Skip to main content

Abstract

Intracranial arteriovenous malformations (AVMs) are vascular abnormalities consisting of direct connections between arteries and veins, bypassing capillaries. Resection of AVMs is a technically challenging neurosurgical procedure, particularly when they are located near eloquent areas with risk of severe neurological impairment. Neuromonitoring techniques including EEG, SSEP, and MEP can be used to facilitate and optimize surgery and minimize neurologic risk to the patient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Asterisk indicates key references.

References

Asterisk indicates key references.

  1. Group TAMS. Arteriovenous malformations of the brain in adults. N Engl J Med. 1999;340(23):1812–8.

    Article  Google Scholar 

  2. Doppman JL. The nidus concept of spinal cord arteriovenous malformations. A surgical recommendation based upon angiographic observations. Br J Radiol. 1971;44(526):758–63.

    Article  CAS  PubMed  Google Scholar 

  3. Ogilvy CS, Stieg PE, Awad I, Brown Jr RD, Kondziolka D, Rosenwasser R, et al. AHA Scientific Statement: recommendations for the management of intracranial arteriovenous malformations: a statement for healthcare professionals from a special writing group of the Stroke Council, American Stroke Association. Stroke. 2001;32(6):1458–71.

    Article  CAS  PubMed  Google Scholar 

  4. Al-Shahi R, Warlow C. A systematic review of the frequency and prognosis of arteriovenous malformations of the brain in adults. Brain. 2001;124(Pt 10):1900–26.

    Article  CAS  PubMed  Google Scholar 

  5. Spetzler RF, Martin NA. A proposed grading system for arteriovenous malformations. J Neurosurg. 1986;65(4):476–83.

    Article  CAS  PubMed  Google Scholar 

  6. Chang SD, Marcellus ML, Marks MP, Levy RP, Do HM, Steinberg GK. Multimodality treatment of giant intracranial arteriovenous malformations. Neurosurgery. 2003;53(1):1–11. discussion 3.

    Article  PubMed  Google Scholar 

  7. Batjer HH, Duckworth EA. Selected drake teachings: an affectionate look back and a look forward—the Charles G. Drake lecture: 2006. Neurosurgery. 2009;65(2):360–9. discussion 70–1.

    Article  PubMed  Google Scholar 

  8. Fitzsimmons BF, Marshall RS, Pile-Spellman J, Lazar RM. Neurobehavioral differences in superselective Wada testing with amobarbital versus lidocaine. AJNR Am J Neuroradiol. 2003;24(7):1456–60.

    PubMed  Google Scholar 

  9. Vaidya S, Tozer KR, Chen J. An overview of embolic agents. Semin Intervent Radiol. 2008;25(3):204–15.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Varma MK, Price K, Jayakrishnan V, Manickam B, Kessell G. Anaesthetic considerations for interventional neuroradiology. Br J Anaesth. 2007;99(1):75–85.

    Article  CAS  PubMed  Google Scholar 

  11. Drummond JC, Patel PM. Neurosurgical anesthesia. In: Miller RD, Eriksson LI, Fliesher LA, Weiner-Kronish JP, Young WL, editors. Miller’s anesthesia. 7th ed. Philadelphia: Churchill Livingston; 2009. p. 2048–9, 66–7.

    Google Scholar 

  12. Cole CD, Gottfried ON, Gupta DK, Couldwell WT. Total intravenous anesthesia: advantages for intracranial surgery. Neurosurgery. 2007;61(5 Suppl 2):369–77. discussion 77–8.

    PubMed  Google Scholar 

  13. *Miller C, Mirski M. Anesthesia considerations and intraoperative monitoring during surgery for arteriovenous malformations and dural arteriovenous fistulas. Neurosurg Clin N Am. 2012;23(1):153–64.

    Google Scholar 

  14. Zeeni C, Bebawy JF, Gupta DK, Koht A. Anesthesia considerations in neurovascular surgery. In: Bendok BR, Batjer HH, Naidech AM, Walker MT, editors. Hemorrhagic and ischemic stroke: medical, imaging, surgical, and interventional approaches. 1st ed. New York: Thieme Medical; 2011. p. 171–81.

    Google Scholar 

  15. Bloom MJ, Kofke WA, Nemoto E, Whitehurst S. Monitoring for cerebrovascular surgery. Int Anesthesiol Clin. 1996;34(3):137–47.

    Article  CAS  PubMed  Google Scholar 

  16. *Jameson LC, Sloan TB. Neurophysiologic monitoring in neurosurgery. Anesthesiol Clin. 2012;30(2):311-31.

    Google Scholar 

  17. Lopez JR. Neurophysiologic intraoperative monitoring of pediatric cerebrovascular surgery. J Clin Neurophysiol. 2009;26(2):85–94.

    Article  PubMed  Google Scholar 

  18. Chang SD, Lopez JR, Steinberg GK. The usefulness of electrophysiological monitoring during resection of central nervous system vascular malformations. J Stroke Cerebrovasc Dis. 1999;8(6):412–22.

    Article  CAS  PubMed  Google Scholar 

  19. Schucht P, Seidel K, Murek M, Stieglitz LH, Urwyler N, Wiest R, et al. Low-threshold monopolar motor mapping for resection of lesions in motor eloquent areas in children and adolescents. J Neurosurg Pediatr. 2014;13(5):572–8.

    Article  PubMed  Google Scholar 

  20. Lepski G, Honegger J, Liebsch M, Soria MG, Narischat P, Ramina KF, et al. Safe resection of arteriovenous malformations in eloquent motor areas aided by functional imaging and intraoperative monitoring. Neurosurgery. 2012;70(2 Suppl Operative):276–88. discussion 88–9.

    PubMed  Google Scholar 

  21. Weinzierl MR, Reinacher P, Gilsbach JM, Rohde V. Combined motor and somatosensory evoked potentials for intraoperative monitoring: intra- and postoperative data in a series of 69 operations. Neurosurg Rev. 2007;30(2):109–16. discussion 16.

    Article  CAS  PubMed  Google Scholar 

  22. Neuloh G, Schramm J. Monitoring of motor evoked potentials compared with somatosensory evoked potentials and microvascular Doppler ultrasonography in cerebral aneurysm surgery. J Neurosurg. 2004;100(3):389–99.

    Article  PubMed  Google Scholar 

  23. Horiuchi K, Suzuki K, Sasaki T, Matsumoto M, Sakuma J, Konno Y, et al. Intraoperative monitoring of blood flow insufficiency during surgery of middle cerebral artery aneurysms. J Neurosurg. 2005;103(2):275–83.

    Article  PubMed  Google Scholar 

  24. Manninen PH, Patterson S, Lam AM, Gelb AW, Nantau WE. Evoked potential monitoring during posterior fossa aneurysm surgery: a comparison of two modalities. Can J Anaesth. 1994;41(2):92–7.

    Article  CAS  PubMed  Google Scholar 

  25. Banoub M, Tetzlaff JE, Schubert A. Pharmacologic and physiologic influences affecting sensory evoked potentials: implications for perioperative monitoring. Anesthesiology. 2003;99(3):716–37.

    Article  PubMed  Google Scholar 

  26. Szelenyi A, Kothbauer K, de Camargo AB, Langer D, Flamm ES, Deletis V. Motor evoked potential monitoring during cerebral aneurysm surgery: technical aspects and comparison of transcranial and direct cortical stimulation. Neurosurgery. 2005;57(4 Suppl):331–8. discussion 8.

    PubMed  Google Scholar 

  27. Tanaka S, Takanashi J, Fujii K, Ujiie H, Hori T. Motor evoked potential mapping and monitoring by direct brainstem stimulation. Technical note. J Neurosurg. 2007;107(5):1053–7.

    Article  PubMed  Google Scholar 

  28. Macdonald DB. Intraoperative motor evoked potential monitoring: overview and update. J Clin Monit Comput. 2006;20(5):347–77.

    Article  PubMed  Google Scholar 

  29. Rothwell J, Burke D, Hicks R, Stephen J, Woodforth I, Crawford M. Transcranial electrical stimulation of the motor cortex in man: further evidence for the site of activation. J Physiol. 1994;481(Pt 1):243–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Guo L, Gelb AW. The use of motor evoked potential monitoring during cerebral aneurysm surgery to predict pure motor deficits due to subcortical ischemia. Clin Neurophysiol. 2011;122(4):648–55.

    Article  PubMed  Google Scholar 

  31. Guo L, Gelb AW. False negatives, muscle relaxants, and motor-evoked potentials. J Neurosurg Anesthesiol. 2011;23(1):64.

    Article  PubMed  Google Scholar 

  32. Taniguchi M, Cedzich C, Schramm J. Modification of cortical stimulation for motor evoked potentials under general anesthesia: technical description. Neurosurgery. 1993;32(2):219–26.

    Article  CAS  PubMed  Google Scholar 

  33. Takagi Y, Kikuta K, Nozaki K, Sawamura K, Hashimoto N. Detection of a residual nidus by surgical microscope-integrated intraoperative near-infrared indocyanine green videoangiography in a child with a cerebral arteriovenous malformation. J Neurosurg. 2007;107(5 Suppl):416–8.

    PubMed  Google Scholar 

  34. Killory BD, Nakaji P, Gonzales LF, Ponce FA, Wait SD, Spetzler RF. Prospective evaluation of surgical microscope-integrated intraoperative near-infrared indocyanine green angiography during cerebral arteriovenous malformation surgery. Neurosurgery. 2009;65(3):456–62. discussion 62.

    Article  PubMed  Google Scholar 

  35. Ng YP, King NK, Wan KR, Wang E, Ng I. Uses and limitations of indocyanine green videoangiography for flow analysis in arteriovenous malformation surgery. J Clin Neurosci. 2013;20(2):224–32.

    Article  PubMed  Google Scholar 

  36. Jameson LC, Sloan TB. Monitoring of the brain and spinal cord. Anesthesiol Clin. 2006;24(4):777–91.

    Article  PubMed  Google Scholar 

  37. Andrews RJ, Bringas JR. A review of brain retraction and recommendations for minimizing intraoperative brain injury. [see comment]. Neurosurgery. 1993;33(6):1052–63. discussion 63–4.

    CAS  PubMed  Google Scholar 

  38. Gelb AW, Craen RA, Rao GS, Reddy KR, Megyesi J, Mohanty B, et al. Does hyperventilation improve operating condition during supratentorial craniotomy? A multicenter randomized crossover trial. Anesth Analg. 2008;106(2):585–94. table of contents.

    Article  PubMed  Google Scholar 

  39. Lyon R, Lieberman JA, Grabovac MT, Hu S, Lyon R, Lieberman JA, et al. Strategies for managing decreased motor evoked potential signals while distracting the spine during correction of scoliosis. J Neurosurg Anesthesiol. 2004;16(2):167–70.

    Article  PubMed  Google Scholar 

  40. Jameson LC, Janik DJ, Sloan TB. Electrophysiologic monitoring in neurosurgery. Anesthesiol Clin. 2007;25(3):605–30. x.

    Article  PubMed  Google Scholar 

  41. Seubert CN, Mahla ME. Neurologic monitoring. In: Miller RD, Eriksson LI, Fleisher LA, Wiener-Kronish JP, Young WL, editors. Miller’s anesthesia. 7th ed. Philadelphia: Churchill Livingston; 2009. p. 1483.

    Google Scholar 

  42. Gabarros A, Young WL, McDermott MW, Lawton MT. Language and motor mapping during resection of brain arteriovenous malformations: indications, feasibility, and utility. Neurosurgery. 2011;68(3):744–52.

    Article  PubMed  Google Scholar 

  43. Souter MJ, Lam AM. Neurocritical care. In: Miller RD, Eriksson LI, Fleisher LA, Wiener-Kronish JP, Young WL, editors. Miller’s anesthesia. 7th ed. Philadelphia: Churchill Livingston; 2009. p. 2899–900.

    Google Scholar 

  44. Al-Rodhan NR, Sundt Jr TM, Piepgras DG, Nichols DA, Rufenacht D, Stevens LN. Occlusive hyperemia: a theory for the hemodynamic complications following resection of intracerebral arteriovenous malformations. J Neurosurg. 1993;78(2):167–75.

    Article  CAS  PubMed  Google Scholar 

  45. Wilson CB, Hieshima G. Occlusive hyperemia: a new way to think about an old problem. J Neurosurg. 1993;78(2):165–6.

    Article  CAS  PubMed  Google Scholar 

  46. Arikan F, Vilalta J, Noguer M, Olive M, Vidal-Jorge M, Sahuquillo J. Intraoperative monitoring of brain tissue oxygenation during arteriovenous malformation resection. J Neurosurg Anesthesiol. 2014;26(4):328–41.

    Article  PubMed  Google Scholar 

  47. Wang LP, Paech MJ. Neuroanesthesia for the pregnant woman. Anesth Analg. 2008;107(1):193–200.

    Article  PubMed  Google Scholar 

  48. Young WL, Kader A, Pile-Spellman J, Ornstein E, Stein BM. Arteriovenous malformation draining vein physiology and determinants of transnidal pressure gradients. The Columbia University AVM Study Project. Neurosurgery. 1994;35(3):389–95. discussion 95–6.

    Article  CAS  PubMed  Google Scholar 

  49. Finnerty JJ, Chisholm CA, Chapple H, Login IS, Pinkerton JV. Cerebral arteriovenous malformation in pregnancy: presentation and neurologic, obstetric, and ethical significance. Am J Obstet Gynecol. 1999;181(2):296–303.

    Article  CAS  PubMed  Google Scholar 

  50. Pastor J, Pulido P, Lopez A, Sola RG. Monitoring of motor and somatosensory systems in a 26-week pregnant woman. Acta Neurochir (Wien). 2010;152(7):1231–4.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura B. Hemmer M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Hemmer, L.B., Zeeni, C. (2017). Intracranial Arteriovenous Malformation Surgery. In: Koht, A., Sloan, T., Toleikis, J. (eds) Monitoring the Nervous System for Anesthesiologists and Other Health Care Professionals. Springer, Cham. https://doi.org/10.1007/978-3-319-46542-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46542-5_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46540-1

  • Online ISBN: 978-3-319-46542-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics