Random Optimization Problems and Statistical Mechanics

  • Gabriele SicuroEmail author
Part of the Springer Theses book series (Springer Theses)


In the previous chapter we discussed optimization problems defined on graphs, and in particular matching problems. For each of these problems we supposed that the parameters of the problem (e.g., the weight matrix for the considered graph) were given once and for all. For a given instance of an optimization problem, the solution can be found running specific algorithms available in the literature.


  1. 1.
    D.J. Aldous, The \(\zeta (2)\) limit in the random assignment problem. Random Struct. Algorithms 2, 381–418 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    J.R. de Almeida, D.J. Thouless, Stability of the Sherrington-Kirkpatrick solution of a spin glass model. J. Phys. A: Math. Gen. 11(5), 983 (1978)Google Scholar
  3. 3.
    V. Bapst et al., The quantum adiabatic algorithm applied to random optimization problems: The quantum spin glass perspective. Phys. Rep. 523(3), 127–205 (2013)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    R.J. Baxter, Exactly solved models in statistical mechanics. Courier Corporation (2007)Google Scholar
  5. 5.
    T. Castellani, A. Cavagna, Spin-glass theory for pedestrians. J. Stat. Mech.: Theory Exp. P05012 (2005)Google Scholar
  6. 6.
    P. Cheeseman, B. Kanefsky, W.M. Taylor. Where the Really Hard Problems Are, in IJCAI, vol. 91, pp. 331–340 (1991)Google Scholar
  7. 7.
    D. Coppersmith, G.B. Sorkin, Constructive bounds and exact expectations for the random assignment problem. Random Struct. Algorithms 15(2), 113–144 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    D. Fichera. Cavity methods in optimization problems: exact and approximated algorithms. Ph.D. thesis. Università di Milano (2008)Google Scholar
  9. 9.
    C. Grosso, Cavity method analysis for random assignment problems. Master thesis. Universitá di Milano (2004)Google Scholar
  10. 10.
    H.A. Kramers, G.H. Wannier, Statistics of the two-dimensional ferromagnet. Part I. Phys. Rev. 60 (1941)Google Scholar
  11. 11.
    S. Linusson, J. Wästlund, A proof of Parisi’s conjecture on the random assignment problem. Probab. Theory Relat. Fields 128(3), 419–440 (2004)CrossRefzbMATHGoogle Scholar
  12. 12.
    M. Mézard, G. Parisi, M. Virasoro, Spin Glass Theory and Beyond, Lecture Notes in Physics Series, World Scientific Publishing Company, Incorporated (1987)Google Scholar
  13. 13.
    M. Mézard, A. Montanari, Information, Physics, and Computation (Oxford Graduate Texts, OUP Oxford, 2009)CrossRefzbMATHGoogle Scholar
  14. 14.
    M. Mézard, G. Parisi, On the solution of the random link matching problems. Journal de Physique 48(9), 1451–1459 (1987)CrossRefGoogle Scholar
  15. 15.
    M. Mézard, G. Parisi, Replicas and optimization. Journal de Physique Lettres 46(17), 771–778 (1985)CrossRefGoogle Scholar
  16. 16.
    M. Mézard, G. Parisi, The Bethe lattice spin glass revisited. Eur. Phys. J. B 20(2), 217–233 (2001)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    M. Mézard, G. Parisi, The cavity method at zero temperature. J. Stat. Phys. 111(1/2), 1–24 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    D. Mitchell, B. Selman, H. Levesque, Hard and easy distributions of SAT problems, in AAAI, vol. 92, pp. 459–465 (1992)Google Scholar
  19. 19.
    G. Mussardo, Statistical Field Theory (Oxford University Press, Oxford, 2010)zbMATHGoogle Scholar
  20. 20.
    C. Nair, B. Prabhakar, M. Sharma, Proofs of the Parisi and Coppersmith-Sorkin random assignment conjectures. Random Struct. Algorithms 27(4), 413–444 (2005). DecMathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    H. Nishimori, Statistical Physics of Spin Glasses and Information Processing. An Introduction (Clarendon Press, Oxford, 2001)CrossRefzbMATHGoogle Scholar
  22. 22.
    G. Parisi, A conjecture on random bipartite matching (1998). arXiv:cond-mat.9801176
  23. 23.
    G. Parisi, Order parameter for spin-glasses. Phys. Rev. Lett. 50(24), 1946–1948 (1983)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    G. Parisi, M. Ratiéville, On the finite size corrections to some random matching problems. Eur. Phys. J. B 29(3), 457–468 (2002). OctADSCrossRefGoogle Scholar
  25. 25.
    L. Zdeborová, Statistical Physics of Hard Optimization Problems, Published on Acta Physica Slovaca 59(3), p. 169-303, 2009. Ph.D. thesis. Université Paris-Sud 11 and Univerzita Karlova v Praze (2008)Google Scholar
  26. 26.
    J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, The International Series of Monographs on Physics Series (Clarendon Press, Oxford, 2002)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Centro Brasileiro de Pesquisas FísicasRio de JaneiroBrazil

Personalised recommendations