Skip to main content

Abstract

Motor-evoked potentials (MEPs) continue to be the most recent addition to routine intraoperative neurophysiologic monitoring (IOM). The importance of MEPs continues to expand primarily due to the ability to isolate perfusion-related neurologic function in the spinal cord. Initial reports of improved patient outcomes obtained with the use of somatosensory-evoked potential (SSEP) monitoring, primarily during scoliosis procedures in children and young adults, were quickly followed by case reports of isolated postoperative motor injury without SSEP or postoperative sensory changes. This reflected the reality of the anatomy and physiology of motor/sensory pathways in the brain and spinal cord. This chapter will review these considerations and applications that have made it a key component of multimodality intraoperative monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Asterisks indicate key references.

References

Asterisks indicate key references.

  1. *Raynor BL, Bright JD, Lenke LG, Rahman RK, Bridwell KH, Riew KD, et al. Significant change or loss of intraoperative monitoring data: a 25-year experience in 12,375 spinal surgeries. Spine. 2013;38:E101–8.

    Google Scholar 

  2. Waxman S. Control of movement. In: Waxman SG, editor. Clinical neuroanatomy 27/E. 27th ed. New York: McGraw Hill Professional; 2013. p. 183–94.

    Google Scholar 

  3. Hickey R, Sloan TB, Rogers JN. Functional organization and physiology of the spinal cord. In: Porter SS, editor. Anesthesia for surgery of the spine. New York: McGraw-Hill; 1995. p. 15–39.

    Google Scholar 

  4. Fehlings MG, Houldon D, Vajkoczy P. Introduction. Intraoperative neuromonitoring: an essential component of the neurosurgical and spinal armamentarium. Neurosurg Focus. 2009;27(4):E1.

    Article  PubMed  Google Scholar 

  5. Pelosi L, Lamb J, Grevitt M, Mehdian SM, Webb JK, Blumhardt LD. Combined monitoring of motor and somatosensory evoked potentials in orthopaedic spinal surgery. Clin Neurophysiol. 2002;113(7):1082–91. Epub 2002/06/29.

    Article  PubMed  Google Scholar 

  6. MacDonald D, Zayed Z, Khoudeir I, Stigsby B. Monitoring scoliosis surgery with combined multiple pulse trascranial electric motor and cortical somatosenoury-evoked potentials from the lower and upper extremities. Spine. 2003;28(2):194–203.

    Article  PubMed  Google Scholar 

  7. Hsu B, Cree AK, Lagopoulos J, Cummine JL. Transcranial motor-evoked potentials combined with response recording through compound muscle action potential as the sole modality of spinal cord monitoring in spinal deformity surgery. Spine (Phila Pa 1976). 2008;33(10):1100–6. Epub 2008/05/02.

    Article  Google Scholar 

  8. *Minahan RE, Sepkuty JP, Lesser RP, Sponseller PD, Kostuik JP. Anterior spinal cord injury with preserved neurogenic ‘motor’ evoked potentials. Clin Neurophysiol. 2001;112(8):1442–50. Epub 2001/07/19.

    Google Scholar 

  9. Deletis V, Sala F. Intraoperative neurophysiological monitoring of the spinal cord during spinal cord and spine surgery: a review focus on the corticospinal tracts. Clin Neurophysiol. 2008;119(2):248–64. Epub 2007/12/07.

    Article  PubMed  Google Scholar 

  10. Yanni DS, Ulkatan S, Deletis V, Barrenechea IJ, Sen C, Perin NI. Utility of neurophysiological monitoring using dorsal column mapping in intramedullary spinal cord surgery. J Neurosurg Spine. 2010;12(6):623–8.

    Article  PubMed  Google Scholar 

  11. Morota N, Deletis V, Constantini S, Kofler M, Cohen H, Epstein FJ. The role of motor evoked potentials during surgery for intramedullary spinal cord tumors. Neurosurgery. 2010;41(6):1327–36.

    Article  Google Scholar 

  12. *Sala F, Bricolo A, Faccioli F, Lanteri P, Gerosa M, Sala F, et al. Surgery for intramedullary spinal cord tumors: the role of intraoperative (neurophysiological) monitoring. Eur Spine J. 2007;16 Suppl 2:S130–9.

    Google Scholar 

  13. Mikuni N, Okada T, Enatsu R, Miki Y, Hanakawa T, Urayama S, et al. Clinical impact of integrated functional neuronavigation and subcortical electrical stimulation to preserve motor function during resection of brain tumors. J Neurosurg. 2007;106(4):593–8.

    Article  PubMed  Google Scholar 

  14. Neuloh G, Pechstein U, Schramm J, Neuloh G, Pechstein U, Schramm J. Motor tract monitoring during insular glioma surgery. J Neurosurg. 2007;106(4):582–92.

    Article  PubMed  Google Scholar 

  15. *Neuloh G, Bogucki J, Schramm J. Intraoperative preservation of corticospinal function in the brainstem. J Neurol Neurosurg Psychiatry. 2009;80(4):417–22.

    Google Scholar 

  16. Szelényi A, Langer D, Kothbauer K, De Camargo AB, Flamm ES, Deletis V. Monitoring of muscle motor evoked potentials during cerebral aneurysm surgery: intraoperative changes and postoperative outcome. J Neurosurg. 2006;105(5):675–81. Epub 2006/11/24.

    Article  PubMed  Google Scholar 

  17. Neuloh G, Schramm J. Monitoring of motor evoked potentials compared with somatosensory evoked potentials and microvascular Doppler ultrasonography in cerebral aneurysm surgery. J Neurosurg. 2004;100(3):389–99.

    Article  PubMed  Google Scholar 

  18. Neuloh G, Bien CG, Clusmann H, von Lehe M, Schramm J. Continuous motor monitoring enhances functional preservation and seizure-free outcome in surgery for intractable focal epilepsy. Acta Neurochir (Wien). 2010;152(8):1307–14.

    Article  Google Scholar 

  19. Corti M, Patten C, Triggs W. Repetitive transcranial magnetic stimulation of motor cortex after stroke: a focused review. Am J Phys Med Rehabil. 2012;91(3):254–70.

    Article  PubMed  Google Scholar 

  20. Nascimbeni A, Gaffuri A, Imazio P, Nascimbeni A, Gaffuri A, Imazio P. Motor evoked potentials: prognostic value in motor recovery after stroke. Funct Neurol. 2006;21(4):199–203.

    PubMed  Google Scholar 

  21. Woldag H, Gerhold LL, de Groot M, Wohlfart K, Wagner A, Hummelsheim H. Early prediction of functional outcome after stroke. Brain Inj. 2006;20(10):1047–52.

    Article  PubMed  Google Scholar 

  22. Waxman S. Spinal cord. In: Waxman SG, editor. Clinical neuroanatomy 27/E. 27th ed. New York: McGraw Hill Professional; 2013. p. 43–147.

    Google Scholar 

  23. Crawford ES, Svensson LG, Hess KR, Shenaq SS, Coselli JS, Safi HJ, et al. A prospective randomized study of cerebrospinal fluid drainage to prevent paraplegia after high-risk surgery on the thoracoabdominal aorta. J Vasc Surg. 1991;13:36–45.

    Article  CAS  PubMed  Google Scholar 

  24. Schurink GWH, Nijenhuis RJ, Backes WH, Mess W, de Haan MW, Mochtar B, et al. Assessment of spinal cord circulation and function in endovascular treatment of thoracic aortic aneurysms. Ann Thorac Surg. 2007;83(2):S877–81. discussion S90–2.

    Article  PubMed  Google Scholar 

  25. Okita Y. Fighting spinal cord complication during surgery for thoracoabdominal aortic disease. Gen Thorac Cardiovasc Surg. 2011;59(2):79–90.

    Article  PubMed  Google Scholar 

  26. Wan IY, Angelini GD, Bryan AJ, Ryder I, Underwood MJ. Prevention of spinal cord ischaemia during descending thoracic and thoracoabdominal aortic surgery. Eur J Cardiothorac Surg. 2001;19(2):203–13.

    Article  CAS  PubMed  Google Scholar 

  27. Sakuma J, Suzuki K, Sasaki T, Matsumoto M, Oinuma M, Kawakami M, et al. Monitoring and preventing blood flow insufficiency due to clip rotation after the treatment of internal carotid artery aneurysms. J Neurosurg. 2004;100(5):960–2.

    Article  PubMed  Google Scholar 

  28. Horiuchi K, Suzuki K, Sasaki T, Matsumoto M, Sakuma J, Konno Y, et al. Intraoperative monitoring of blood flow insufficiency during surgery of middle cerebral artery aneurysms. J Neurosurg. 2005;103(2):275–83.

    Article  PubMed  Google Scholar 

  29. Ghitani N, Bayguinov PO, Vokoun CR, McMahon S, Jackson MB, Basso MA. Excitatory synaptic feedback from the motor layer to the sensory layers of the superior colliculus. J Neurosci. 2014;34(20):6822–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ferreri F, Pasqualetti P, Maatta S, Ponzo D, Ferrarelli F, Tononi G, et al. Human brain connectivity during single and paired pulse transcranial magnetic stimulation. Neuroimage. 2011;54(1):90–102.

    Article  PubMed  Google Scholar 

  31. Firmin L, Muller S, Rosler KM. A method to measure the distribution of latencies of motor evoked potentials in man. Clin Neurophysiol. 2011;122(1):176–82.

    Article  PubMed  Google Scholar 

  32. Tsutsui S, Yamada H, Hashizume H, Minamide A, Nakagawa Y, Iwasaki H, et al. Quantification of the proportion of motor neurons recruited by transcranial electrical stimulation during intraoperative motor evoked potential monitoring. J Clin Monit Comput. 2013;27(6):633–7.

    Article  PubMed  Google Scholar 

  33. Jameson LC, Sloan TB. Monitoring of the brain and spinal cord. Anesthesiol Clin. 2006;24(4):777–91.

    Article  PubMed  Google Scholar 

  34. Toleikis JR, Skelly JP, Carlvin AO, Burkus JK. Spinally elicited peripheral nerve responses are sensory rather than motor. Clin Neurophysiol. 2000;111(4):736–42.

    Article  CAS  PubMed  Google Scholar 

  35. Amassian VE, Stewart M, Quirk GJ, Rosenthal JL. Physiological basis of motor effects of a transient stimulus to cerebral cortex. Neurosurgery. 1987;20(1):74–93.

    CAS  PubMed  Google Scholar 

  36. *Szelényi A, Kothbauer KF, Deletis V. Transcranial electric stimulation for intraoperative motor evoked potential monitoring: stimulation parameters and electrode montages. Clin Neurophysiol. 2007;118(7):1586–95.

    Google Scholar 

  37. *Deletis V. Basic methodological principles of multimodal intraoperative monitoring during spine surgeries. Eur Spine J. 2007;16 Suppl 2:S147–52.

    Google Scholar 

  38. Houlden DA, Schwartz ML, Tator CH, Ashby P, MacKay WA. Spinal cord-evoked potentials and muscle responses evoked by transcranial magnetic stimulation in 10 awake human subjects. J Neurosci. 1999;19(5):1855–62.

    CAS  PubMed  Google Scholar 

  39. Costa P, Peretta P, Faccani G. Relevance of intraoperative D wave in spine and spinal cord surgeries. Eur Spine J. 2013;22(4):840–8.

    Article  PubMed  Google Scholar 

  40. Gavaret M, Jouve JL, Pereon Y, Accadbled F, Andre-Obadia N, Azabou E, et al. Intraoperative neurophysiologic monitoring in spine surgery. Developments and state of the art in France in 2011. Orthop Traumatol Surg Res. 2013;99(6 Suppl):S319–27.

    Article  CAS  PubMed  Google Scholar 

  41. Fernandez-Conejero I, Deletis V. Transcranial electrical stimulation and monitoring. J Neurosurg. 2014;120(1):291–2.

    Article  PubMed  Google Scholar 

  42. Joksimovic B, Damjanovic A, Damjanovic A, Rasulic L. Transcranial electric stimulation for intraoperative motor evoked potential monitoring: dependence of required stimulation current on interstimulus interval value. J Neurol Surg A Cent Eur Neurosurg. 2015;76(3):190–8.

    Article  PubMed  Google Scholar 

  43. Ukegawa D, Kawabata S, Sakaki K, Ishii S, Tomizawa S, Inose H, et al. Efficacy of biphasic transcranial electric stimulation in intraoperative motor evoked potential monitoring for cervical compression myelopathy. Spine (Phila Pa 1976). 2014;39(3):E159–65.

    Article  Google Scholar 

  44. Yellin JL, Wiggins CR, Franco AJ, Sankar WN. Safe transcranial electric stimulation motor evoked potential monitoring during posterior spinal fusion in two patients with cochlear implants. J Clin Monit Comput. 2016;30(4):503–6 [Epub ahead of print].

    Article  PubMed  Google Scholar 

  45. Kobayashi S, Matsuyama Y, Shinomiya K, Kawabata S, Ando M, Kanchiku T, et al. A new alarm point of transcranial electrical stimulation motor evoked potentials for intraoperative spinal cord monitoring: a prospective multicenter study from the Spinal Cord Monitoring Working Group of the Japanese Society for Spine Surgery and Related Research. J Neurosurg Spine. 2014;20(1):102–7.

    Article  PubMed  Google Scholar 

  46. Ney JP, van der Goes DN, Nuwer M, Emerson R, Minahan R, Legatt A, et al. Evidence-based guideline update: intraoperative spinal monitoring with somatosensory and transcranial electrical motor evoked potentials: report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology and the American Clinical Neurophysiology Society. Neurology. 2012;79(3):292–4.

    Article  PubMed  Google Scholar 

  47. Deiner SG, Kwatra SG, Lin H-M, Weisz DJ. Patient characteristics and anesthetic technique are additive but not synergistic predictors of successful motor evoked potential monitoring. Anesth Analg. 2010;111(2):421–5.

    Article  PubMed  Google Scholar 

  48. Lieberman JA, Lyon R, Feiner J, Diab M, Gregory GA. The effect of age on motor evoked potentials in children under propofol/isoflurane anesthesia. Anesth Analg. 2006;103(2):316–21.

    Article  CAS  PubMed  Google Scholar 

  49. *Sala F, Manganotti P, Grossauer S, Tramontanto V, Mazza C, Gerosa M. Intraoperative neurophysiology of the motor system in children: a tailored approach. Childs Nerv Syst. 2010;26(4):473–90.

    Google Scholar 

  50. Leppanen RE. Intraoperative monitoring of segmental spinal nerve root function with free-run and electrically-triggered electromyography and spinal cord function with reflexes and F-responses. A position statement by the American Society of Neurophysiological Monitoring. J Clin Monit Comput. 2005;19(6):437–61.

    Article  PubMed  Google Scholar 

  51. *Jameson LC, Sloan TB. Neurophysiologic monitoring in neurosurgery. Anesthesiol Clin. 2012;30(2):311–31.

    Google Scholar 

  52. Wassermann EM. Variation in the response to transcranial magnetic brain stimulation in the general population. Clin Neurophysiol. 2002;113(7):1165–71.

    Article  PubMed  Google Scholar 

  53. Sloan TB. Anesthesia and the brain, does it matter? Anesthesiol Clin North America. 2002;20:1–27.

    Article  Google Scholar 

  54. Davis SF, Corenman D, Strauch E, Connor D. Intraoperative monitoring may prevent neurologic injury in non-myelopathic patients undergoing ACDF. Neurodiagn J. 2013;53:114–20.

    PubMed  Google Scholar 

  55. Avila EK, Elder JB, Singh P, Chen X, Bilsky MH. Intraoperative neurophysiologic monitoring and neurologic outcomes in patients with epidural spine tumors. Clin Neurol Neurosurg. 2013;115(10):2147–52.

    Article  PubMed  Google Scholar 

  56. *Nuwer MR, Emerson RG, Galloway G, Legatt AD, Lopez J, Minahan R, et al. Evidence-based guideline update: intraoperative spinal monitoring with somatosensory and transcranial electrical motor evoked potentials: report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology and the American Clinical Neurophysiology Society. Neurology. 2012;78(8):585–9.

    Google Scholar 

  57. Gavaret M, Trebuchon A, Aubert S, Jacopin S, Blondel B, Glard Y, et al. Intraoperative monitoring in pediatric orthopedic spinal surgery: three hundred consecutive monitoring cases of which 10% of patients were younger than 4 years of age. Spine. 2011;36(22):1855–63.

    Article  PubMed  Google Scholar 

  58. Eager M, Shimer A, Jahangiri FR, Shen F, Arlet V. Intraoperative neurophysiological monitoring (IONM): lessons learned from 32 case events in 2069 spine cases. Am J Electroneurodiagnostic Technol. 2011;51(4):247–63.

    PubMed  Google Scholar 

  59. Malhotra NR, Shaffrey CI. Intraoperative electrophysiological monitoring in spine surgery. Spine. 2010;35(25):2167–79.

    Article  PubMed  Google Scholar 

  60. Sutter M, Deletis V, Dvorak J, Eggspuehler A, Grob D, Macdonald D, et al. Current opinions and recommendations on multimodal intraoperative monitoring during spine surgeries. Eur Spine J. 2007;16 Suppl 2:S232–7.

    Article  PubMed  Google Scholar 

  61. Kelleher MO, Tan G, Sarjeant R, Fehlings MG. Predictive value of intraoperative neurophysiological monitoring during cervical spine surgery: a prospective analysis of 1055 consecutive patients. J Neurosurg Spine. 2008;8(3):215–21.

    Article  PubMed  Google Scholar 

  62. Sutter MA, Eggspuehler A, Grob D, Porchet F, Jeszenszky D, Dvorak J. Multimodal intraoperative monitoring (MIOM) during 409 lumbosacral surgical procedures in 409 patients. Eur Spine J. 2007;16 Suppl 2:S221–8.

    Article  PubMed  Google Scholar 

  63. Eggspuehler A, Sutter MA, Grob D, Jeszenszky D, Porchet F, Dvorak J. Multimodal intraoperative monitoring (MIOM) during cervical spine surgical procedures in 246 patients. Eur Spine J. 2007;16 Suppl 2:S209–15.

    Article  PubMed  Google Scholar 

  64. Kim DH, Zaremski J, Kwon B, Jenis L, Woodard E, Bode R, et al. Risk factors for false positive transcranial motor evoked potential monitoring alerts during surgical treatment of cervical myelopathy. Spine (Phila Pa 1976). 2007;32(26):3041–6.

    Article  Google Scholar 

  65. Haghighi SS, Mundis G, Zhang R, Ramirez B. Correlation between transcranial motor and somatosensory-evoked potential findings in cervical myelopathy or radiculopathy during cervical spine surgery. Neurol Res. 2011;33(9):893–8.

    Article  PubMed  Google Scholar 

  66. Wilson JR, Fehlings MG, Kalsi-Ryan S, Shamji MF, Tetreault LA, Rhee JM, Chapman JR. Diagnosis, heritability, and outcome assessment in cervical myelopathy: a consensus statement. Spine (Phila Pa 1976). 2013;38(22S):S76–7.

    Article  Google Scholar 

  67. Wilson JR, Barry S, Fischer DJ, Skelly AC, Arnold PM, Riew KD, et al. Frequency, timing, and predictors of neurological dysfunction in the nonmyelopathic patient with cervical spinal cord compression, canal stenosis, and/or ossification of the posterior longitudinal ligament. Spine (Phila Pa 1976). 2013;38(22 Suppl 1):S37–54.

    Article  Google Scholar 

  68. Quinones-Hinojosa A, Gulati M, Lyon R, Gupta N, Yingling C, Quinones-Hinojosa A, et al. Spinal cord mapping as an adjunct for resection of intramedullary tumors: surgical technique with case illustrations. Neurosurgery. 2002;51(5):1199–206. discussion 206–7.

    Article  PubMed  Google Scholar 

  69. Cheng JS, Ivan ME, Stapleton CJ, Quinones-Hinojosa A, Gupta N, Auguste KI. Intraoperative changes in transcranial motor evoked potentials and somatosensory evoked potentials predicting outcome in children with intramedullary spinal cord tumors. J Neurosurg Pediatr. 2014;13(6):591–9.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Balogun JA, Khan OH, Taylor M, Dirks P, Der T, Carter Snead Iii O, et al. Pediatric awake craniotomy and intra-operative stimulation mapping. J Clin Neurosci. 2014;21(11):1891–4.

    Article  PubMed  Google Scholar 

  71. Ringel F, Sala F. Intraoperative mapping and monitoring in supratentorial tumor surgery. J Neurosurg Sci. 2015;59(2):129–39.

    CAS  PubMed  Google Scholar 

  72. Bello L, Riva M, Fava E, Ferpozzi V, Castellano A, Raneri F, et al. Tailoring neurophysiological strategies with clinical context enhances resection and safety and expands indications in gliomas involving motor pathways. Neuro Oncol. 2014;16(8):1110–28.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Trinh VT, Fahim DK, Maldaun MV, Shah K, McCutcheon IE, Rao G, et al. Impact of preoperative functional magnetic resonance imaging during awake craniotomy procedures for intraoperative guidance and complication avoidance. Stereotact Funct Neurosurg. 2014;92(5):315–22.

    Article  PubMed  Google Scholar 

  74. Bertani G, Fava E, Casaceli G, Carrabba G, Casarotti A, Papagno C, et al. Intraoperative mapping and monitoring of brain functions for the resection of low-grade gliomas: technical considerations. Neurosurg Focus. 2009;27(4):E4.

    Article  PubMed  Google Scholar 

  75. Sanai N. Emerging operative strategies in neurosurgical oncology. Curr Opin Neurol. 2012;25(6):756–66.

    Article  PubMed  Google Scholar 

  76. Sanai N, Berger MS. Glioma extent of resection and its impact on patient outcome. Neurosurgery. 2008;62:753–6.

    Article  PubMed  Google Scholar 

  77. Morota N, Ihara S, Deletis V. Intraoperative neurophysiology for surgery in and around the brainstem: role of brainstem mapping and corticobulbar tract motor-evoked potential monitoring. Childs Nerv Syst. 2010;26(4):513–21.

    Article  PubMed  Google Scholar 

  78. *Szelényi A, Kothbauer K, de Camargo AB, Langer D, Flamm ES, Deletis V. Motor evoked potential monitoring during cerebral aneurysm surgery: technical aspects and comparison of transcranial and direct cortical stimulation. Neurosurgery. 2005;57(4 Suppl):331–8.

    Google Scholar 

  79. Neuloh G, Schramm J. Motor evoked potential monitoring for the surgery of brain tumours and vascular malformations. [Review] [126 refs]. Adv Tech Stand Neurosurg. 2004;29:171–228.

    Article  CAS  PubMed  Google Scholar 

  80. Edmonds Jr HL. Multi-modality neurophysiologic monitoring for cardiac surgery. Heart Surg Forum. 2002;5(3):225–8.

    PubMed  Google Scholar 

  81. Goodnough LT, Levy JH, Murphy MF. Concepts of blood transfusion in adults. Lancet. 2013;381(9880):1845–54.

    Article  PubMed  Google Scholar 

  82. Marik PE. Propofol: therapeutic indications and side-effects. Curr Pharm Des. 2004;10(29):3639–49.

    Article  CAS  PubMed  Google Scholar 

  83. Mahmoud M, Sadhasivam S, Salisbury S, Nick TG, Schnell B, Sestokas AK, et al. Susceptibility of transcranial electric motor-evoked potentials to varying targeted blood levels of dexmedetomidine during spine surgery. Anesthesiology. 2010;112(6):1364–73.

    Article  CAS  PubMed  Google Scholar 

  84. Anschel DJ, Aherne A, Soto RG, Carrion W, Hoegerl C, Nori P, et al. Successful intraoperative spinal cord monitoring during scoliosis surgery using a total intravenous anesthetic regimen including dexmedetomidine. J Clin Neurophysiol. 2008;25(1):56–61.

    Article  PubMed  Google Scholar 

  85. Koruk S, Mizrak A, Kaya Ugur B, Ilhan O, Baspinar O, Oner U. Propofol/dexmedetomidine and propofol/ketamine combinations for anesthesia in pediatric patients undergoing transcatheter atrial septal defect closure: a prospective randomized study. Clin Ther. 2010;32(4):701–9.

    Article  CAS  PubMed  Google Scholar 

  86. Mahmoud M, Sadhasivam S, Sestokas AK, Samuels P, McAuliffe J. Loss of transcranial electric motor evoked potentials during pediatric spine surgery with dexmedetomidine. Anesthesiology. 2007;106(2):393–6.

    Article  PubMed  Google Scholar 

  87. Bala E, Sessler DI, Nair DR, McLain R, Dalton JE, Farag E. Motor and somatosensory evoked potentials are well maintained in patients given dexmedetomidine during spine surgery. Anesthesiology. 2008;109(3):417–25.

    Article  PubMed  Google Scholar 

  88. Legatt AD. Current practice of motor evoked potential monitoring: results of a survey. J Clin Neurophysiol. 2002;19(5):454–60.

    Article  PubMed  Google Scholar 

  89. *Macdonald DB, Skinner S, Shils J, Yingling C. Intraoperative motor evoked potential monitoring: a position statement by the American Society of Neurophysiological Monitoring. Clin Neurophysiol. 2013;124(12):2291–316.

    Google Scholar 

  90. Macdonald DB. Intraoperative motor evoked potential monitoring: overview and update. J Clin Monit Comput. 2006;20(5):347–77.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leslie C. Jameson M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Jameson, L.C. (2017). Transcranial Motor-Evoked Potentials. In: Koht, A., Sloan, T., Toleikis, J. (eds) Monitoring the Nervous System for Anesthesiologists and Other Health Care Professionals. Springer, Cham. https://doi.org/10.1007/978-3-319-46542-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46542-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46540-1

  • Online ISBN: 978-3-319-46542-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics