Skip to main content

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 523))

Abstract

In this paper we firstly present the so far known result of the distribution of the number of inversions in the sequence of random variables. We say for the sequence \( (X_{1} , X_{2} , \ldots , X_{n} ) \) the inversion is given for i, j and \( X_{i} \), \( X_{j} \) when \( i < j \) and \( X_{i} > X_{j} \). Under independence we show the exact distribution of the number of inversions in the permutation (equivalent to τ- Kendall distribution). The difference is in normalizing constants. Considering inversions is more convenient. The aim of this paper is to provide the exact distribution respectively for the dependence case.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bukietyńska A: Kombinatoryczny test inwersji, Metody Ilosciowe w ekonomii, WSB Poznan, pp. 152162, (2008)

    Google Scholar 

  2. David, F.N., Kendall, M.G., Barton, D.E.: Symmetric Function and Allied Tables, p. 241. Cambridge (1966)

    Google Scholar 

  3. Feller, W.: An Introduction to Probability Theory and its Application. Wiley, New York, London (1961)

    Google Scholar 

  4. Ferguson, S., Genest, Ch., Hallin, M.: Kendall’s tau for autocorrelation. Can. J. Stat. 28, 587–604 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ferguson, S., Genest, Ch., Hallin, M.: Kendall’s tau for autocorrelation. Dep. Stat. Pap., UCLA (2011)

    MATH  Google Scholar 

  6. Hallin, M., Metard, G.: Rank–based test for randomness against first order dependence. J. Am. Stat. Assoc. 83, 1117–1128 (1988)

    Google Scholar 

  7. Janjic, M.: A generating function for numbers of insets. J. Integer Seq. 17 #14.9.7 (2014)

    Google Scholar 

  8. Kendall, M.G., Buckland, W.R.: A Dictionary of Statistical Terms. OLIVER AND BOYD, Edinburgh, London (1960)

    MATH  Google Scholar 

  9. Netto E.: Lehrbuch der Combinatorik. 2nd ed., Teubner, Leipzig, p. 96. (1927)

    Google Scholar 

  10. The On-Line Encyclopedia of Integer Sequences, sequence A008302

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariusz Czekala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Czekala, M., Bukietyńska, A. (2017). Distribution of Inversions and the Power of the τ- Kendall’s Test. In: Świątek, J., Wilimowska, Z., Borzemski, L., Grzech, A. (eds) Information Systems Architecture and Technology: Proceedings of 37th International Conference on Information Systems Architecture and Technology – ISAT 2016 – Part III. Advances in Intelligent Systems and Computing, vol 523. Springer, Cham. https://doi.org/10.1007/978-3-319-46589-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46589-0_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46588-3

  • Online ISBN: 978-3-319-46589-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics