Skip to main content

HeSA, Hip Exoskeleton for Superior Assistance

  • Conference paper
  • First Online:
Wearable Robotics: Challenges and Trends

Part of the book series: Biosystems & Biorobotics ((BIOSYSROB,volume 16))

Abstract

A hip exoskeleton was designed that can assist hip flexion and extension. The device incorporates a motor, ball-screw, and spring in a lightweight package. The total weight including the battery is 2.95 kg. The system uses 20 W of power per leg. The system is controlled based on the phase angle of each leg and the torque is applied in synchrony with the user’s steps. The device assists walking, running, and does not interfere when going up and down stairs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Asbeck, A.T., De Rossi, S.M., Holt, K.G., Walsh, C.J.: A biologically inspired soft exosuit for walking assistance. Int. J. Robot. Res. 0278364914562476 (2015)

    Google Scholar 

  2. Asbeck, A.T., Schmidt, K., Walsh, C.J.: Soft exosuit for hip assistance. Robot. Auton. Syst. (2014)

    Google Scholar 

  3. Bharadwaj, K., Sugar, T.G., Koeneman, J.B., Koeneman, E.J.: Design of a robotic gait trainer using spring over muscle actuators for ankle stroke rehabilitation. ASME J. Biomech. Eng. 127, 1009–1013 (2005)

    Article  Google Scholar 

  4. Blaya, J.A., Herr, H.: Adaptive control of a variable-impedance ankle-foot orthosis to assist drop-foot gait. IEEE Trans. Neural Syst. Rehabil. Eng. 12 (2004)

    Google Scholar 

  5. Esposito, E.R., Blanck, R.V., Harper, N.G., Hsu, J.R., Wilken, J.M.: How does ankle-foot orthosis stiffness affect gait in patients with lower limb salvage? Clin. Orthop. Relat. Res. 472, 3026–3035 (2014)

    Google Scholar 

  6. Giovacchini, F., Vannetti, F., Fantozzi, M., Cempini, M., Cortese, M., Parri, A., Yan, T., Lefeber, D., Vitiello, N.: A light-weight active orthosis for hip movement assistance. Robot. Auton. Syst. 73, 123–134 (2015)

    Article  Google Scholar 

  7. Meijneke, C., van Dijk, W., van der Kooij, H.: Achilles: an autonomous lightweight ankle exoskeleton to provide push-off power. Presented at the 5th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (2014)

    Google Scholar 

  8. Shamaei, K., Cenciarini, M., Adams, A.A., Gregorczyk, K.N., Schiffman, J.M., Dollar, A.M.: Effects of exoskeletal stiffness in parallel with the knee on the motion of the human body center of mass during walking. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 5557–5564 (2015)

    Google Scholar 

  9. Hollander, K.W., Cahill, N., Holgate, R., Churchwell, R., Clouse, P., Kinney, D., Boehler, A.: A passive and active joint torque augmentation robot (JTAR) for hip gait assistance. In: ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp. V05AT08A079–V05AT08A079 (2014)

    Google Scholar 

  10. Hollander, K.W., Cahill, N., Holgate, R., Churchwell, R., Clouse, P., Kinney, D., Boehler, A., Ward, J.: A joint torque augmentation robot (JTAR) for ankle gait assistance. In: ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (2014)

    Google Scholar 

  11. Kerestes, J., Sugar, T.G., Holgate, M.: Adding and subtracting energy to body motion: phase oscillator. In: ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp. V05AT08A004–V05AT08A004 (2014)

    Google Scholar 

  12. Sugar, T.G., Bates, A., Holgate, M., Kerestes, J., Mignolet, M., New, P., Ramachandran, R.K., Redkar, S., Wheeler, C.: Limit cycles to enhance human performance based on phase oscillators. J. Mech. Robot. 7, 011001 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

A patent application has been filed on the phase oscillator and mechanisms. This work is partially supported by the DARPA grant W911NF-15-1-0162. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the funding agency

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas G. Sugar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Sugar, T.G., Fernandez, E., Kinney, D., Hollander, K.W., Redkar, S. (2017). HeSA, Hip Exoskeleton for Superior Assistance. In: González-Vargas, J., Ibáñez, J., Contreras-Vidal, J., van der Kooij, H., Pons, J. (eds) Wearable Robotics: Challenges and Trends. Biosystems & Biorobotics, vol 16. Springer, Cham. https://doi.org/10.1007/978-3-319-46532-6_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46532-6_52

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46531-9

  • Online ISBN: 978-3-319-46532-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics