ (2012) Multi-objective material selection for wind turbine blade and tower: Ashby’s approach. Mater Des 37:521–532

    Article  Google Scholar 

  • Sapuan SM, Pua F-l, El-Shekeil Y, AL-Oqla FM (2013) Mechanical properties of soil buried kenaf fibre reinforced thermoplastic polyurethane composites. Mater Des 50:467–470

    Google Scholar 

  • Sarikanat M (2010) The influence of oligomeric siloxane concentration on the mechanical behaviors of alkalized jute/modified epoxy composites. J Reinf Plast Compos 29(6):807–817

    Article  CAS  Google Scholar 

  • Satyanarayana KG, Arizaga GG, Wypych F (2009) Biodegradable composites based on lignocellulosic fibers—an overview. Prog Polym Sci 34(9):982–1021

    Article  CAS  Google Scholar 

  • Thakur V, Singha A, Thakur M (2012) Biopolymers based green composites: Mechanical, thermal and physico-chemical characterization. J Polym Environ 20(2):412–421

    Article  CAS  Google Scholar 

  • Yao F, Wu Q, Lei Y, Guo W, Xu Y (2008) Thermal decomposition kinetics of natural fibers: activation energy with dynamic thermogravimetric analysis. Polym Degrad Stab 93(1):90–98

    Article  CAS  Google Scholar 

  • Ye Y, Chen H, Wu J, Ye L (2007) High impact strength epoxy nanocomposites with natural nanotubes. Polymer 48(21):6426–6433

    Article  CAS  Google Scholar 

  • Yusriah L, Sapuan S, Zainudin ES, Mariatti M (2014) Characterization of physical, mechanical, thermal and morphological properties of agro-waste betel nut (Areca catechu) husk fibre. J Clean Prod 72:174–180

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faris M. AL-Oqla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

AL-Oqla, F.M., Omari, M.A. (2017). Sustainable Biocomposites: Challenges, Potential and Barriers for Development. In: Jawaid, M., Sapuan, S., Alothman, O. (eds) Green Biocomposites. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-46610-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46610-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46609-5

  • Online ISBN: 978-3-319-46610-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics