Skip to main content

Multi Objective Symbolic Regression

  • Conference paper
  • First Online:

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 513))

Abstract

Symbolic regression has been a popular technique for some time. Systems typically evolve using a single objective fitness function, or where the fitness function is multi-objective the factors are combined using a weighted sum. This work uses a Non Dominated Sorting Strategy to rank the genomes. Using data derived from Swimming turns performed by elite athletes more information and better expressions can be generated than by using single, or even double objective functions. Symbolic regression, multi-objective, non dominated sorting, genetic programming.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Chow, J., Hay, J., Wilson, B., Imel, C.: Turning techniques of elite swimmers. J. Sports Sci. 2(3), 241–255 (1984)

    Article  Google Scholar 

  2. Nutonian: Eureqa desktop (2015). http://www.nutonian.com/products/eureqa/

  3. Okuno, K.: Stroke characteristics of world class male swimmers in free style events of the \(9^{th}\) FINA world swimming championships 2001 Fukuoka. Biomech. Med. Swim. 157–162 (2003)

    Google Scholar 

  4. Puel, F., Morlier, J., Cid, M., Chollet, D., Hellard, P.: Biomechanical factors influencing tumble turn performance of elite female swimmers. Biomech. Med. Swim. 11, 155–157 (2010)

    Google Scholar 

  5. Tourny-Chollet, C., Chollet, D., Hogie, S., Papparodopoulos, C.: Kinematic analysis of butterfly turns of international and national swimmers. J. Sports Sci. 20(5), 383–390 (2001)

    Article  Google Scholar 

  6. Prins, A., Patz, J.H.: The influence of tuck index, depth of foot-plant, and wall contact time on the velocity of push-off in the freestyle flip turn. Methods 6(5), 46–46 (2006)

    Google Scholar 

  7. Araujo, L., Pereira, S., Gatti, R., Freitas, E., Jacomel, G., Roesler, H.A.: Analysis of the lateral push-off in the freestyle flip turn. J. Sports Sci. 28(11), 1175–1181 (2010)

    Google Scholar 

  8. Takahashi, G., Yoshida, A., Tsubakimoto, S., Miyashita, M.: Propulsive forces generated by swimmers during a turning motion. biomechanics and medicine in swimming. Biomech. Med. Swim. 192–198 (1983)

    Google Scholar 

  9. Blanksby, B., Skender, S., Elliott, B., McElroy, K., Landers, G.: An analysis of the rollover backstroke turn by agegroup swimmers. Sports Biomech. 1–14 (2004)

    Google Scholar 

  10. Blanksby, B.: Gaining on turns. In: Applied Proceedings of the XVIIth International Symposium on Biomechanics in Sports-Swimming, pp. 11–20 (1999)

    Google Scholar 

  11. Blanksby, B., Hodgkinson, J., Marshall, R.: Force-time characteristics of freestyle tumble turns by elite swimmers. S. Afr. J. Res. Sport Phys. Educ. Recreat. 19(1), 1–15 (1996)

    Google Scholar 

  12. Cossor, J., Blanksby, B., Elliott, B.: The influence of plyometric training on the freestyle tumble turn. J. Sci. Med. Sport 2(2), 106–116 (1999)

    Article  Google Scholar 

  13. Harrison, M.: Introduction to Formal Language Theory. Addison Wesley, London, UK (1978)

    MATH  Google Scholar 

  14. Syswerda, G.: Uniform crossover in genetic algorithms. In: Schaffer, J. (ed.) Proceedings of Third International Conference on Genetic Algorithms, pp. 2–9. Morgan Kaufmann, Francisco, CA, USA (1989)

    Google Scholar 

  15. Jones, S., Hinde, C.: Uniform random crossover. In: Coghill, G.M. (ed.) Proceedings of the 2007 Workshop on Computational Intelligence. Aberdeen: University of Aberdeen (2007)

    Google Scholar 

  16. Hinde, C., Withall, M., Phillips, I., Jackson, T., Brown, S., Watson, R.: Train timetable generation using genetic algorithms. In: Filipe, J., Kacprzyk, J. (eds.) Proceedings of ICEC 2010, pp. 170–175. SciTePress, Valencia (2010)

    Google Scholar 

  17. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 181–197 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. J. Hinde .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Hinde, C.J., Chakravorti, N., West, A.A. (2017). Multi Objective Symbolic Regression. In: Angelov, P., Gegov, A., Jayne, C., Shen, Q. (eds) Advances in Computational Intelligence Systems. Advances in Intelligent Systems and Computing, vol 513. Springer, Cham. https://doi.org/10.1007/978-3-319-46562-3_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46562-3_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46561-6

  • Online ISBN: 978-3-319-46562-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics