Skip to main content

Abstract

The use of intraoperative neurophysiological monitoring (IONM) in children was first described in 1979 (Neurosurgery 4(2):146–51, 1979), just 2 years after the first descriptions of the use of somatosensory evoked potentials (SSEPs) in adult spine surgery (Clin Orthop Rel Res 126:100–5, 1977). Since then, surgeons from many countries have integrated the use of IONM into the surgical care of pediatric patients. The modalities used and the types of procedures for which IONM is utilized have expanded greatly since 1979.

Today, the most common pediatric procedures, for which IONM is used, are those that may place the corticospinal and corticobulbar tracts, brainstem auditory pathways, dorsal columns, cranial nerves, and/or somatic nerve roots at risk of insult. These include anterior and posterior spinal fusions, tethered cord release, dorsal rhizotomies, resection of spinal cord tumors, craniotomies for certain tumors, and posterior fossa decompressions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mahmoud M, Sadhasivam S, Salisbury S, Nick TG, Schnell B, Sestokas AK, et al. Susceptibility of transcranial electric motor-evoked potentials to varying targeted blood levels of dexmedetomidine during spine surgery. Anesthesiology. 2010;112(6):1364–73.

    Article  CAS  PubMed  Google Scholar 

  2. Tamkus AA, Rice KS, Kim HL. Differential rates of false-positive findings in transcranial electric motor evoked potential monitoring when using inhalational anesthesia versus total intravenous anesthesia during spine surgeries. Spine J. 2014;14(8):1440–6.

    Article  PubMed  Google Scholar 

  3. Creeley C, Dikranian K, Dissen G, Martin L, Olney J, Brambrink A. Propofol-induced apoptosis of neurones and oligodendrocytes in fetal and neonatal rhesus macaque brain. Br J Anaesth. 2013;110 Suppl 1:i29–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yan J, Jiang H. Dual effects of ketamine: neurotoxicity versus neuroprotection in anesthesia for the developing brain. J Neurosurg Anesthesiol. 2014;26(2):155–60.

    Article  PubMed  Google Scholar 

  5. Purdon PL, Pierce ET, Mukamel EA, Prerau MJ, Walsh JL, Wong KF, et al. Electroencephalogram signatures of loss and recovery of consciousness from propofol. Proc Natl Acad Sci U S A. 2013;110(12):E1142–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mukamel EA, Pirondini E, Babadi B, Wong KF, Pierce ET, Harrell PG, et al. A transition in brain state during propofol-induced unconsciousness. J Neurosci. 2014;34(3):839–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Akeju O, Westover MB, Pavone KJ, Sampson AL, Hartnack KE, Brown EN, et al. Effects of sevoflurane and propofol on frontal electroencephalogram power and coherence. Anesthesiology. 2014;121(5):990–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Akeju O, Pavone KJ, Westover MB, Vazquez R, Prerau MJ, Harrell PG, et al. A comparison of propofol- and dexmedetomidine-induced electroencephalogram dynamics using spectral and coherence analysis. Anesthesiology. 2014;121(5):978–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cornelissen L, Kim SE, Purdon PL, Brown EN, Berde CB. Age-dependent electroencephalogram (EEG) patterns during sevoflurane general anesthesia in infants. eLife. 2015;4:e06513.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Jellish WS, Leonetti JP, Buoy CM, Sincacore JM, Sawicki KJ, Macken MP. Facial nerve electromyographic monitoring to predict movement in patients titrated to a standard anesthetic depth. Anesth Analg. 2009;109(2):551–8.

    Article  CAS  PubMed  Google Scholar 

  11. Prell J, Rampp S, Ache J, Laule S, Rachinger J, Scheller C, et al. The potential of quantified lower cranial nerve EMG for monitoring of anesthetic depth. J Neurosurg Anesthesiol. 2012;24(2):139–45.

    Article  PubMed  Google Scholar 

  12. Nash Jr CL, Lorig RA, Schatzinger LA, Brown RH. Spinal cord monitoring during operative treatment of the spine. Clin Orthop Rel Res. 1977;126:100–5.

    Google Scholar 

  13. Gilmore R. The use of somatosensory evoked potentials in infants and children. J Child Neurol. 1989;4(1):3–19.

    Article  CAS  PubMed  Google Scholar 

  14. Gilmore R. Somatosensory evoked potential testing in infants and children. J Clin Neurophysiol. 1992;9(3):324–41.

    Article  CAS  PubMed  Google Scholar 

  15. Cracco JB, Cracco RQ, Stolove R. Spinal evoked potential in man: a maturational study. Electroencephalogr Clin Neurophysiol. 1979;46(1):58–64.

    Article  CAS  PubMed  Google Scholar 

  16. Yakolev P. The myelogenic cycles of regional maturation in the brain. In: Minkowski A, editor. Regional development of the brain in early life. Philadelphia: FA Davis; 1967. p. 3.

    Google Scholar 

  17. Fagan ER, Taylor MJ, Logan WJ. Somatosensory evoked potentials: Part I. A review of neural generators and special considerations in pediatrics. Pediatr Neurol. 1987;3(4):189–96.

    Article  CAS  PubMed  Google Scholar 

  18. McIntyre IW, Francis L, McAuliffe JJ. Transcranial motor evoked potentials are more easily acquired than somatosensory evoked potentials in children less than 6 years of age. Anesth Analg. 2016;122(1):212–8.

    Article  PubMed  Google Scholar 

  19. Eyre JA, Miller S, Ramesh V. Constancy of central conduction delays during development in man: investigation of motor and somatosensory pathways. J Physiol. 1991;434:441–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Whittle IR, Johnston IH, Besser M. Short latency somatosensory-evoked potentials in children—Part 1. Normative data. Surg Neurol. 1987;27(1):9–18.

    Article  CAS  PubMed  Google Scholar 

  21. Lesser RP, Raudzens P, Luders H, Nuwer MR, Goldie WD, Morris III HH, et al. Postoperative neurological deficits may occur despite unchanged intraoperative somatosensory evoked potentials. Ann Neurol. 1986;19(1):22–5.

    Article  CAS  PubMed  Google Scholar 

  22. Amassian VE, Stewart M. Motor cortical and other cortical interneuronal networks that generate very high frequency waves. Suppl Clin Neurophysiol. 2003;56:119–42.

    Article  PubMed  Google Scholar 

  23. Macdonald DB. Intraoperative motor evoked potential monitoring: overview and update. J Clin Monit Comput. 2006;20(5):347–77.

    Article  PubMed  Google Scholar 

  24. Macdonald DB, Skinner S, Shils J. Yingling C; American Society of Neurophysiological Monitoring. Intraoperative motor evoked potential monitoring—a position statement by the American Society of Neurophysiological Monitoring. Clin Neurophysiol. 2013;124(12):2291–316.

    Article  CAS  PubMed  Google Scholar 

  25. Langeloo DD, Journee HL, de Kleuver M, Grotenhuis JA. Criteria for transcranial electrical motor evoked potential monitoring during spinal deformity surgery. A review and discussion of the literature. Neurophysiologie Clin. 2007;37(6):431–9.

    Article  Google Scholar 

  26. Quinones-Hinojosa A, Lyon R, Zada G, Lamborn KR, Gupta N, Parsa AT, et al. Changes in transcranial motor evoked potentials during intramedullary spinal cord tumor resection correlate with postoperative motor function. Neurosurgery. 2005;56(5):982–93.

    PubMed  Google Scholar 

  27. Fulkerson DH, Satyan KB, Wilder LM, Riviello JJ, Stayer SA, Whitehead WE, et al. Intraoperative monitoring of motor evoked potentials in very young children. J Neurosurg Pediatr. 2011;7(4):331–7.

    Article  PubMed  Google Scholar 

  28. Burke D, Hicks R, Stephen J. Anodal and cathodal stimulation of the upper-limb area of the human motor cortex. Brain. 1992;115(Pt 5):1497–508.

    PubMed  Google Scholar 

  29. Fujiki M, Furukawa Y, Kamida T, Anan M, Inoue R, Abe T, et al. Intraoperative corticomuscular motor evoked potentials for evaluation of motor function: a comparison with corticospinal D and I waves. J Neurosurg. 2006;104(1):85–92.

    Article  PubMed  Google Scholar 

  30. Tasker JG, Peacock WJ, Dudek FE. Local synaptic circuits and epileptiform activity in slices of neocortex from children with intractable epilepsy. J Neurophysiol. 1992;67(3):496–507.

    CAS  PubMed  Google Scholar 

  31. Rampil IJ, King BS. Volatile anesthetics depress spinal motor neurons. Anesthesiology. 1996;85(1):129–34.

    Article  CAS  PubMed  Google Scholar 

  32. Heckman CJ, Mottram C, Quinlan K, Theiss R, Schuster J. Motoneuron excitability: the importance of neuromodulatory inputs. Clin Neurophysiol. 2009;120(12):2040–54.

    Article  CAS  PubMed  Google Scholar 

  33. Mukaida K, Shichino T, Koyanagi S, Himukashi S, Fukuda K. Activity of the serotonergic system during isoflurane anesthesia. Anesth Analg. 2007;104(4):836–9.

    Article  CAS  PubMed  Google Scholar 

  34. Irifune M, Shimizu T, Nomoto M. Ketamine-induced hyperlocomotion associated with alteration of presynaptic components of dopamine neurons in the nucleus accumbens of mice. Pharmacol Biochem Behav. 1991;40(2):399–407.

    Article  CAS  PubMed  Google Scholar 

  35. Eyre JA, Miller S, Clowry GJ, Conway EA, Watts C. Functional corticospinal projections are established prenatally in the human foetus permitting involvement in the development of spinal motor centres. Brain. 2000;123(Pt 1):51–64.

    Article  PubMed  Google Scholar 

  36. Olivier E, Edgley SA, Armand J, Lemon RN. An electrophysiological study of the postnatal development of the corticospinal system in the macaque monkey. J Neurosci. 1997;17(1):267–76.

    CAS  PubMed  Google Scholar 

  37. Jakowec MW, Fox AJ, Martin LJ, Kalb RG. Quantitative and qualitative changes in AMPA receptor expression during spinal cord development. Neuroscience. 1995;67(4):893–907.

    Article  CAS  PubMed  Google Scholar 

  38. Armand J, Olivier E, Edgley SA, Lemon RN. Postnatal development of corticospinal projections from motor cortex to the cervical enlargement in the macaque monkey. J Neurosci. 1997;17(1):251–66.

    CAS  PubMed  Google Scholar 

  39. Journee HL, Polak HE, De Kleuver M. Conditioning stimulation techniques for enhancement of transcranially elicited evoked motor responses. Clin Neurophysiol. 2007;37(6):423–30.

    Article  Google Scholar 

  40. Journee HL, Polak HE, de Kleuver M, Langeloo DD, Postma AA. Improved neuromonitoring during spinal surgery using double-train transcranial electrical stimulation. Med Biol Eng Comput. 2004;42(1):110–3.

    Article  CAS  PubMed  Google Scholar 

  41. van Hal C, Hoebink E, Polak HE, Racz I, de Kleuver M, Journee HL. Optimum interpulse interval for transcranial electrical train stimulation to elicit motor evoked potentials of maximal amplitude in both upper and lower extremity target muscles. Clin Neurophysiol. 2013;124(10):2054–9.

    Article  PubMed  Google Scholar 

  42. Barbet JP, Butler-Browne GS, Labbe S, Maillet M, Pompidou A. Quantification of the diameter of muscular fibres in the course of the development of the quadriceps. Bull Assoc Anat. 1991;75(230):25–9.

    CAS  Google Scholar 

  43. Skinner SA, Transfeldt EE, Savik K. Surface electrodes are not sufficient to detect neurotonic discharges: observations in a porcine model and clinical review of deltoid electromyographic monitoring using multiple electrodes. J Clin Monit Comput. 2008;22(2):131–9.

    Article  PubMed  Google Scholar 

  44. Eisermann M, Kaminska A, Moutard ML, Soufflet C, Plouin P. Normal EEG in childhood: from neonates to adolescents. Neurophysiol Clin. 2013;43(1):35–65.

    Article  CAS  PubMed  Google Scholar 

  45. Bruhn J, Bouillon TW, Radulescu L, Hoeft A, Bertaccini E, Shafer SL. Correlation of approximate entropy, bispectral index, and spectral edge frequency 95 (SEF95) with clinical signs of “anesthetic depth” during coadministration of propofol and remifentanil. Anesthesiology. 2003;98(3):621–7.

    Article  CAS  PubMed  Google Scholar 

  46. Jeleazcov C, Schmidt J, Schmitz B, Becke K, Albrecht S. EEG variables as measures of arousal during propofol anaesthesia for general surgery in children: rational selection and age dependence. Br J Anaesth. 2007;99(6):845–54.

    Article  CAS  PubMed  Google Scholar 

  47. Salamy A. Maturation of the auditory brainstem response from birth through early childhood. J Clin Neurophysiol. 1984;1(3):293–329.

    Article  CAS  PubMed  Google Scholar 

  48. Skinner SA, Vodusek DB. Intraoperative recording of the bulbocavernosus reflex. J Clin Neurophysiol. 2014;31(4):313–22.

    Article  PubMed  Google Scholar 

  49. MacDonald DB, Al Zayed Z, Khoudeir I, Stigsby B. Monitoring scoliosis surgery with combined multiple pulse transcranial electric motor and cortical somatosensory-evoked potentials from the lower and upper extremities. Spine (Phila Pa 1976). 2003;28(2):194–203.

    Article  Google Scholar 

  50. Fehlings MG, Brodke DS, Norvell DC, Dettori JR. The evidence for intraoperative neurophysiological monitoring in spine surgery: does it make a difference? Spine (Phila Pa 1976). 2010;35(9 Suppl):S37–46.

    Article  Google Scholar 

  51. Schwartz DM, Auerbach JD, Dormans JP, Flynn J, Drummond DS, Bowe JA, et al. Neurophysiological detection of impending spinal cord injury during scoliosis surgery. J Bone Joint Surg Am. 2007;89(11):2440–9.

    PubMed  Google Scholar 

  52. Skinner SA, Transfeldt EE, Mehbod AA, Mullan JC, Perra JH. Electromyography detects mechanically-induced suprasegmental spinal motor tract injury: review of decompression at spinal cord level. Clin Neurophysiol. 2009;120(4):754–64.

    Article  PubMed  Google Scholar 

  53. Raynor BL, Lenke LG, Kim Y, Hanson DS, Wilson-Holden TJ, Bridwell KH, et al. Can triggered electromyograph thresholds predict safe thoracic pedicle screw placement? Spine (Phila Pa 1976). 2002;27(18):2030–5.

    Article  Google Scholar 

  54. Donohue ML, Swaminathan V, Gilbert JL, Fox CW, Smale J, Moquin RR, et al. Intraoperative neuromonitoring: can the results of direct stimulation of titanium-alloy pedicle screws in the thoracic spine be trusted? J Clin Neurophysiol. 2012;29(6):502–8.

    Article  PubMed  Google Scholar 

  55. Lips J, de Haan P, de Jager SW, Vanicky I, Jacobs MJ, Kalkman CJ. The role of transcranial motor evoked potentials in predicting neurologic and histopathologic outcome after experimental spinal cord ischemia. Anesthesiology. 2002;97(1):183–91.

    Article  PubMed  Google Scholar 

  56. Lips J, de Haan P, Bouma GJ, Jacobs MJ, Kalkman CJ. Delayed detection of motor pathway dysfunction after selective reduction of thoracic spinal cord blood flow in pigs. J Thorac Cardiovasc Surg. 2002;123(3):531–8.

    Article  PubMed  Google Scholar 

  57. Fu KM, Smith JS, Polly DW, Ames CP, Berven SH, Perra JH, et al. Morbidity and mortality associated with spinal surgery in children: a review of the Scoliosis Research Society morbidity and mortality database. J Neurosurg Pediatr. 2011;7(1):37–41.

    Article  PubMed  Google Scholar 

  58. Ziewacz JE, Berven SH, Mummaneni VP, Tu TH, Akinbo OC, Lyon R, et al. The design, development, and implementation of a checklist for intraoperative neuromonitoring changes. Neurosurg Focus. 2012;33(5), E11.

    Article  PubMed  Google Scholar 

  59. Fasano VA, Barolat-Romana G, Zeme S, Squazzi A. Electrophysiological assessment of spinal circuits in spasticity by direct dorsal root stimulation. Neurosurgery. 1979;4(2):146–51.

    Google Scholar 

  60. Seidel K, Beck J, Stieglitz L, Schucht P, Raabe A. The warning-sign hierarchy between quantitative subcortical motor mapping and continuous motor evoked potential monitoring during resection of supratentorial brain tumors. J Neurosurg. 2013;118(2):287–96.

    Article  PubMed  Google Scholar 

  61. Deletis V, Fernandez-Conejero I, Ulkatan S, Costantino P. Methodology for intraoperatively eliciting motor evoked potentials in the vocal muscles by electrical stimulation of the corticobulbar tract. Clin Neurophysiol. 2009;120(2):336–41.

    Article  PubMed  Google Scholar 

  62. Dong CC, Macdonald DB, Akagami R, Westerberg B, Alkhani A, Kanaan I, et al. Intraoperative facial motor evoked potential monitoring with transcranial electrical stimulation during skull base surgery. Clin Neurophysiol. 2005;116(3):588–96.

    Article  PubMed  Google Scholar 

  63. Prell J, Rampp S, Romstock J, Fahlbusch R, Strauss C. Train time as a quantitative electromyographic parameter for facial nerve function in patients undergoing surgery for vestibular schwannoma. J Neurosur. 2007;106(5):826–32.

    Article  Google Scholar 

  64. Romstock J, Strauss C, Fahlbusch R. Continuous electromyography monitoring of motor cranial nerves during cerebellopontine angle surgery. J Neurosurg. 2000;93(4):586–93.

    Article  CAS  PubMed  Google Scholar 

  65. Sala F, Manganotti P, Tramontano V, Bricolo A, Gerosa M. Monitoring of motor pathways during brain stem surgery: what we have achieved and what we still miss? Neurophysiol Clin. 2007;37(6):399–406.

    Article  CAS  PubMed  Google Scholar 

  66. Bertalanffy H, Tissira N, Krayenbuhl N, Bozinov O, Sarnthein J. Inter- and intrapatient variability of facial nerve response areas in the floor of the fourth ventricle. Neurosurgery. 2011;68 Suppl 1:23–31.

    PubMed  Google Scholar 

  67. Deletis V, Fernandez-Conejero I, Ulkatan S, Rogic M, Carbo EL, Hiltzik D. Methodology for intra-operative recording of the corticobulbar motor evoked potentials from cricothyroid muscles. Clin Neurophysiol. 2011;122(9):1883–9.

    Article  PubMed  Google Scholar 

  68. Szelenyi A, Langer D, Beck J, Raabe A, Flamm ES, Seifert V, et al. Transcranial and direct cortical stimulation for motor evoked potential monitoring in intracerebral aneurysm surgery. Clin Neurophysiol. 2007;37(6):391–8.

    Article  CAS  Google Scholar 

  69. Szelenyi A, Langer D, Kothbauer K, De Camargo AB, Flamm ES, Deletis V. Monitoring of muscle motor evoked potentials during cerebral aneurysm surgery: intraoperative changes and postoperative outcome. J Neurosurg. 2006;105(5):675–81.

    Article  PubMed  Google Scholar 

Suggested Reading

  • Cornelissen L, Kim SE, Purdon PL, Brown EN, Berde CB. Age-dependent electroencephalogram (EEG) patterns during sevoflurane general anesthesia in infants. eLife. 2015;4:e06513.

    Article  PubMed  PubMed Central  Google Scholar 

  • Journee HL, Polak HE, De Kleuver M. Conditioning stimulation techniques for enhancement of transcranially elicited evoked motor responses. Clin Neurophysiol. 2007;37(6):423–30.

    Article  Google Scholar 

  • Lips J, de Haan P, de Jager SW, Vanicky I, Jacobs MJ, Kalkman CJ. The role of transcranial motor evoked potentials in predicting neurologic and histopathologic outcome after experimental spinal cord ischemia. Anesthesiology. 2002;97(1):183–91.

    Article  PubMed  Google Scholar 

  • McIntyre IW, Francis L, McAuliffe JJ. Transcranial motor evoked potentials are more easily acquired than somatosensory evoked potentials in children less than 6 years of age. Anesth Analg. 2016;122(1):212–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John J. McAuliffe M.D., M.B.A., D.A.B.N.M. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Francis, L., Busso, V., McAuliffe, J.J. (2017). Intraoperative Neuromonitoring in Pediatric Surgery. In: Koht, A., Sloan, T., Toleikis, J. (eds) Monitoring the Nervous System for Anesthesiologists and Other Health Care Professionals. Springer, Cham. https://doi.org/10.1007/978-3-319-46542-5_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46542-5_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46540-1

  • Online ISBN: 978-3-319-46542-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics