Skip to main content

Neurophysiological Monitoring in Thoracic Spine Surgery

  • Chapter
  • First Online:
  • 1526 Accesses

Abstract

Indications for spinal deformity surgery in the thoracic spine are similar to those in the cervical or lumbar spine. The major differences in the procedure include the special considerations needed to accommodate the anatomical variations in the orientation of the facet joints and pedicles, as well as the anterior approach to the spine. These surgeries have evolved to include approaches both through the chest cavity, as well as from posterior. Further, as clinical understanding of spinal sagittal plane deformity has progressed and surgical techniques evolved, procedures involving shortening, lengthening, and/or angular correction through the thoracic spinal column are being performed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Asterisk indicates key references.

References

Asterisk indicates key references.

  1. *Abraham DJ, Herkowitz HN, Katz JN. Indications for thoracic and lumbar spine fusion and trends in use. Orthop Clin North Am. 1998;29(4):803.

    Google Scholar 

  2. Miller NH. Cause and natural history of adolescent idiopathic scoliosis. Orthop Clin North Am. 1999;30(3):343–52.

    Article  CAS  PubMed  Google Scholar 

  3. *Pettiford BL, Schuchert MJ, Jeyabalan G, Landreneau JR, Kilic A, Landreneau JP, et al. Technical challenges and utility of anterior exposure for thoracic spine pathology. Ann Thorax Surg. 2008;86(6):1762–8.

    Google Scholar 

  4. *Pahys JM, Guille JT, D’Andrea LP, Samdani AF, Beck J, Betz RR. Neurologic injury in the surgical treatment of idiopathic scoliosis: guidelines for assessment and management. J Am Acad Orthop Surg. 2009;17(7):426–34.

    Google Scholar 

  5. Noordeen MHH, Garrido E, Tucker SK, Elsebaie HB. The surgical treatment of congenital kyphosis. Spine. 2009;34(17):1808–14.

    Article  CAS  PubMed  Google Scholar 

  6. Cheng JS, Lebow RL, Schmidt MH, Spooner J. Rod derotation techniques for thoracolumbar spinal deformity. Neurosurgery. 2008;63(3 Suppl):149–56.

    Article  PubMed  Google Scholar 

  7. *Nadir A, Sahin E, Ozum U, Karadag O, Tezeren G, Kaptanoglu M. Thoracotomy in spine surgery. Thorac Cardiovasc Surg. 2008;56(8):482–4.

    Google Scholar 

  8. Borm W, Hubner F, Haffke T, Richter HP, Kast E, Rath SA. Approach-related complications of transthoracic spinal reconstruction procedures. Zentralbl Neurochir. 2004;65(1):1–6.

    Article  CAS  PubMed  Google Scholar 

  9. Longo UG, Papapietro N, Maffulli N, Denaro V. Thoracoscopy for minimally invasive thoracic spine surgery. Orthop Clin North Am. 2009;40(4):459–64.

    Article  PubMed  Google Scholar 

  10. Dubousset J, Herring JA, Shufflebarger H. The crankshaft phenomenon. J Pediatr Orthop. 1989;9(5):541–50.

    Article  CAS  PubMed  Google Scholar 

  11. Reddi V, Clarke Jr DV, Arlet V. Anterior thoracoscopic instrumentation in adolescent idiopathic scoliosis: a systematic review. Spine. 2008;33(18):1986–94.

    Article  PubMed  Google Scholar 

  12. Garcia P, Pizanis A, Massmann A, Reischmann B, Burkhardt M, Tosounidis G, et al. Bilateral pneumothoraces, pneumomediastinum, pneumoperitoneum, pneumoretroperitoneum, and subcutaneous emphysema after thoracoscopic anterior fracture stabilization. Spine. 2009;34(10):E371–5.

    Article  PubMed  Google Scholar 

  13. La Marca F, Brumblay H. Smith-Petersen osteotomy in thoracolumbar deformity surgery. Neurosurgery. 2008;63(3 Suppl):163–70.

    Article  PubMed  Google Scholar 

  14. Lonner BS, Auerbach JD, Boachie-Adjei O, Shah SA, Hosogane N, Newton PO. Treatment of thoracic scoliosis: are monoaxial thoracic pedicle screws the best form of fixation for correction? Spine. 2009;34(8):845–51.

    Article  PubMed  Google Scholar 

  15. Bridwell KH, Anderson PA, Boden SD, Vaccaro AR, Wang JC. What’s new in spine surgery. J Bone Joint Surg Am. 2008;90(7):1609–19.

    Article  PubMed  Google Scholar 

  16. Isley MR, Zhang XF, Balzer JR, Leppanen RE. Current trends in pedicle screw stimulation techniques: lumbosacral, thoracic, and cervical levels. Neurodiagn J. 2012;52(2):100–75.

    PubMed  Google Scholar 

  17. Calancie B, Donohue ML, Harris CB, Canute GW, Singla A, Wilcoxen KG, et al. Neuromonitoring with pulse-train stimulation for implantation of thoracic pedicle screws: a blinded and randomized clinical study. Part 1. Methods and alarm criteria. J Neurosurg Spine. 2014;20(6):675–91.

    Article  PubMed  Google Scholar 

  18. Danesh-Clough T, Taylor P, Hodgson B, Walton M. The use of evoked EMG in detecting misplaced thoracolumbar pedicle screws. Spine. 2001;26(12):1313–6.

    Article  CAS  PubMed  Google Scholar 

  19. Cinotti G, Gumina S, Ripani M, Postacchini F. Pedicle instrumentation in the thoracic spine. A morphometric and cadaveric study for placement of screws. Spine. 1999;24(2):114–9.

    Article  CAS  PubMed  Google Scholar 

  20. *Donohue ML, Murtagh-Schaffer C, Basta J, Moquin RR, Bashir A, Calancie B. Pulse-train stimulation for detecting medial malpositioning of thoracic pedicle screws. Spine. 2008;33(12):E378–85.

    Google Scholar 

  21. Li G, Lv G, Passias P, Kozanek M, Metkar US, Liu Z, et al. Complications associated with thoracic pedicle screws in spinal deformity. Eur Spine J. 2010;19(9):1576–84.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Hicks JM, Singla A, Shen FH, Arlet V. Complications of pedicle screw fixation in scoliosis surgery: a systematic review. Spine (Phila Pa 1976). 2010;35(11):E465–70.

    Article  Google Scholar 

  23. Calancie B, Donohue ML, Moquin RR. Neuromonitoring with pulse-train stimulation for implantation of thoracic pedicle screws: a blinded and randomized clinical study. Part 2. The role of feedback. J Neurosurg Spine. 2014;20(6):692–704.

    Article  PubMed  Google Scholar 

  24. Sarlak AY, Buluc L, Sarisoy HT, Memisoglu K, Tosun B. Placement of pedicle screws in thoracic idiopathic scoliosis: a magnetic resonance imaging analysis of screw placement relative to structures at risk. Eur Spine J. 2008;17(5):657–62.

    Article  PubMed  PubMed Central  Google Scholar 

  25. de Blas G, Barrios C, Regidor I, Montes E, Burgos J, Piza-Vallespir G, et al. Safe pedicle screw placement in thoracic scoliotic curves using t-EMG: stimulation threshold variability at concavity and convexity in apex segments. Spine (Phila Pa 1976). 2012;37(6):E387–95.

    Article  Google Scholar 

  26. Samdani AF, Tantorski M, Cahill PJ, Ranade A, Koch S, Clements DH, et al. Triggered electromyography for placement of thoracic pedicle screws: is it reliable? Eur Spine J. 2011;20(6):869–74.

    Article  PubMed  Google Scholar 

  27. Toleikis JR. Neurophysiological monitoring during pedicle screw placement. In: Deletis V, Shils JL, editors. Neurophysiology in neurosurgery. New York: Academic; 2002. p. 231–64.

    Chapter  Google Scholar 

  28. Silverstein JW, Mermelstein LE. Utilization of paraspinal muscles for triggered EMG during thoracic pedicle screw placement. Am J Electroneurodiagnostic Technol. 2010;50(1):37–49.

    Article  PubMed  Google Scholar 

  29. Albayram S, Ulu MO, Hanimoglu H, Kaynar MY, Hanci M. Intracranial hypotension following scoliosis surgery: dural penetration of a thoracic pedicle screw. Eur Spine J. 2008;17 Suppl 2:S347–50.

    Article  PubMed  Google Scholar 

  30. Feng B, Shen J, Zhang J, Zhou X, Liang J, Qui G. How to deal with cerebrospinal fluid leak during pedicle screw fixation in spinal deformities surgery with Intraoperative neuromonitoring change. Spine. 2012;39(1):E20–5.

    Article  Google Scholar 

  31. Vitale MG, Moore DW, Matsumoto H, Emerson RG, Booker WA, Gomez JA, et al. Risk factors for spinal cord injury during surgery for spinal deformity. J Bone Joint Surg Am. 2010;92(1):64–71.

    Article  PubMed  Google Scholar 

  32. *Inamasu J, Guiot BH. Vascular injury and complication in neurosurgical spine surgery. Acta Neurochir (Wien). 2006;148(4):375–87.

    Google Scholar 

  33. Drummond JC. The lower limit of autoregulation: time to revise our thinking? Anesthesiology. 1997;86(6):1431–3.

    Article  CAS  PubMed  Google Scholar 

  34. Klemme WR, Burkhalter W, Polly Jr DW, Dahl LF, Davis DA. Reversible ischemic myelopathy during scoliosis surgery: a possible role for intravenous lidocaine. J Pediatr Orthop. 1999;19(6):763–5.

    CAS  PubMed  Google Scholar 

  35. Bracken MB, Shepard MJ, Holford TR, Leo-Summers L, Aldrich EF, Fazl M, et al. Administration of methylprednisolone for 24 or 48 hours or tirilazad mesylate for 48 hours in the treatment of acute spinal cord injury. Results of the Third National Acute Spinal Cord Injury Randomized Controlled Trial. National Acute Spinal Cord Injury Study. JAMA. 1997;277(20):1597–604.

    Article  CAS  PubMed  Google Scholar 

  36. Schwartz DM, Auerbach JD, Dormans JP, Flynn J, Drummond DS, Bowe JA, et al. Neurophysiological detection of impending spinal cord injury during scoliosis surgery. J Bone Joint Surg Am. 2007;89(11):2440–9.

    PubMed  Google Scholar 

  37. Nash Jr CL, Lorig RA, Schatzinger LA, Brown RH. Spinal cord monitoring during operative treatment of the spine. Clin Orthop. 1977;126:100–5.

    Google Scholar 

  38. Vauzelle C, Stagnara P, Jouvinroux P. Functional monitoring of spinal cord activity during spinal surgery. Clin Orthop. 1973;93:173–8.

    Article  Google Scholar 

  39. Ulkatan S, Neuwirth M, Bitan F, Minardi C, Kokoszka A, Deletis V. Monitoring of scoliosis surgery with epidurally recorded motor evoked potentials (D wave) revealed false results. Clin Neurophysiol. 2006;117(9):2093–101.

    Article  CAS  PubMed  Google Scholar 

  40. Postoperative Visual Loss Study Group. Risk factors associated with ischemic optic neuropathy after spinal fusion surgery. Anesthesiology. 2012;116(1):15–24.

    Google Scholar 

  41. *Lee LA. Perioperative visual loss and anesthetic management. Curr Opin Anaesthesiol. 2013;26(3):375–81.

    Google Scholar 

  42. Nickels TJ, Manlapaz MR, Farag E. Perioperative visual loss after spine surgery. World J Orthop. 2014;5(2):100–6.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Lyon R, Feiner J, Lieberman JA. Progressive suppression of motor evoked potentials during general anesthesia: the phenomenon of “anesthetic fade”. J Neurosurg Anesthesiol. 2005;17(1):13–9.

    PubMed  Google Scholar 

  44. Nuwer MR, Dawson EG, Carlson LG, Kanim LE, Sherman JE. Somatosensory evoked potential spinal cord monitoring reduces neurologic deficits after scoliosis surgery: results of a large multicenter survey. Electroencephalogr Clin Neurophysiol. 1995;96(1):6–11.

    Article  CAS  PubMed  Google Scholar 

  45. Loughman BA, Fennelly ME, Henley M, Hall GM. The effects of differing concentrations of bupivacaine on the epidural somatosensory evoked potential after posterior tibial nerve stimulation. Anesth Analg. 1995;81(1):147–51.

    CAS  PubMed  Google Scholar 

  46. Anonymous. Scoliosis Research Society: position statement on somatosensory evoked potential monitoring of neurologic spinal cord function during surgery. Park Ridge, IL; 1992.

    Google Scholar 

  47. *Nuwer MR, Emerson RG, Galloway G, Legatt AD, Lopez J, Minahan R, et al. Evidence-based guideline update: intraoperative spinal monitoring with somatosensory and transcranial electrical motor evoked potentials*. J Clin Neurophysiol. 2012;29(1):101–8.

    Google Scholar 

  48. Nuwer MR, Emerson RG, Galloway G, Legatt AD, Lopez J, Minahan R, et al. Evidence-based guideline update: intraoperative spinal monitoring with somatosensory and transcranial electrical motor evoked potentials: report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology and the American Clinical Neurophysiology Society. Neurology. 2012;78(8):585–9.

    Article  CAS  PubMed  Google Scholar 

  49. Wilber RG, Thompson GH, Shaffer JW, Brown RH, Nash Jr CL. Postoperative neurological deficits in segmental spinal instrumentation. A study using spinal cord monitoring. J Bone Joint Surg Am. 1984;66(8):1178–87.

    Article  CAS  PubMed  Google Scholar 

  50. Ben-David B. Spinal cord monitoring. Orthop Clin North Am. 1988;19(2):427–48.

    CAS  PubMed  Google Scholar 

  51. Owen JH. The application of intraoperative monitoring during surgery for spinal deformity. Spine (Phila Pa 1976). 1999;24(24):2649–62.

    Article  CAS  Google Scholar 

  52. Schwartz DM, Sestokas AK, Hilibrand AS, Vaccaro AR, Bose B, Li M, et al. Neurophysiological identification of position-induced neurologic injury during anterior cervical spine surgery. J Clin Monit Comput. 2006;20(6):437–44.

    Article  PubMed  Google Scholar 

  53. Padberg AM, Thuet ED. Intraoperative electrophysiologic monitoring: considerations for complex spinal surgery. Neurosurg Clin N Am. 2006;17(3):205–26.

    Article  PubMed  Google Scholar 

  54. Slimp JC, Slimp JC. Electrophysiologic intraoperative monitoring for spine procedures. Phys Med Rehabil Clin N Am. 2004;15(1):85–105.

    Article  PubMed  Google Scholar 

  55. Pajewski TN, Arlet V, Phillips LH, Pajewski TN, Arlet V, Phillips LH. Current approach on spinal cord monitoring: the point of view of the neurologist, the anesthesiologist and the spine surgeon. Eur Spine J. 2007;16 Suppl 2:S115–29.

    Article  PubMed  Google Scholar 

  56. Padberg AM, Bridwell KH. Spinal cord monitoring: current state of the art. Orthop Clin North Am. 1999;30(3):407–33.

    Article  CAS  PubMed  Google Scholar 

  57. Meyer Jr PR, Cotler HB, Gireesan GT. Operative neurological complications resulting from thoracic and lumbar spine internal fixation. Clin Orthop Relat Res. 1988;237:125–31.

    Google Scholar 

  58. MacDonald DB, Al Zayed Z, Khoudeir I, Stigsby B. Monitoring scoliosis surgery with combined multiple pulse transcranial electric motor and cortical somatosensory-evoked potentials from the lower and upper extremities. Spine (Phila Pa 1976). 2003;28(2):194–203.

    Article  Google Scholar 

  59. Owen J. Cost efficacy of intraoperative monitoring. Semin Spine Surg. 1997;9(4):348–52.

    Google Scholar 

  60. Nuwer MR. Spinal cord monitoring with somatosensory techniques. J Clin Neurophysiol. 1998;15(3):183–93.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tod B. Sloan M.D., M.B.A., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Sloan, T.B., Burger, E., Kleck, C.J., Oliva, A.M. (2017). Neurophysiological Monitoring in Thoracic Spine Surgery. In: Koht, A., Sloan, T., Toleikis, J. (eds) Monitoring the Nervous System for Anesthesiologists and Other Health Care Professionals. Springer, Cham. https://doi.org/10.1007/978-3-319-46542-5_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46542-5_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46540-1

  • Online ISBN: 978-3-319-46542-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics