Skip to main content

MicroRNA Analysis in Acute Lung Injury

  • Chapter
  • First Online:
Acute Lung Injury and Repair

Part of the book series: Respiratory Medicine ((RM))

  • 1051 Accesses

Abstract

Acute lung injury (ALI) is a complex, heterogeneous disorder with numerous clinical and genetic risk factors. MiRNA are short non-coding segments of RNA which posttranscriptionally modify gene expression by preventing translation of target mRNA. Thousands of miRNA have been identified to date and most have many different gene targets. Thus, miRNA have the capacity to modulate the expression of a large proportion of the human genome. Further, miRNA can be released extracellularly and participate in cell-to-cell communication. Although their ubiquitous and pleiotropic nature make miRNA ideal etiologic effectors in ALI, little is currently known about their role in the injury and repair phases of this disease. In this chapter, miRNA synthesis and function are reviewed as well as the existing knowledge of miRNA’s association with ALI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Force ADT, et al. Acute respiratory distress syndrome: the Berlin Definition. JAMA. 2012;307(23):2526–33.

    Google Scholar 

  2. Ware LB, Matthay MA. The acute respiratory distress syndrome. N Engl J Med. 2000;342(18):1334–49.

    Article  CAS  PubMed  Google Scholar 

  3. Gajic O, et al. Early identification of patients at risk of acute lung injury: evaluation of lung injury prediction score in a multicenter cohort study. Am J Respir Crit Care Med. 2011;183(4):462–70.

    Article  PubMed  Google Scholar 

  4. Hopkins RO, et al. Two-year cognitive, emotional, and quality-of-life outcomes in acute respiratory distress syndrome. Am J Respir Crit Care Med. 2005;171(4):340–7.

    Article  PubMed  Google Scholar 

  5. Herridge MS, et al. Functional disability 5 years after acute respiratory distress syndrome. N Engl J Med. 2011;364(14):1293–304.

    Article  CAS  PubMed  Google Scholar 

  6. Matthay MA, Zimmerman GA. Acute lung injury and the acute respiratory distress syndrome: four decades of inquiry into pathogenesis and rational management. Am J Respir Cell Mol Biol. 2005;33(4):319–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Meyer NJ. Future clinical applications of genomics for acute respiratory distress syndrome. Lancet Respir Med. 2013;1(10):793–803.

    Article  PubMed  Google Scholar 

  8. Meyer NJ, et al. ANGPT2 genetic variant is associated with trauma-associated acute lung injury and altered plasma angiopoietin-2 isoform ratio. Am J Respir Crit Care Med. 2011;183(10):1344–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gong MN, et al. Interleukin-10 polymorphism in position -1082 and acute respiratory distress syndrome. Eur Respir J. 2006;27(4):674–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. van der Heijden M, et al. Angiopoietin-2, permeability oedema, occurrence and severity of ALI/ARDS in septic and non-septic critically ill patients. Thorax. 2008;63(10):903–9.

    Article  PubMed  Google Scholar 

  11. Currier PF, et al. Surfactant protein-B polymorphisms and mortality in the acute respiratory distress syndrome. Crit Care Med. 2008;36(9):2511–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Marshall RP, et al. Angiotensin converting enzyme insertion/deletion polymorphism is associated with susceptibility and outcome in acute respiratory distress syndrome. Am J Respir Crit Care Med. 2002;166(5):646–50.

    Article  PubMed  Google Scholar 

  13. Medford AR, et al. Vascular endothelial growth factor gene polymorphism and acute respiratory distress syndrome. Thorax. 2005;60(3):244–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. miRBase: the microRNA database. Available from: http://www.mirbase.org/.

  15. Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120(1):15–20.

    Article  CAS  PubMed  Google Scholar 

  16. Friedman RC, et al. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009;19(1):92–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75(5):843–54.

    Article  CAS  PubMed  Google Scholar 

  18. Reinhart BJ, et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature. 2000;403(6772):901–6.

    Article  CAS  PubMed  Google Scholar 

  19. Lagos-Quintana M, et al. Identification of novel genes coding for small expressed RNAs. Science. 2001;294(5543):853–8.

    Article  CAS  PubMed  Google Scholar 

  20. Lau NC, et al. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science. 2001;294(5543):858–62.

    Article  CAS  PubMed  Google Scholar 

  21. Pasquinelli AE, et al. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature. 2000;408(6808):86–9.

    Article  CAS  PubMed  Google Scholar 

  22. Grishok A, et al. Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell. 2001;106(1):23–34.

    Article  CAS  PubMed  Google Scholar 

  23. Ketting RF, et al. Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev. 2001;15(20):2654–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Knight SW, Bass BL. A role for the RNase III enzyme DCR-1 in RNA interference and germ line development in Caenorhabditis elegans. Science. 2001;293(5538):2269–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lee Y, et al. MicroRNA maturation: stepwise processing and subcellular localization. EMBO J. 2002;21(17):4663–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lee Y, et al. The nuclear RNase III Drosha initiates microRNA processing. Nature. 2003;425(6956):415–9.

    Article  CAS  PubMed  Google Scholar 

  27. Han J, et al. The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev. 2004;18(24):3016–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lund E, et al. Nuclear export of microRNA precursors. Science. 2004;303(5654):95–8.

    Article  CAS  PubMed  Google Scholar 

  29. Gregory RI, et al. Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell. 2005;123(4):631–40.

    Article  CAS  PubMed  Google Scholar 

  30. Meister G. Argonaute proteins: functional insights and emerging roles. Nat Rev Genet. 2013;14(7):447–59.

    Article  CAS  PubMed  Google Scholar 

  31. Siomi H, Siomi MC. On the road to reading the RNA-interference code. Nature. 2009;457(7228):396–404.

    Article  CAS  PubMed  Google Scholar 

  32. Preall JB, et al. Short interfering RNA strand selection is independent of dsRNA processing polarity during RNAi in Drosophila. Curr Biol. 2006;16(5):530–5.

    Article  CAS  PubMed  Google Scholar 

  33. Pratt AJ, MacRae IJ. The RNA-induced silencing complex: a versatile gene-silencing machine. J Biol Chem. 2009;284(27):17897–901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136(2):215–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Grimson A, et al. MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell. 2007;27(1):91–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lee I, et al. New class of microRNA targets containing simultaneous 5’-UTR and 3’-UTR interaction sites. Genome Res. 2009;19(7):1175–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lakshmipathy U, Davila J, Hart RP. miRNA in pluripotent stem cells. Regen Med. 2010;5(4):545–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Weber JA, et al. The microRNA spectrum in 12 body fluids. Clin Chem. 2010;56(11):1733–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Valadi H, et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9(6):654–9.

    Article  CAS  PubMed  Google Scholar 

  40. Exosome protein, RNA and lipid database. Available from: www.exocarta.org.

  41. Hunter MP, et al. Detection of microRNA expression in human peripheral blood microvesicles. PLoS ONE. 2008;3(11):e3694.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Pan Y, et al. Platelet-secreted microRNA-223 promotes endothelial cell apoptosis induced by advanced glycation end products via targeting the insulin-like growth factor 1 receptor. J Immunol. 2014;192(1):437–46.

    Article  CAS  PubMed  Google Scholar 

  43. Zernecke A, et al. Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection. Sci Signal. 2009;2(100):ra81.

    Google Scholar 

  44. Fan H, et al. Endothelial progenitor cells and a stromal cell-derived factor-1α analogue synergistically improve survival in sepsis. Am J Respir Crit Care Med. 2014;189(12):1509–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mittelbrunn M, et al. Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nat Commun. 2011;2:282.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Thery C, Ostrowski M, Segura E. Membrane vesicles as conveyors of immune responses. Nat Rev Immunol. 2009;9(8):581–93.

    Article  CAS  PubMed  Google Scholar 

  47. Skog J, et al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol. 2008;10(12):1470–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Collino F, et al. Microvesicles derived from adult human bone marrow and tissue specific mesenchymal stem cells shuttle selected pattern of miRNAs. PLoS ONE. 2010;5(7):e11803.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Pigati L, et al. Selective release of microRNA species from normal and malignant mammary epithelial cells. PLoS ONE. 2010;5(10):e13515.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Bail S, et al. Differential regulation of microRNA stability. RNA. 2010;16(5):1032–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet. 2010;11(9):597–610.

    CAS  PubMed  Google Scholar 

  52. Turchinovich A, et al. Characterization of extracellular circulating microRNA. Nucleic Acids Res. 2011;39(16):7223–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Arroyo JD, et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci USA. 2011;108(12):5003–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wang K, et al. Export of microRNAs and microRNA-protective protein by mammalian cells. Nucleic Acids Res. 2010;38(20):7248–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Vickers KC, et al. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol. 2011;13(4):423–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wagner J, et al. Characterization of levels and cellular transfer of circulating lipoprotein-bound microRNAs. Arterioscler Thromb Vasc Biol. 2013;33(6):1392–400.

    Article  CAS  PubMed  Google Scholar 

  57. Chen X, et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 2008;18(10):997–1006.

    Article  CAS  PubMed  Google Scholar 

  58. Levanen B, et al. Altered microRNA profiles in bronchoalveolar lavage fluid exosomes in asthmatic patients. J Allergy Clin Immunol. 2013;131(3):894–903.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Brown JN, et al. Protein and microRNA biomarkers from lavage, urine, and serum in military personnel evaluated for dyspnea. BMC Med Genomics. 2014;7:58.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Kosaka N, et al. Secretory mechanisms and intercellular transfer of microRNAs in living cells. J Biol Chem. 2010;285(23):17442–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Montecalvo A, et al. Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes. Blood. 2012;119(3):756–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hergenreider E, et al. Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs. Nat Cell Biol. 2012;14(3):249–56.

    Article  CAS  PubMed  Google Scholar 

  63. Feinberg EH, Hunter CP. Transport of dsRNA into cells by the transmembrane protein SID-1. Science. 2003;301(5639):1545–7.

    Article  CAS  PubMed  Google Scholar 

  64. Shih JD, Hunter CP. SID-1 is a dsRNA-selective dsRNA-gated channel. RNA. 2011;17(6):1057–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Duxbury MS, Ashley SW, Whang EE. RNA interference: a mammalian SID-1 homologue enhances siRNA uptake and gene silencing efficacy in human cells. Biochem Biophys Res Commun. 2005;331(2):459–63.

    Article  CAS  PubMed  Google Scholar 

  66. Fabbri M, et al. MicroRNAs bind to Toll-like receptors to induce prometastatic inflammatory response. Proc Natl Acad Sci USA. 2012;109(31):E2110–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lehmann SM, et al. An unconventional role for miRNA: let-7 activates Toll-like receptor 7 and causes neurodegeneration. Nat Neurosci. 2012;15(6):827–35.

    Article  CAS  PubMed  Google Scholar 

  68. Mestdagh P, et al. Evaluation of quantitative miRNA expression platforms in the microRNA quality control (miRQC) study. Nat Methods. 2014;11(8):809–15.

    Article  CAS  PubMed  Google Scholar 

  69. Young JA, et al. Regulation of vascular leak and recovery from ischemic injury by general and VE-cadherin-restricted miRNA antagonists of miR-27. Blood. 2013;122(16):2911–9.

    Article  CAS  PubMed  Google Scholar 

  70. microRNA.org—Targets and Expression. Available from: http://www.microrna.org/microrna/home.do.

  71. TargetScanHuman: Prediction of microRNA targets. Available from: http://www.targetscan.org/.

  72. Lewis BP, et al. Prediction of mammalian microRNA targets. Cell. 2003;115(7):787–98.

    Article  CAS  PubMed  Google Scholar 

  73. Wuchty S, et al. Complete suboptimal folding of RNA and the stability of secondary structures. Biopolymers. 1999;49(2):145–65.

    Article  CAS  PubMed  Google Scholar 

  74. Kiriakidou M, et al. A combined computational-experimental approach predicts human microRNA targets. Genes Dev. 2004;18(10):1165–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Doench JG, Sharp PA. Specificity of microRNA target selection in translational repression. Genes Dev. 2004;18(5):504–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. DIANA miRPath.

    Google Scholar 

  77. Ingenuity Pathway Analysis—microRNA Research.

    Google Scholar 

  78. Vaporidi K, et al. Pulmonary microRNA profiling in a mouse model of ventilator-induced lung injury. Am J Physiol Lung Cell Mol Physiol. 2012;303(3):L199–207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zeng Z, et al. Upregulation of miR-146a contributes to the suppression of inflammatory responses in LPS-induced acute lung injury. Exp Lung Res. 2013;39(7):275–82.

    Article  CAS  PubMed  Google Scholar 

  80. Vergadi E, et al. Akt2 deficiency protects from acute lung injury via alternative macrophage activation and miR-146a induction in mice. J Immunol. 2014;192(1):394–406.

    Article  CAS  PubMed  Google Scholar 

  81. Guo Z, et al. Antisense oligonucleotide treatment enhances the recovery of acute lung injury through IL-10-secreting M2-like macrophage-induced expansion of CD4+ regulatory T cells. J Immunol. 2013;190(8):4337–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Cai ZG, et al. MicroRNAs are dynamically regulated and play an important role in LPS-induced lung injury. Can J Physiol Pharmacol. 2012;90(1):37–43.

    Article  CAS  PubMed  Google Scholar 

  83. Fish JE, et al. miR-126 regulates angiogenic signaling and vascular integrity. Dev Cell. 2008;15(2):272–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Wang S, et al. The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev Cell. 2008;15(2):261–71.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Harris TA, et al. MicroRNA-126 regulates endothelial expression of vascular cell adhesion molecule 1. Proc Natl Acad Sci USA. 2008;105(5):1516–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Witzenrath M. Endothelial progenitor cells for acute respiratory distress syndrome treatment: support your local sheriff! Am J Respir Crit Care Med. 2014;189(12):1452–5.

    Article  CAS  PubMed  Google Scholar 

  87. Monsel A, et al. Therapeutic Effects of Human Mesenchymal Stem Cell-Derived Microvesicles in Severe Pneumonia in Mice. Am J Respir Crit Care Med. 2015;192:324–36.

    Google Scholar 

  88. Chen Y, et al. Nanoparticles modified with tumor-targeting scFv deliver siRNA and miRNA for cancer therapy. Mol Ther. 2010;18(9):1650–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Babar IA, et al. Nanoparticle-based therapy in an in vivo microRNA-155 (miR-155)-dependent mouse model of lymphoma. Proc Natl Acad Sci USA. 2012;109(26):E1695–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew J. Goodwin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Goodwin, A.J. (2017). MicroRNA Analysis in Acute Lung Injury. In: Schnapp, L., Feghali-Bostwick, C. (eds) Acute Lung Injury and Repair. Respiratory Medicine. Humana Press, Cham. https://doi.org/10.1007/978-3-319-46527-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46527-2_10

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-46525-8

  • Online ISBN: 978-3-319-46527-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics