Euclidean Matching Problems

  • Gabriele SicuroEmail author
Part of the Springer Theses book series (Springer Theses)


In the previous chapter we presented some random optimization problems on weighted graphs and some useful tools for their solution. However, we did not discuss the effect of possible correlations among the weights associated to the edges of the considered graphs, or we supposed explicitly that no correlation at all was present.


  1. 1.
    M. Abramowitz, I. Stegun, Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables, Applied Mathematics Series (Dover Publications, New York, 1972)zbMATHGoogle Scholar
  2. 2.
    M. Ajtai, J. Komlós, G. Tusnády, On optimal matchings. Combinatorica 4(4), 259–264 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    L. Ambrosio, Mathematical aspects of evolving interfaces: lectures given at the C.I.M.- C.I.M.E. joint Euro-summer school held in Madeira, Funchal, Portugal, July 3–9, 2000. Chap. Lecture Notes on Optimal Transport Problems (Springer, Berlin, 2003), pp. 1–52Google Scholar
  4. 4.
    M. Barczy, E. Iglói, Karhunen-Loève expansions of \(\alpha \)-Wiener bridges. Central Eur. J. Math. 9(1), 65–84 (2010)CrossRefzbMATHGoogle Scholar
  5. 5.
    J. Beardwood, J.H. Halton, J.M. Hammersley, The shortest path through many points. Math. Proc. Camb. Philos. Soc. 55(04), 299 (1959)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    E. Boniolo, S. Caracciolo, A. Sportiello, Correlation function for the Grid-Poisson Euclidean matching on a line and on a circle. J. Stat. Mech.: Theory Exp. 2014(11), P11023 (2014)MathSciNetCrossRefGoogle Scholar
  7. 7.
    S. Caracciolo, G. Sicuro, One-dimensional Euclidean matching problem: exact solutions, correlation functions, and universality. Phys. Rev. E 90(4), 042112 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    S. Caracciolo, G. Sicuro, Quadratic stochastic Euclidean bipartite matching problem. Phys. Rev. Lett. 115(23), 230601 (2015)ADSCrossRefGoogle Scholar
  9. 9.
    S. Caracciolo, G. Sicuro, Scaling hypothesis for the Euclidean bipartite matching problem. II. Correlation functions. Phys. Rev. E 91(6), 062125 (2015)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    S. Caracciolo et al., Scaling hypothesis for the Euclidean bipartite matching problem. Phys. Rev. E 90(1), 012118 (2014)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    J.R. de Almeida, D.J. Thouless, Stability of the Sherrington-Kirkpatrick solution of a spin glass model. J. Phys. A: Math. General 11(5), 983–990 (1978)ADSCrossRefGoogle Scholar
  12. 12.
    B. Dezsö, A. Jüttner, P. Kovács, LEMON - an open source C++ graph template library. Electron. Notes Theor. Comput. Sci. 264(5), 23–45 (2011)CrossRefGoogle Scholar
  13. 13.
    V.T. Dobrić, J.E. Yukich, Asymptotics for transportation cost in high dimensions. J. Theor. Probab. 8(1), 97–118 (1995)Google Scholar
  14. 14.
    R. Dudley, Real Analysis and Probability, Cambridge Studies in Advanced Mathematics (Cambridge University Press, Cambridge, 2002)CrossRefzbMATHGoogle Scholar
  15. 15.
    L.C. Evans, Partial differential equations and Monge-Kantorovich mass transfer. Current Dev. Math. 1997, 65–126 (1997)CrossRefzbMATHGoogle Scholar
  16. 16.
    G.H. Hardy, Ramanujan: Twelve Lectures on Subjects Suggested by His Life and Work, AMS Chelsea Publishing Series (AMS Chelsea Publishing, Providence, 1999)zbMATHGoogle Scholar
  17. 17.
    J. Houdayer, J.H. Boutet de Monvel, O.C. Martin, Comparing mean field and Euclidean matching problems. Eur. Phys. J. B 6(3), 383–393 (1998)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    L.V. Kantorovič, On a problem of Monge. J. Math. Sci. 133(4), 1383 (2006)Google Scholar
  19. 19.
    L.V. Kantorovič, On the translocation of masses. J. Math. Sci. 133(4) (2006). Original paper published in Dokl. Akad. Nauk SSSR 37(7–8), 227–229 (1942), pp. 1381–1382Google Scholar
  20. 20.
    C.-S. Lin, C.-L. Wang, Elliptic functions, Green functions and the mean field equations on tori. Ann. Math. 172(2), 911–954 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    C. Lucibello, G. Parisi, G. Sicuro, One-loop diagrams in the Random Euclidean Matching Problem. arXiv preprint arXiv:1609.09310
  22. 22.
    R.J. McCann, Exact solutions to the transportation problem on the line. Proc. R. Soc. A: Math. Phys. Eng. Sci. 455(1984), 1341–1380 (1999)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    M. Mézard, G. Parisi, Replicas and optimization. Journal de Physique Lettres 46(17), 771–778 (1985)CrossRefGoogle Scholar
  24. 24.
    M. Mézard, G. Parisi, On the solution of the random link matching problems. Journal de Physique 48(9), 1451–1459 (1987)CrossRefGoogle Scholar
  25. 25.
    M. Mézard, G. Parisi, The Euclidean matching problem. Journal de Physique 49, 2019–2025 (1988)MathSciNetCrossRefGoogle Scholar
  26. 26.
    G. Monge, Mémoire sur la théorie des déblais et des remblais (De l’Imprimerie Royale, 1781)Google Scholar
  27. 27.
    G. Parisi, M. Ratiéville, On the finite size corrections to some random matching problems. Eur. Phys. J. B 29(3), 457–468 (2002)ADSCrossRefGoogle Scholar
  28. 28.
    C. Redmond, J.E. Yukich, Asymptotics for Euclidean functionals with power-weighted edges. Stoch. Process. Appl. 61(2), 289–304 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    L.A. Shepp, On the integral of the absolute value of the pinned Wiener process. Ann. Probab. 10(1), 234–239 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    C. Villani, Optimal Transport: Old and New, vol. 338 (Springer Science & Business Media, Berlin, 2008)zbMATHGoogle Scholar
  31. 31.
    J. Yukich, Probability Theory of Classical Euclidean Optimization Problems, Lecture Notes in Mathematics (Springer, New York, 1998)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Centro Brasileiro de Pesquisas FísicasRio de JaneiroBrazil

Personalised recommendations