Skip to main content

Intraoperative Neurophysiological Monitoring for Intracranial Aneurysm Surgery

  • Chapter
  • First Online:
Monitoring the Nervous System for Anesthesiologists and Other Health Care Professionals

Abstract

Intracranial aneurysm rupture presents a high risk of neurologic morbidity and mortality. To avoid potential rupture in an intact aneurysm or to facilitate management and minimize risk of a re-bleed in a ruptured aneurysm, treatment modalities, such as endovascular coiling and surgical aneurysm clipping, are performed. To help provide real-time functional assessment of neurologic function intraoperatively and thus allow identification and correction of potentially deleterious maneuvers, intraoperative neuromonitoring can be performed. There is growing literature support for use of evoked potentials for these procedures, particularly for intracranial aneurysm clipping.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Key references marked with asterisk.

References

Key references marked with asterisk.

  1. Bederson JB, Connolly Jr ES, Batjer HH, Dacey RG, Dion JE, Diringer MN, et al. Guidelines for the management of aneurysmal subarachnoid hemorrhage: a statement for healthcare professionals from a special writing group of the Stroke Council, American Heart Association. Stroke. 2009;40(3):994–1025.

    Article  PubMed  Google Scholar 

  2. Molyneux A, Kerr R, Stratton I, Sandercock P, Clarke M, Shrimpton J, et al. International Subarachnoid Aneurysm Trial (ISAT) of neurosurgical clipping versus endovascular coiling in 2143 patients with ruptured intracranial aneurysms: a randomised trial. Lancet. 2002;360(9342):1267–74.

    Article  PubMed  Google Scholar 

  3. Wiebers DO, Whisnant JP, Huston 3rd J, Meissner I, Brown Jr RD, Piepgras DG, et al. Unruptured intracranial aneurysms: natural history, clinical outcome, and risks of surgical and endovascular treatment. Lancet. 2003;362(9378):103–10.

    Article  PubMed  Google Scholar 

  4. Chang HS. Simulation of the natural history of cerebral aneurysms based on data from the International Study of Unruptured Intracranial Aneurysms. J Neurosurg. 2006;104(2):188–94.

    Article  PubMed  Google Scholar 

  5. Rahman M, Smietana J, Hauck E, Hoh B, Hopkins N, Siddiqui A, et al. Size ratio correlates with intracranial aneurysm rupture status: a prospective study. Stroke. 2010;41(5):916–20.

    Article  PubMed  Google Scholar 

  6. Yoshimoto Y. A mathematical model of the natural history of intracranial aneurysms: quantification of the benefit of prophylactic treatment. J Neurosurg. 2006;104(2):195–200.

    Article  PubMed  Google Scholar 

  7. Lall RR, Eddleman CS, Bendok BR, Batjer HH. Unruptured intracranial aneurysms and the assessment of rupture risk based on anatomical and morphological factors: sifting through the sands of data. Neurosurg Focus. 2009;26(5):E2.

    Article  PubMed  Google Scholar 

  8. Shi C, Awad IA, Jafari N, Lin S, Du P, Hage ZA, et al. Genomics of human intracranial aneurysm wall. Stroke. 2009;40(4):1252–61.

    Article  PubMed  Google Scholar 

  9. Mira JM, Costa FA, Horta BL, Fabiao OM. Risk of rupture in unruptured anterior communicating artery aneurysms: meta-analysis of natural history studies. Surg Neurol. 2006;66 Suppl 3:S12–9. discussion S9.

    Article  PubMed  Google Scholar 

  10. Scott RB, Eccles F, Molyneux AJ, Kerr RS, Rothwell PM, Carpenter K. Improved cognitive outcomes with endovascular coiling of ruptured intracranial aneurysms. Neuropsychological outcomes from the international subarachnoid aneurysm trial (ISAT). Stroke. 2010;41(8):1743–7.

    Article  PubMed  Google Scholar 

  11. Connolly Jr ES, Rabinstein AA, Carhuapoma JR, Derdeyn CP, Dion J, Higashida RT, et al. Guidelines for the management of aneurysmal subarachnoid hemorrhage: a guideline for Healthcare Professionals from the American Heart Association/American Stroke Association. Stroke. 2012;43(6):1711–37.

    Article  PubMed  Google Scholar 

  12. Dankbaar JW, Slooter AJ, Rinkel GJ, Schaaf IC. Effect of different components of triple-H therapy on cerebral perfusion in patients with aneurysmal subarachnoid haemorrhage: a systematic review. Crit Care. 2010;14(1):R23.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Mitchell P, Kerr R, Mendelow AD, Molyneux A. Could late rebleeding overturn the superiority of cranial aneurysm coil embolization over clip ligation seen in the International Subarachnoid Aneurysm Trial? J Neurosurg. 2008;108(3):437–42.

    Article  PubMed  Google Scholar 

  14. Ausman JI. The International Subarachnoid Aneurysm Trial II: comparison of clipping vs coiling: key questions. Are the results of the study generalizable? Should clipping be done for patients less than 40 years of age? Surg Neurol. 2008;70(1):104–7.

    Article  PubMed  Google Scholar 

  15. Bebawy JF, Gupta DK, Bendok BR, Hemmer LB, Zeeni C, Avram MJ, et al. Adenosine-induced flow arrest to facilitate intracranial aneurysm clip ligation: dose–response data and safety profile. Anesth Analg. 2010;110(5):1406–11.

    Article  CAS  PubMed  Google Scholar 

  16. Young WL, Lawton MT, Gupta DK, Hashimoto T. Anesthetic management of deep hypothermic circulatory arrest for cerebral aneurysm clipping. Anesthesiology. 2002;96(2):497–503.

    Article  PubMed  Google Scholar 

  17. Quinones-Hinojosa A, Alam M, Lyon R, Yingling CD, Lawton MT. Transcranial motor evoked potentials during basilar artery aneurysm surgery: technique application for 30 consecutive patients. Neurosurgery. 2004;54(4):916–24. discussion: 24.

    Article  PubMed  Google Scholar 

  18. Warner DS. Perioperative neuroprotection: are we asking the right questions? Anesth Analg. 2004;98(3):563–5.

    Article  PubMed  Google Scholar 

  19. Holland NR. Subcortical strokes from intracranial aneurysm surgery: implications for intraoperative neuromonitoring. J Clin Neurophysiol. 1998;15(5):439–46.

    Article  CAS  PubMed  Google Scholar 

  20. Horiuchi K, Suzuki K, Sasaki T, Matsumoto M, Sakuma J, Konno Y, et al. Intraoperative monitoring of blood flow insufficiency during surgery of middle cerebral artery aneurysms. J Neurosurg. 2005;103(2):275–83.

    Article  PubMed  Google Scholar 

  21. *Neuloh G, Schramm J. Monitoring of motor evoked potentials compared with somatosensory evoked potentials and microvascular Doppler ultrasonography in cerebral aneurysm surgery. J Neurosurg. 2004;100(3):389–99.

    Google Scholar 

  22. Bacigaluppi S, Fontanella M, Manninen P, Ducati A, Tredici G, Gentili F. Monitoring techniques for prevention of procedure-related ischemic damage in aneurysm surgery. World Neurosurg. 2012;78(3–4):276–88.

    Article  PubMed  Google Scholar 

  23. *Neuloh G, Schramm J. Evoked potential monitoring during surgery for intracranial aneurysms. In: Handbook of clinical neurophysiology. vol. 8. New York: Elsevier; 2008. p. 801–14.

    Google Scholar 

  24. Yeon JY, Seo DW, Hong SC, Kim JS. Transcranial motor evoked potential monitoring during the surgical clipping of unruptured intracranial aneurysms. J Neurol Sci. 2010;293(1–2):29–34.

    Article  PubMed  Google Scholar 

  25. *Yue Q, Zhu W, Gu Y, Xu B, Lang L, Song J, et al. Motor evoked potential monitoring during surgery of middle cerebral artery aneurysms: a cohort study. World Neurosurg. 2014;82(6):1091–9.

    Google Scholar 

  26. Guo L, Gelb AW. The use of motor evoked potential monitoring during cerebral aneurysm surgery to predict pure motor deficits due to subcortical ischemia. Clin Neurophysiol. 2011;122(4):648–55.

    Article  PubMed  Google Scholar 

  27. Holdefer RN, MacDonald DB, Skinner SA. Somatosensory and motor evoked potentials as biomarkers for post-operative neurological status. Clin Neurophysiol. 2015;126(5):857–65.

    Article  CAS  PubMed  Google Scholar 

  28. Sloan TB, Janik D, Jameson L. Multimodality monitoring of the central nervous system using motor-evoked potentials. Curr Opin Anaesthesiol. 2008;21(5):560–4.

    Article  PubMed  Google Scholar 

  29. Szelenyi A, Langer D, Kothbauer K, De Camargo AB, Flamm ES, Deletis V. Monitoring of muscle motor evoked potentials during cerebral aneurysm surgery: intraoperative changes and postoperative outcome. J Neurosurg. 2006;105(5):675–81.

    Article  PubMed  Google Scholar 

  30. Hemmer LB, Zeeni C, Bebawy JF, Bendok BR, Cotton MA, Shah NB, et al. The incidence of unacceptable movement with motor evoked potentials during craniotomy for aneurysm clipping. World Neurosurg. 2014;81(1):99–104.

    Article  PubMed  Google Scholar 

  31. Billard V, Gambus PL, Chamoun N, Stanski DR, Shafer SL. A comparison of spectral edge, delta power, and bispectral index as EEG measures of alfentanil, propofol, and midazolam drug effect. Clin Pharmacol Ther. 1997;61(1):45–58.

    Article  CAS  PubMed  Google Scholar 

  32. Egan TD, Minto CF, Hermann DJ, Barr J, Muir KT, Shafer SL. Remifentanil versus alfentanil: comparative pharmacokinetics and pharmacodynamics in healthy adult male volunteers. Anesthesiology. 1996;84(4):821–33.

    Article  CAS  PubMed  Google Scholar 

  33. Rampil IJ, Laster M, Dwyer RC, Taheri S, Eger II EI. No EEG evidence of acute tolerance to desflurane in swine. Anesthesiology. 1991;74(5):889–92.

    Article  CAS  PubMed  Google Scholar 

  34. Scott JC, Ponganis KV, Stanski DR. EEG quantitation of narcotic effect: the comparative pharmacodynamics of fentanyl and alfentanil. Anesthesiology. 1985;62(3):234–41.

    Article  CAS  PubMed  Google Scholar 

  35. Short TG. Using response surfaces to expand the utility of MAC. Anesth Analg. 2010;111(2):249–51.

    Article  PubMed  Google Scholar 

  36. Kalkman CJ, Drummond JC, Kennelly NA, Patel PM, Partridge BL. Intraoperative monitoring of tibialis anterior muscle motor evoked responses to transcranial electrical stimulation during partial neuromuscular blockade. Anesth Analg. 1992;75(4):584–9.

    Article  CAS  PubMed  Google Scholar 

  37. Reinacher PC, Priebe HJ, Blumrich W, Zentner J, Scheufler KM. The effects of stimulation pattern and sevoflurane concentration on intraoperative motor-evoked potentials. Anesth Analg. 2006;102(3):888–95.

    Article  CAS  PubMed  Google Scholar 

  38. Drummond JC. The lower limit of autoregulation: time to revise our thinking? Anesthesiology. 1997;86(6):1431–3.

    Article  CAS  PubMed  Google Scholar 

  39. Peterson DO, Drummond JC, Todd MM. Effects of halothane, enflurane, isoflurane, and nitrous oxide on somatosensory evoked potentials in humans. Anesthesiology. 1986;65(1):35–40.

    Article  CAS  PubMed  Google Scholar 

  40. Liu EH, Wong HK, Chia CP, Lim HJ, Chen ZY, Lee TL. Effects of isoflurane and propofol on cortical somatosensory evoked potentials during comparable depth of anaesthesia as guided by bispectral index. Br J Anaesth. 2005;94(2):193–7.

    Article  CAS  PubMed  Google Scholar 

  41. Anastasian ZH, Ramnath B, Komotar RJ, Bruce JN, Sisti MB, Gallo EJ, et al. Evoked potential monitoring identifies possible neurological injury during positioning for craniotomy. Anesth Analg. 2009;109(3):817–21.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Benzon HT, Toleikis JR, Meagher LL, Shapiro BA, Ts’ao CH, Avram MJ. Changes in venous blood lactate, venous blood gases, and somatosensory evoked potentials after tourniquet application. Anesthesiology. 1988;69(5):67–82.

    Article  Google Scholar 

  43. Andrews RJ, Bringas JR. A review of brain retraction and recommendations for minimizing intraoperative brain injury. Neurosurgery. 1993;33(6):1052–63. discussion 63–4.

    CAS  PubMed  Google Scholar 

  44. Szelenyi A, Kothbauer K, Bueno de Camargo A, Langer D, Flamm ES, Deletis V. Motor evoked potential monitoring during cerebral aneurysm surgery: technical aspects and comparison of transcranial and direct cortical stimulation. Neurosurgery. 2005;57(ONS Suppl 4):331–8.

    PubMed  Google Scholar 

  45. Neuloh G, Schramm J. What the surgeon wins, and what the surgeon loses from intraoperative neurophysiologic monitoring? Acta Neurochir. 2005;147(8):811–3.

    Article  CAS  PubMed  Google Scholar 

  46. Hoffman WE, Charbel FT, Edelman G, Ausman JI. Thiopental and desflurane treatment for brain protection. Neurosurgery. 1998;43(5):1050–3.

    Article  CAS  PubMed  Google Scholar 

  47. Newman MF, Croughwell ND, White WD, Sanderson I, Spillane W, Reves JG. Pharmacologic electroencephalographic suppression during cardiopulmonary bypass: a comparison of thiopental and isoflurane. Anesth Analg. 1998;86(2):246–51.

    CAS  PubMed  Google Scholar 

  48. Newman MF, Murkin JM, Roach G, Croughwell ND, White WD, Clements FM, et al. Cerebral physiologic effects of burst suppression doses of propofol during nonpulsatile cardiopulmonary bypass. CNS Subgroup of McSPI. Anesth Analg. 1995;81(3):452–7.

    CAS  PubMed  Google Scholar 

  49. Banoub M, Tetzlaff JE, Schubert A. Pharmacologic and physiologic influences affecting sensory evoked potentials: implications for perioperative monitoring. Anesthesiology. 2003;99(3):716–37.

    Article  PubMed  Google Scholar 

  50. Raabe A, Nakaji P, Beck J, Kim LJ, Hsu FP, Kamerman JD, et al. Prospective evaluation of surgical microscope-integrated intraoperative near-infrared indocyanine green videoangiography during aneurysm surgery. J Neurosurg. 2005;103(6):982–9.

    Article  PubMed  Google Scholar 

  51. de Oliveira JG, Beck J, Seifert V, Teixeira MJ, Raabe A. Assessment of flow in perforating arteries during intracranial aneurysm surgery using intraoperative near-infrared indocyanine green videoangiography. Neurosurgery. 2008;62(6 Suppl 3):1300–10.

    PubMed  Google Scholar 

  52. Parkinson RJ, Bendok BR, Getch CC, Yashar P, Shaibani A, Ankenbrandt W, et al. Retrograde suction decompression of giant paraclinoid aneurysms using a No. 7 French balloon-containing guide catheter. Technical note. J Neurosurg. 2006;105(3):479–81.

    Article  PubMed  Google Scholar 

  53. Bloom MJ, Kofke WA, Nemoto E, Whitehurst S. Monitoring for cerebrovascular surgery. Int Anesthesiol Clin. 1996;34(3):137–47.

    Article  CAS  PubMed  Google Scholar 

  54. Jameson LC, Janik DJ, Sloan TB. Electrophysiologic monitoring in neurosurgery. Anesthesiol Clin. 2007;25(3):605–30. x.

    Article  PubMed  Google Scholar 

  55. Warner DS, Takaoka S, Wu B, Ludwig PS, Pearlstein RD, Brinkhous AD, et al. Electroencephalographic burst suppression is not required to elicit maximal neuroprotection from pentobarbital in a rat model of focal cerebral ischemia. Anesthesiology. 1996;84(6):1475–84.

    Article  CAS  PubMed  Google Scholar 

  56. Nakashima K, Todd MM, Warner DS. The relation between cerebral metabolic rate and ischemic depolarization. A comparison of the effects of hypothermia, pentobarbital, and isoflurane. Anesthesiology. 1995;82(5):1199–208.

    Article  CAS  PubMed  Google Scholar 

  57. Todd MM, Warner DS. A comfortable hypothesis reevaluated. Cerebral metabolic depression and brain protection during ischemia. Anesthesiology. 1992;76(2):161–4.

    Article  CAS  PubMed  Google Scholar 

  58. Todd MM, Hindman BJ, Clarke WR, Torner JC. Mild intraoperative hypothermia during surgery for intracranial aneurysm. N Engl J Med. 2005;352(2):135–45.

    Article  CAS  PubMed  Google Scholar 

  59. Wang M, Joshi S. Electrocerebral silence after intracarotid propofol injection is a function of transit time. Anesth Analg. 2007;104(6):1498–503.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura B. Hemmer M.D. .

Editor information

Editors and Affiliations

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Expected field movement with transcranial MEP stimulation. Movement with arterial pulsation is visible and additional small increases in movement are seen with stimulation (WMV 13,122 kb)

Typical ICG angiogram inspecting an aneurysm post clip placement (WMV 10,450 kb)

Clip reconstruction involves opening the aneurysm dome after trapping the aneurysm; therefore, reperfusion cannot occur until the aneurysm is secured (WMV 55,003 kb)

Brisk bleeding in the field from aneurismal rupture is visible followed by a clearing of the surgical field during adenosine-induced cardiac standstill (WMV 6689 kb)

EKG tracing on the patient’s intraoperative monitor showing sinus rhythm followed by asystole during adenosine-induced cardiac standstill (3gp 1242 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Hemmer, L.B., Zeeni, C., Bendok, B.R., Koht, A. (2017). Intraoperative Neurophysiological Monitoring for Intracranial Aneurysm Surgery. In: Koht, A., Sloan, T., Toleikis, J. (eds) Monitoring the Nervous System for Anesthesiologists and Other Health Care Professionals. Springer, Cham. https://doi.org/10.1007/978-3-319-46542-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46542-5_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46540-1

  • Online ISBN: 978-3-319-46542-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics