Skip to main content

EEG Monitoring

  • Chapter
  • First Online:
  • 1567 Accesses

Abstract

Monitoring the nervous system begs two questions: what is the function of the nervous system, and how can it be observed to fulfill the promise of monitoring? A simple, yet practical answer to the first question is that the function of the nervous system is to create human behavior. To monitor is to implicitly assume that detecting untoward events in a timely fashion will allow for successful therapeutic intervention. Under the usual circumstances then, the answer to the second question is conversation or visual inspection of behavior (a conventional neurologic exam). During general anesthesia, a novel behavioral state is therapeutically induced to allow safe, tolerable, and meticulous surgery. In this state of general anesthesia, nervous system function is reversibly depressed as are most of the visible signs of CNS function. A few physiologic signs can be detected and have long been used as a guide to dosing anesthetics. Unfortunately, as the pharmaceutical choices expanded beyond diethyl ether, these physical signs varied widely between agents, making simple observation of outward signs of patient behavior inadequate as a dosing guide. The complete blockade of these signs by the introduction of muscle relaxants further complicated assessment of anesthetic action. During surgery and anesthesia, there are circumstances where the well-being of the brain or spinal cord may be put at risk. Examples include distraction of the spinal column, or clamping of the carotid artery. While tolerated by most patients, some will be injured by these procedures, and early warning may prevent permanent injury. The anesthesia practitioner may also benefit from monitoring because of the possibility of objective control over the state of anesthesia. General anesthesia is a continuum and varies not only with dose vs. a patient’s individual sensitivity, but also with dynamic changes in surgical stimulation. Clinical problems result from too little or too much anesthetic.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Sundt TM, Sharbrough FW, Piepgras DG, Kearns TP, Messick JM, O’Fallon WM. Correlation of cerebral blood flow and electroencephalographic changes during carotid endarterectomy with results of surgery and hemodynamics of cerebral ischemia. Mayo Clin Proc. 1981;56:533–43.

    PubMed  Google Scholar 

  2. Rampil IJ, Holzer JA, Quest DO, Rosenbaum SH, Correll JW. Prognostic value of computerized EEG analysis during carotid endarterectomy. Anesth Analg. 1983;62:186–92.

    Article  CAS  PubMed  Google Scholar 

  3. Blume WT, Sharbrough FW. EEG monitoring during carotid endarterectomy and open heart surgery. In: Niedermeyer E, Lopes da Silva F, editors. Electroencephalography: basic principles, clinical applications, and related fields. Baltimore: Williams & Wilkins; 1993. p. 747–56.

    Google Scholar 

  4. Stanski DR, Hudson RJ, Homer TD, Saidman LJ, Meathe E. Pharmacodynamic modeling of thiopental anesthesia. J Pharmacokinet Biopharm. 1984;12:223–40.

    Article  CAS  PubMed  Google Scholar 

  5. Scott JC, Cooke JE, Stanski DR. Electroencephalographic quantitation of opioid effect: comparative pharmacodynamics of fentanyl and sufentanil. Anesthesiology. 1991;74:34–42.

    Article  CAS  PubMed  Google Scholar 

  6. Rampil IJ, Lockhart SH, Eger II EI, Yasuda N, Weiskopf RB, Cahalan MK. The electroencephalographic effects of desflurane in humans. Anesthesiology. 1991;74:434–9.

    Article  CAS  PubMed  Google Scholar 

  7. Nussmeier NA, Arlund C, Slogoff S. Neuropsychiatric complications after cardiopulmonary bypass: cerebral protection by a barbiturate. Anesthesiology. 1986;64:165–70.

    Article  CAS  PubMed  Google Scholar 

  8. Todd MM, Warner DS. A comfortable hypothesis reevaluated: cerebral metabolic depression and brain protection during ischemia (editorial). Anesthesiology. 1992;76:161–4.

    Article  CAS  PubMed  Google Scholar 

  9. Sebel PS, Lang E, Rampil IJ, White PF, Cork R, Jopling MW, et al. A multicenter study of the bispectral electroencephalogram analysis for monitoring anesthetic effect. Anesth Analg. 1997;84:891–9.

    Article  CAS  PubMed  Google Scholar 

  10. Glass PSA, Bloom M, Kearse L, Rosow C, Sebel P, Manberg P. Bispectral analysis measures sedation and memory effects of propofol, midazolam, isoflurane, and alfentanil in healthy volunteers. Anesthesiology. 1997;86:836–47.

    Article  CAS  PubMed  Google Scholar 

  11. Rampil IJ, Matteo RS. Changes in EEG spectral edge frequency correlates with the hemodynamic response to laryngoscopy and intubation. Anesthesiology. 1987;67:139–42.

    Article  CAS  PubMed  Google Scholar 

  12. Sidi A, Halimi P, Cotev S. Estimating anesthetic depth by electroencephalography during anesthetic induction and intubation in patients undergoing cardiac surgery. J Clin Anesth. 1990;2:101–7.

    Article  CAS  PubMed  Google Scholar 

  13. Dwyer RC, Rampil IJ, Eger II EI, Bennett HL. The electroencephalogram does not predict depth of isoflurane anesthesia. Anesthesiology. 1994;81:403–9.

    Article  CAS  PubMed  Google Scholar 

  14. Dutton RC, Smith WD, Smith NT. EEG predicts movement response to surgical stimuli during general anesthesia with combinations of isoflurane, 70% N2O, and fentanyl. J Clin Monit. 1996;12:127–39.

    Article  CAS  PubMed  Google Scholar 

  15. Rampil IJ, Mason P, Singh H. Anesthetic potency (MAC) is independent of forebrain structures in the rat. Anesthesiology. 1993;78:707–12.

    Article  CAS  PubMed  Google Scholar 

  16. King BS, Rampil IJ. Anesthetic depression of spinal motor neurons may contribute to lack of movement in response to noxious stimuli. Anesthesiology. 1994;81:1484–92.

    Article  CAS  PubMed  Google Scholar 

  17. Zhou HH, Mehta M, Leis AA. Spinal cord motoneuron excitability during isoflurane and nitrous oxide anesthesia. Anesthesiology. 1997;86:302–7.

    Article  CAS  PubMed  Google Scholar 

  18. Leslie K, Sessler DI, Schroeder M, Walters K. Propofol blood concentration and the bispectral index predict suppression of learning during propofol/epidural anesthesia in volunteers. Anesth Analg. 1995;81:1269–74.

    CAS  PubMed  Google Scholar 

  19. Liu J, Singh H, White PF. Electroencephalogram bispectral analysis predicts the depth of midazolam-induced sedation. Anesthesiology. 1996;84:64–9.

    Article  CAS  PubMed  Google Scholar 

  20. Liu J, Singh H, White PF. Electroencephalographic bispectral index correlates with intraoperative recall and depth of propofol-induced sedation. Anesth Analg. 1997;84:185–9.

    Article  CAS  PubMed  Google Scholar 

  21. Myles PS, Leslie K, McNeil J, Forbes A, Chan MT. Bispectral index monitoring to prevent awareness during anaesthesia: the B-Aware randomised controlled trial. Lancet. 2004;363:1757–63.

    Article  CAS  PubMed  Google Scholar 

  22. Moller DH, Rampil IJ. Spectral entropy predicts auditory recall in volunteers. Anesth Analg. 2008;106:873–9.

    Article  PubMed  Google Scholar 

  23. White EL. Cell types. In: White EL, editor. Cortical circuits: synaptic organization of the cerebral cortex-structure, function and theory. Boston: Birkäuser; 1989. p. 19–45.

    Chapter  Google Scholar 

  24. Newman J. Thalamic contributions to attention and consciousness. Conscious Cogn. 1995;4:172–93.

    Article  CAS  PubMed  Google Scholar 

  25. Steriade M. Cellular substrate of brain rhythms. In: Niedermeyer E, da Silva FD, editors. Electroencephalography. 5th ed. Philadelphia: Lippincott Williams & Wilkins; 2005. p. 31–83.

    Google Scholar 

  26. Jasper H. Report of committee on methods of clinical exam in EEG. Electroencephalogr Clin Neurophysiol. 1958;10:370–5.

    Article  Google Scholar 

  27. Tinker JH, Sharbrough FW, Michenfelder JD. Anterior shift of the dominant EEG rhythm during anesthesia in the Java monkey: correlation with anesthetic potency. Anesthesiology. 1977;46:252–9.

    Article  CAS  PubMed  Google Scholar 

  28. Rundshagen I, Schröder T, Prichep LS, John ER, Kox WJ. Changes in cortical electrical activity during induction of anaesthesia with thiopental/fentanyl and tracheal intubation: a quantitative electroencephalographic analysis. Br J Anaesth. 2004;92:33–8.

    Article  CAS  PubMed  Google Scholar 

  29. Levy WJ. Power spectrum correlates of changes in consciousness during anesthetic induction with enflurane. Anesthesiology. 1986;64:688–93.

    Article  CAS  PubMed  Google Scholar 

  30. Shannon CE. The mathematical theory of communication. Urbana: University of Illinois Press; 1962.

    Google Scholar 

  31. Rampil IJ. Intelligent detection of artifact. In: Gravenstein JS, Newbower RS, Ream AK, Smith NT, editors. The automated anesthesia record and alarm systems. Boston: Butterworth; 1987.

    Google Scholar 

  32. Barlow JS. Artifact processing in EEG data processing. In: Lopes da Silva FH, Storm Van Leeuwen W, Rémond A, editors. Clinical applications of computer analysis of EEG and other neurophysiological signal. Amsterdam: Elsevier; 1986. p. 15–62.

    Google Scholar 

  33. Davenport WB, Root WL. An introduction to the theory of random signals and noise. New York: Wiley-IEEE Press; 1987.

    Book  Google Scholar 

  34. Papoulis A. Probability, random variables, and stochastic processes. 3rd ed. New York: McGraw-Hill; 1991.

    Google Scholar 

  35. Bendat JS, Piersol AG. Random data: analysis and measurement procedures. 3rd ed. New York: Wiley-Interscience; 2000.

    Google Scholar 

  36. Isaksson A, Wennberg A. Spectral properties of nonstationary EEG signals, evaluated by means of Kalman filtering: application examples from a vigilance test. In: Kellaway P, Petersén I, editors. Quantitative analytic studies in epilepsy. New York: Raven; 1976. p. 389–402.

    Google Scholar 

  37. McEwen J, Anderson GB. Modelling the stationarity and gaussianity of spontaneous electroencephalographic activity. IEEE Trans Biomed Eng. 1975;22:361–9.

    Article  CAS  PubMed  Google Scholar 

  38. Gasser T, Bächer P, Möcks J. Transformation towards the normal distribution of broad band spectral parameters of the EEG. Electroencephalogr Clin Neurophysiol. 1982;53:119–24.

    Article  CAS  PubMed  Google Scholar 

  39. Bickford RG. Automatic electroencephalographic control of general anesthesia. Electroencephalogr Clin Neurophysiol. 1950;2:93–6.

    Article  Google Scholar 

  40. Arom KV, Cohen DE, Strobl FT. Effect of intraoperative intervention on neurologic outcome based on electroencephalographic monitoring during cardiopulmonary bypass. Ann Thorac Surg. 1989;48:476–83.

    Article  CAS  PubMed  Google Scholar 

  41. Hjorth B. EEG analysis based on time domain properties. Electroencephalogr Clin Neurophysiol. 1970;29:306–10.

    Article  CAS  PubMed  Google Scholar 

  42. Depoortere H, Francon D, Granger P, Terzano MG. Evaluation of the stability and quality of sleep using Hjorth’s descriptors. Physiol Behav. 1993;54:785–93.

    Article  CAS  PubMed  Google Scholar 

  43. Kanno O, Clarenbach P. Effect of clonidine and yohimbine on sleep in man: polygraphic study and EEG analysis by normalized slope descriptors. Electroencephalogr Clin Neurophysiol. 1985;60:478–84.

    Article  CAS  PubMed  Google Scholar 

  44. Burch NR. Period analysis of the EEG on a general-purpose digital computer. Ann N Y Acad Sci. 1964;115:827–43.

    Article  CAS  PubMed  Google Scholar 

  45. Klein FF. A waveform analyzer applied to the human EEG. IEEE Trans Biomed Eng. 1976;23:246–52.

    Article  CAS  PubMed  Google Scholar 

  46. Demetrescu MC. The aperiodic character of the electroencephalogram. Physiologist. 1975;18:189 (abstract).

    Google Scholar 

  47. Gregory TK, Pettus DC. An electroencephalographic processing algorithm specifically intended for analysis of cerebral electrical activity. J Clin Monit. 1986;2:190–7.

    Article  CAS  PubMed  Google Scholar 

  48. Rampil IJ, Weiskopf RB, Brown JG, Eger II EI, Johnson BH, Holmes MA, et al. I653 and isoflurane produce similar dose-related changes in the electroencephalogram of pigs. Anesthesiology. 1988;69:298–302.

    Article  CAS  PubMed  Google Scholar 

  49. Rampil IJ, Laster MJ. No correlation between quantitative electroencephalographic measurements and movement response to noxious stimuli during isoflurane anesthesia in rats. Anesthesiology. 1992;77:920–5.

    Article  CAS  PubMed  Google Scholar 

  50. Matousek M, Petersén I, Friberg S. Automatic assessment of randomly selected routine EEG records. In: Dolce G, Künkel H, editors. CEAN–computerized EEG analysis. Stuttgart: Fisher; 1975. p. 421–8.

    Google Scholar 

  51. Cooley JW, Tukey JW. An algorithm for machine calculation of complex Fourier series. Math Comput. 1965;19:297–301.

    Article  Google Scholar 

  52. Volgyesi GA. A brain function monitor for use during anaesthesia. Can Anaesth Soc J. 1978;25:427–30.

    Article  CAS  PubMed  Google Scholar 

  53. Jonkman EJ, Poortvliet DC, Veering MM, De Weerd AW, John ER. The use of neurometrics in the study of patients with cerebral ischaemia. Electroencephalogr Clin Neurophysiol. 1985;61:333–41.

    Article  CAS  PubMed  Google Scholar 

  54. Edmonds HLJ, Griffiths LK, van der Laken J, Slater AD, Shields CB. Quantitative electroencephalographic monitoring during myocardial revascularization predicts postoperative disorientation and improves outcome. J Thorac Cardiovasc Surg. 1992;103:555–63.

    PubMed  Google Scholar 

  55. Adams DC, Heyer EJ, Emerson RG, Moeller JR, Spotnitz HM, Smith DH, et al. The reliability of quantitative electroencephalography as an indicator of cerebral ischemia. Anesth Analg. 1995;81:80–3.

    CAS  PubMed  Google Scholar 

  56. Russ W, Kling D, Krumholz W, Fraedrich G, Hempelmann G. Experiences with a new EEG spectral analyzer in carotid surgery. Anaesthesist. 1985;34:85–90.

    CAS  PubMed  Google Scholar 

  57. Baker AB, Roxburgh AJ. Computerised EEG monitoring for carotid endarterectomy. Anaesth Intensive Care. 1986;14:32–6.

    CAS  PubMed  Google Scholar 

  58. Hanowell LH, Soriano S, Bennett HL. EEG power changes are more sensitive than spectral edge frequency variation for detection of cerebral ischemia during carotid artery surgery: a prospective assessment of processed EEG monitoring. J Cardiothorac Vasc Anesth. 1992;6:292–4.

    Article  CAS  PubMed  Google Scholar 

  59. Young WL, Moberg RS, Ornstein E, Matteo RS, Pedley TA, Correll JW, et al. Electroencephalographic monitoring for ischemia during carotid endarterectomy: visual versus computer analysis. J Clin Monit. 1988;4:78–85.

    Article  CAS  PubMed  Google Scholar 

  60. Rampil IJ. A primer for EEG signal processing in anesthesia. Anesthesiology. 1998;89:980–1002.

    Article  CAS  PubMed  Google Scholar 

  61. Oshima E, Shingu K, Mori K. E.E.G. activity during halothane anaesthesia in man. Br J Anaesth. 1981;53:65–72.

    Article  CAS  PubMed  Google Scholar 

  62. Neigh JL, Garman JK, Harp JR. The electroencephalographic pattern during anesthesia with ethrane: effects of depth of anesthesia, PaCo2, and nitrous oxide. Anesthesiology. 1971;35:482–7.

    Article  CAS  PubMed  Google Scholar 

  63. Eger 2nd EI, Stevens WC, Cromwell TH. The electroencephalogram in man anesthetized with forane. Anesthesiology. 1971;35:504–8.

    Article  CAS  PubMed  Google Scholar 

  64. Clark DL, Hosick EC, Adam N, Castro AD, Rosner BS, Neigh JL. Neural effects of isoflurane (forane) in man. Anesthesiology. 1973;39:261–70.

    Article  CAS  PubMed  Google Scholar 

  65. Tatsumi K, Hirai K, Furuya H, Okuda T. Effects of sevoflurane on the middle latency auditory evoked response and the electroencephalographic power spectrum. Anesth Analg. 1995;80:940–3.

    CAS  PubMed  Google Scholar 

  66. Laitio RM, Kaskinoro K, Sarkela MO, Kaisti KK, Salmi E, Maksimow A, et al. Bispectral index, entropy, and quantitative electroencephalogram during single-agent xenon anesthesia. Anesthesiology. 2008;108:63–70.

    Article  PubMed  Google Scholar 

  67. Jaaskelainen SK, Kaisti K, Suni L, Hinkka S, Scheinin H. Sevoflurane is epileptogenic in healthy subjects at surgical levels of anesthesia. Neurology. 2003;61:1073–8.

    Article  CAS  PubMed  Google Scholar 

  68. Vakkuri A, Yli-Hankala A, Sarkela M, Lindgren L, Mennander S, Korttila K, et al. Sevoflurane mask induction of anaesthesia is associated with epileptiform EEG in children. Acta Anaesthesiol Scand. 2001;45:805–11.

    Article  CAS  PubMed  Google Scholar 

  69. Kuramoto T, Oshita S, Takeshita H, Ishikawa T. Modification of the relationship between cerebral metabolism, blood flow, and electroencephalogram by stimulation during anesthesia in the dog. Anesthesiology. 1979;51:211–7.

    Article  CAS  PubMed  Google Scholar 

  70. Yamamura T, Fukuda M, Takeya H, Goto Y, Furukawa K. Fast oscillatory EEG activity induced by analgesic concentrations of nitrous oxide in man. Anesth Analg. 1981;60:283–8.

    Article  CAS  PubMed  Google Scholar 

  71. Rampil IJ, Kim JS, Lenhardt R, Negishi C, Sessler DI. Bispectral EEG index during nitrous oxide administration. Anesthesiology. 1998;89:671–7.

    Article  CAS  PubMed  Google Scholar 

  72. Smith NT, Hoff BH, Rampil IJ, Sasse FJ, Flemming DC. Does thiopental or N2O disrupt the EEG during enflurane? Anesthesiology. 1979;51:s4 (abstract).

    Article  Google Scholar 

  73. Kaieda R, Todd MM, Warner DS. The effects of anesthetics and PaCO2 on the cerebrovascular, metabolic, and electroencephalographic responses to nitrous oxide in the rabbit. Anesth Analg. 1989;68:135–43.

    Article  CAS  PubMed  Google Scholar 

  74. Avramov MN, Shingu K, Mori K. Progressive changes in electroencephalographic responses to nitrous oxide in humans: a possible acute drug tolerance. Anesth Analg. 1990;70:369–74.

    Article  CAS  PubMed  Google Scholar 

  75. Kiersey DK, Bickford RG, Faulconer Jr A. Electro-encephalographic patterns produced by thiopental sodium during surgical operations; description and classification. Br J Anaesth. 1951;23:141–52.

    Article  CAS  PubMed  Google Scholar 

  76. Clark DL, Rosner BS. Neurophysiologic effects of general anesthetics. I. The electroencephalogram and sensory evoked responses in man. Anesthesiology. 1973;38:564–82.

    Article  CAS  PubMed  Google Scholar 

  77. Schwilden H, Schuttler J, Stoeckel H. Closed-loop feedback control of methohexital anesthesia by quantitative EEG analysis in humans. Anesthesiology. 1987;67:341–7.

    Article  CAS  PubMed  Google Scholar 

  78. Ford EW, Morrell F, Whisler WW. Methohexital anesthesia in the surgical treatment of uncontrollable epilepsy. Anesth Analg. 1982;61:997–1001.

    Article  CAS  PubMed  Google Scholar 

  79. Wyler AR, Richey ET, Atkinson RA, Hermann BP. Methohexital activation of epileptogenic foci during acute electrocorticography. Epilepsia. 1987;28:490–4.

    Article  CAS  PubMed  Google Scholar 

  80. Hazeaux C, Tisserant D, Vespignani H, Hummer-Sigiel M, Kwan-Ning V, Laxenaire MC. Electroencephalographic impact of propofol anesthesia. Ann Fr Anesth Reanim. 1987;6:261–6.

    Article  CAS  PubMed  Google Scholar 

  81. Billard V, Gambus PL, Chamoun N, Stanski DR, Shafer SL. A comparison of spectral edge, delta power, and bispectral index as EEG measures of alfentanil, propofol, and midazolam drug effect. Clin Pharmacol Ther. 1997;61:45–58.

    Article  CAS  PubMed  Google Scholar 

  82. Doenicke A, Loffler B, Kugler J, Suttmann H, Grote B. Plasma concentration and E.E.G. after various regimens of etomidate. Br J Anaesth. 1982;54:393–400.

    Article  CAS  PubMed  Google Scholar 

  83. Ebrahim ZY, DeBoer GE, Luders H, Hahn JF, Lesser RP. Effect of etomidate on the electroencephalogram of patients with epilepsy. Anesth Analg. 1986;65:1004–6.

    Article  CAS  PubMed  Google Scholar 

  84. Ghoneim MM, Yamada T. Etomidate: a clinical and electroencephalographic comparison with thiopental. Anesth Analg. 1977;56:479–85.

    Article  CAS  PubMed  Google Scholar 

  85. Milde LN, Milde JH, Michenfelder JD. Cerebral functional, metabolic, and hemodynamic effects of etomidate in dogs. Anesthesiology. 1985;63:371–7.

    Article  CAS  PubMed  Google Scholar 

  86. McPherson RW, Sell B, Traystman RJ. Effects of thiopental, fentanyl, and etomidate on upper extremity somatosensory evoked potentials in humans. Anesthesiology. 1986;65:584–9.

    Article  CAS  PubMed  Google Scholar 

  87. Sebel PS, Bovill JG, Wauquier A, Rog P. Effects of high-dose fentanyl anesthesia on the electroencephalogram. Anesthesiology. 1981;55:203–11.

    Article  CAS  PubMed  Google Scholar 

  88. Wauquier A, Bovill JG, Sebel PS. Electroencephalographic effects of fentanyl-, sufentanil- and alfentanil anaesthesia in man. Neuropsychobiology. 1984;11:203–6.

    Article  CAS  PubMed  Google Scholar 

  89. Benthuysen JL, Smith NT, Sanford TJ, Head N, Dec-Silver H. Physiology of alfentanil-induced rigidity. Anesthesiology. 1986;64:440–6.

    Article  CAS  PubMed  Google Scholar 

  90. Weinger MB, Cline EJ, Smith NT, Blasco TA, Koob GF. Localization of brainstem sites which mediate alfentanil-induced muscle rigidity in the rat. Pharmacol Biochem Behav. 1988;29:573–80.

    Article  CAS  PubMed  Google Scholar 

  91. de Castro J, Van de Water A, Wouters L, Xhonneux R, Reneman R, Kay B. Comparative study of cardiovascular, neurological and metabolic side effects of 8 narcotics in dogs. Pethidine, piritramide, morphine, phenoperidine, fentanyl, R 39 209, sufentanil, R 34 995. II. Comparative study on the epileptoid activity of the narcotics used in high and massive doses in curarised and mechanically ventilated dogs. Acta Anaesthesiol Belg. 1979;30:55–69.

    PubMed  Google Scholar 

  92. Greenblatt DJ, Ehrenberg BL, Gunderman J, Locniskar A, Scavone JM, Harmatz JS, et al. Pharmacokinetic and electroencephalographic study of intravenous diazepam, midazolam, and placebo. Clin Pharmacol Ther. 1989;45:356–65.

    Article  CAS  PubMed  Google Scholar 

  93. Fleischer JE, Milde JH, Moyer TP, Michenfelder JD. Cerebral effects of high-dose midazolam and subsequent reversal with Ro 15–1788 in dogs. Anesthesiology. 1988;68:234–42.

    Article  CAS  PubMed  Google Scholar 

  94. Lanier WL, Milde JH, Michenfelder JD. Cerebral stimulation following succinylcholine in dogs. Anesthesiology. 1986;64:551–9.

    Article  CAS  PubMed  Google Scholar 

  95. Chapple DJ, Miller AA, Ward JB, Wheatley PL. Cardiovascular and neurological effects of laudanosine. Studies in mice and rats, and in conscious and anaesthetized dogs. Br J Anaesth. 1987;59:218–25.

    Article  CAS  PubMed  Google Scholar 

  96. Shi WZ, Fahey MR, Fisher DM, Miller RD, Canfell C, Eger II EI. Laudanosine (a metabolite of atracurium) increases the minimum alveolar concentration of halothane in rabbits. Anesthesiology. 1985;63:584–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ira J. Rampil M.S., M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Rampil, I.J. (2017). EEG Monitoring. In: Koht, A., Sloan, T., Toleikis, J. (eds) Monitoring the Nervous System for Anesthesiologists and Other Health Care Professionals. Springer, Cham. https://doi.org/10.1007/978-3-319-46542-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46542-5_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46540-1

  • Online ISBN: 978-3-319-46542-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics