Skip to main content

GroEL and the GroEL-GroES Complex

  • Chapter
  • First Online:
Macromolecular Protein Complexes

Part of the book series: Subcellular Biochemistry ((SCBI,volume 83))

Abstract

Chaperonin is categorized as a molecular chaperone and mediates the formation of the native conformation of proteins by first preventing folding during synthesis or membrane translocation and subsequently by mediating the step-wise ATP-dependent release that result in proper folding. In the GroEL-GroES complex, a single heptameric GroEL ring binds one GroES ring in the presence of ATP/ADP, in this vein, the double ring GroEL tetradecamer is present in two distinct types of GroEL-GroES complexes: asymmetric 1:1 “bullet”-shaped GroEL:GroES and symmetric 1:2 “football” (American football)-shaped GroEL:GroES2. There have been debates as to which complex is critical to the productive protein folding mediated by the GroEL-GroES complex, and how GroES coordinates with GroEL in the chaperonin reaction cycle in association with regulation by adenine nucleotides and through the interplay of substrate proteins. A lot of knowledge on chaperonins has been accumulating as if expanding as ripples spread around the GroEL-GroES from Escherichia coli. In this article, an overview is presented on GroEL and the GroEL-GroES complex, with emphasis on their morphological variations, and some potential applications to the fabrication of nanocomposites using GroEL as a nano-block. In parallel, a guideline is presented that supports the recognition that the E. coli and its GroEL-GroES complex do not always receive in standard literature because the biochemical features of chaperonins derived from others special, such as mammals, are not always the same as those confirmed using GroEL-GroES derived from E. coli.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anfinsen CB (1973) Principles that govern the folding of protein chains. Science 181:223–230

    Article  CAS  PubMed  Google Scholar 

  • Azem A, Kessel M, Goloubinoff P (1994) Characterization of a functional GroEL14(GroES7)2 chaperonin hetero-oligomer. Science 265:653–656

    Article  CAS  PubMed  Google Scholar 

  • Biswas S, Kinbara K, Oya N, Ishii N, Taguchi H, Aida T (2009) A tubular biocontainer: metal ion-induced 1D assembly of a molecularly engineered chaperonin. J Am Chem Soc 131:7556–7557

    Article  CAS  PubMed  Google Scholar 

  • Biswas S, Kinbara K, Niwa T, Taguchi H, Ishii N, Watanabe S, Miyata K, Kataoka K, Aida T (2013) Biomolecular robotics for chemomechanically driven guest delivery fuelled by intracellular ATP. Nat Chem 5:613–620

    Article  CAS  PubMed  Google Scholar 

  • Braig K, Otwinowski Z, Hegde R, Boisvert DC, Joachimiak A, Horwich AL, Sigler PB (1994) The crystal structure of the bacterial chaperonin GroEL at 2.8 Å. Nature 371:578–586

    Article  CAS  PubMed  Google Scholar 

  • Chandrasekhar GN, Tilly K, Woolford C, Hendrix R, Georgopoulos C (1986) Purification and properties of the groES morphogenetic protein of Escherichia coli. J Biol Chem 261:12414–12419

    CAS  PubMed  Google Scholar 

  • Chen DH, Song JL, Chuang DT, Chiu W, Ludtke SJ (2006) An expanded conformation of single-ring GroEL-GroES complex encapsulates an 86 kDa substrate. Structure 14:1711–1722

    Article  CAS  PubMed  Google Scholar 

  • Cheng M, Hartl Y, Horwich FU (1990) The mitochondrial chaperonin hsp60 is required for its own assembly. Nature 348:455–458

    Article  CAS  PubMed  Google Scholar 

  • Chouard T (2011) Breaking the protein rules. Nature 471:151–153

    Article  CAS  PubMed  Google Scholar 

  • Dobson CM (2003) Protein folding and misfolding. Nature 426:884–890

    Article  CAS  PubMed  Google Scholar 

  • Ellis RJ (1987) Proteins as molecular chaperones. Nature 328:378–379

    Article  CAS  PubMed  Google Scholar 

  • Ellis RJ (ed) (1996) The Chaperonins. Academic, San Diego

    Google Scholar 

  • Ellis RJ, Laskey RA, Lorimer GH (eds) (1993) Molecular chaperones. Chapman and Hall, London

    Google Scholar 

  • Engel A, Hayer-Hartl MK, Goldie KN, Pfeifer G, Hegerl R, Muller S, da Silva AC, Baumeister W, Hartl FU (1995) Functional significance of symmetrical versus asymmetrical GroEL-GroES chaperonin complexes. Science 269:832–836

    Article  CAS  PubMed  Google Scholar 

  • Fink AL, Goto Y (eds) (1998) Molecular chaperons in the life cycle of proteins. Structure, function, and mode of action. Marcell Dekker, Inc., New York

    Google Scholar 

  • Frydman J, Nimmesgern E, Erdjument-Bromage H, Wall JS, Tempst P, Hartl FU (1992) Function in protein folding of TRiC, a cytosolic ring complex containing TCP-1 and structurally related subunits. EMBO J 11(13):4767–4778

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fujiyoshi Y (1998) The structural study of membrane proteins by electron crystallography. Adv Biophys 35:25–80

    Article  CAS  PubMed  Google Scholar 

  • Glaeser RM (1971) Limitation to significant information in biological electron microscopy as a result of radiation damage. J Ultrastruct Res 36:466–482

    Article  CAS  PubMed  Google Scholar 

  • Glaeser RM (1985) Electron crystallography of biological macromolecules. Annu Rev Phys Chem 36:243–275

    Article  CAS  Google Scholar 

  • Grallert H, Buchner J (2001) A structural view of the GroE chaperone cycle. J Struct Biol 135(2):95–103

    Article  CAS  PubMed  Google Scholar 

  • Haldar S, Gupta AJ, Yan X, Miličić G, Hartl FU, Hayer-Hartl M (2015) Chaperonin-assisted protein folding: relative population of asymmetric and symmetric GroEL:GroES complexes. J Mol Biol 427(12):2244–2255

    Article  CAS  PubMed  Google Scholar 

  • Harris JR, Zahn R, Pluckthun A (1995) Electron microscopy of the GroEL-GroES filament. J Struct Biol 115:68–77

    Article  CAS  Google Scholar 

  • Hartl FU, Bracher A, Hayer-Hartl M (2011) Molecular chaperones in protein folding and proteostasis. Nature 475:324–332

    Article  CAS  PubMed  Google Scholar 

  • Hayer-Hartl MK, Martin J, Hartl FU (1995) Asymmetrical interaction of GroEL and GroES in the ATPase cycle of assisted protein folding. Science 269:836–841

    Article  CAS  PubMed  Google Scholar 

  • Hendrix RW (1979) Purification and properties of GroE, a host protein involved in bacteriophage assembly. J Mol Biol 129:375–392

    Article  CAS  PubMed  Google Scholar 

  • Hill JE, Penny SL, Crowell KG, Goh SH, Hemmingsen SM (2004) cpnDB: a chaperonin sequence database. Genome Res 14:1669–1675 http://www.cpndb.ca

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hohn T, Hohn B, Engel A, Wurtz M, Smith PR (1979) Isolation and characterization of the host protein groE involved in bacteriophage lambda assembly. J Mol Biol 129:359–373

    Article  CAS  PubMed  Google Scholar 

  • Horovitz A, Willison KR (2005) Allosteric regulation of chaperonins. Curr Opin Struct Biol 15:646–651

    Article  CAS  PubMed  Google Scholar 

  • Horowitz PM, Lorimer GH, Ybarra J (1999) GroES in the asymmetric GroEL14-GroES7 complex exchanges via an associative mechanism. Proc Natl Acad Sci U S A 96:2682–2686

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Horwich AL, Farr GW, Fenton WA (2006) GroEL-GroES-mediated protein folding. Chem Rev 106:1917–1930

    Article  CAS  PubMed  Google Scholar 

  • Ishii N (2013) Observation by transmission electron microscopy of organic nano-tubular architectures. In: Mendez-Vilas A (ed) Current microscopy contributions to advances in science and technology. Formatex Research Center, Badajoz, pp 1225–1233

    Google Scholar 

  • Ishii N (2014) Image analyses of two-dimensional crystalline arrays of membrane proteins and protein supramolecular complexes. In: Echon RM (ed) Advances in image analysis research. Nova Science Publishers Inc., New York, pp 189–216

    Google Scholar 

  • Ishii N, Sato T (2013) Anisotropic intersubunit and inter-ring interactions revealed in the native bullet-shaped chaperonin complex from Thermus thermophilus. Biochim Biophys Acta 1830:2907–2916

    Article  CAS  PubMed  Google Scholar 

  • Ishii N, Taguchi H, Yoshida M, Yoshimura H, Nagayama K (1991) Image analysis by electron microscopy of two-dimensional crystals developed on a mercury surface of chaperonin from Thermus thermophilus. J Biochem 110:905–908

    CAS  PubMed  Google Scholar 

  • Ishii N, Taguchi H, Sumi M, Yoshida M (1992) Structure of holo-chaperonin studied with electron microscopy: oligomeric cpn10 on top of two layers of cpn60 rings with two stripes each. FEBS Lett 299:169–174

    Article  CAS  PubMed  Google Scholar 

  • Ishii N, Taguchi H, Sasabe H, Yoshida M (1994) Folding intermediate binds to the bottom of bullet-shaped holo-chaperonin and is readily accessible to antibody. J Mol Biol 236:691–696

    Article  CAS  PubMed  Google Scholar 

  • Ishii N, Taguchi H, Sasabe H, Yoshida M (1995) Equatorial split of holo-chaperonin from Thermus thermophilus by ATP and K+. FEBS Lett 362(2):121–125

    Article  CAS  PubMed  Google Scholar 

  • Ishii D, Kinbara K, Ishida Y, Ishii N, Okochi M, Yohda M, Aida T (2003) Chaperonin-mediated stabilization and ATP-triggered release of semiconductor nanoparticles. Nature 423(6940):628–632

    Article  CAS  PubMed  Google Scholar 

  • Ishii N, Okuro K, Kinbara K, Aida T (2010) Image analysis of alpha/beta-tubulin rings in two-dimensional crystalline arrays of periodic mesoporous nanostructures. J Biochem 147(4):555–563

    Article  CAS  PubMed  Google Scholar 

  • Klunker D, Haas B, Hirtreiter A, Figueiredo L, Naylor DJ, Pfeifer G, Müller V, Deppenmeier U, Gottschalk G, Hartl FU, Hayer-Hartl M (2003) Coexistence of group I and group II chaperonins in the archaeon Methanosarcina mazei. J Biol Chem 278(35):33256–33267

    Article  CAS  PubMed  Google Scholar 

  • Koike-Takeshita A, Yoshida M, Taguchi H (2008) Revisiting the GroEL-GroES reaction cycle via the symmetric intermediate implied by novel aspects of the GroEL(D398A) mutant. J Biol Chem 283(35):23774–23781

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Koike-Takeshita A, Arakawa T, Taguchi H, Shimamura T (2014) Crystal structure of a symmetric football-shaped GroEL:GroES2-ATP14 complex determined at 3.8 Å reveals rearrangement between two GroEL rings. J Mol Biol 426(21):3634–3641

    Article  CAS  PubMed  Google Scholar 

  • Kubota H, Hynes G, Carne A, Ashworth A, Willison K (1994) Identification of six Tcp-1-related genes encoding divergent subunits of the TCP-1-containing chaperonin. Curr Biol 4(2):89–99

    Article  CAS  PubMed  Google Scholar 

  • Lissin NM, Venyaminov SY, Girshovich AS (1990) (Mg-ATP)-dependent self-assembly of molecular chaperone GroEL. Nature 348:339–342

    Article  CAS  PubMed  Google Scholar 

  • Lopez T, Dalton K, Frydman J (2015) The mechanism and function of Group II chaperonins. J Mol Biol 427:2919–2930

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lorimer GH, Todd MJ (1996) GroE structures galore. Nat Struct Biol 3:116–121

    Article  CAS  PubMed  Google Scholar 

  • Mascagni P, Tonolo M, Ball H, Lim M, Ellis RJ, Coates A (1991) Chemical synthesis of 10 kDa chaperonin. Biological activity suggests chaperonins do not require other molecular chaperones. FEBS Lett 286:201–203

    Article  CAS  PubMed  Google Scholar 

  • Motohashi K, Taguchi H, Ishii N, Yoshida M (1994) Isolation of the stable trimeric DnaK/DnaJ complex from Thermus thermophiles. J Biol Chem 269:27074–27079

    CAS  PubMed  Google Scholar 

  • Motojima F, Yoshida M (2010) Polypeptide in the chaperonin cage partly protrudes out and then folds inside or escapes outside. EMBO J 29(23):4008–4019

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Muramatsu S, Kinbara K, Taguchi H, Ishii N, Aida T (2006) Semibiological molecular machine with an implemented “AND” logic gate for regulation of protein folding. J Am Chem Soc 128:3764–3769

    Article  CAS  PubMed  Google Scholar 

  • Nielsen KL, Cowan NJ (1998) A single ring is sufficient for productive chaperonin-mediated folding in vivo. Mol Cell 2(1):93–99

    Article  CAS  PubMed  Google Scholar 

  • Niwa T, Ying BW, Saito K, Jin W, Takada S, Ueda T, Taguchi H (2009) Bimodal protein solubility distribution revealed by an aggregation analysis of the entire ensemble of Escherichia coli proteins. Proc Natl Acad Sci U S A 106(11):4201–4206

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Okamoto T, Ishida R, Yamamoto H, Tanabe-Ishida M, Haga A, Takahashi H, Takahashi K, Goto D, Grave E, Itoh H (2015) Functional structure and physiological functions of mammalian wild-type HSP60. Arch Biochem Biophys 586:10–19

    Article  CAS  PubMed  Google Scholar 

  • Parnas A, Nisemblat S, Weiss C, Levy-Rimler G, Pri-Or A, Zor T, Lund PA, Bross P, Azem A (2012) Identification of elements that dictate the specificity of mitochondrial Hsp60 for its co-chaperonin. PLoS One 7:e50318

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Richter K, Haslbeck M, Buchner J (2010) The heat shock response: life on the verge of death. Mol Cell 40:253–266

    Article  CAS  PubMed  Google Scholar 

  • Roseman AM, Chen S, White H, Braig K, Saibil HR (1996) The chaperonin ATPase cycle: mechanism of allosteric switching and movements of substrate-binding domains in GroEL. Cell 87:241–251

    Google Scholar 

  • Sameshima T, Iizuka R, Ueno T, Funatsu T (2010) Denatured proteins facilitate the formation of the football-shaped GroEL- (GroES)2 complex. Biochem J 427:247–254

    Article  CAS  PubMed  Google Scholar 

  • Saibil HR, Fenton WA, Clare DK, Horwich AL (2013) Structure and allostery of the chaperonin GroEL. J Mol Biol 425:1476–1487

    Article  CAS  PubMed  Google Scholar 

  • Sameshima T, Ueno T, Iizuka R, Ishii N, Terada N, Okabe K, Funatsu T (2008) Football- and bullet-shaped GroEL-GroES complexes coexist during the reaction cycle. J Biol Chem 283(35):23765–23773

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schmidt M, Rutkat K, Rachel R, Pfeifer G, Jaenicke R, Viitanen P, Lorimer G, Buchner J (1994) Symmetric complexes of GroE chaperonins as part of the functional cycle. Science 265:656–689

    Article  CAS  PubMed  Google Scholar 

  • Sim S, Miyajima D, Niwa T, Taguchi H, Aida T (2015) Tailoring micrometer-long high-integrity 1D array of superparamagnetic nanoparticles in a nanotubular protein jacket and its lateral magnetic assembling behavior. J Am Chem Soc 137:4658–4661

    Article  CAS  PubMed  Google Scholar 

  • Sumi M, Taguchi H, Yokoyama K, Ishii N, Yoshida M (1992) Identification and characterization of a chaperonin from Paracoccus denitrificans. Life Sci Adv 11:179–182

    CAS  Google Scholar 

  • Taguchi H (2015) Reaction cycle of chaperonin GroEL via symmetric “football” intermediate. J Mol Biol 427:2912–2918

    Article  CAS  PubMed  Google Scholar 

  • Taguchi H, Konishi J, Ishii N, Yoshida M (1991) A chaperonin from a thermophilic bacterium, Thermus thermophilus, that controls refolding of several thermophilic enzymes. J Biol Chem 226:22411–22418

    Google Scholar 

  • Todd MJ, Walke S, Lorimer G, Truscott K, Scopes RK (1995) The single-ring Thermoanaerobacter brockii chaperonin 60 (Tbr-EL7) dimerizes to Tbr-EL14·Tbr-ES7 under protein folding conditions. Biochemistry 34:14932–14941

    Article  CAS  PubMed  Google Scholar 

  • Trent JD, Nimmesgern E, Wall JS, Hartl FU, Horwich AL (1991) A molecular chaperone from a thermophilic archaebacterium is related to the eukaryotic protein t-complex polypeptide-1. Nature 354:490–493

    Article  CAS  PubMed  Google Scholar 

  • Viitanen PV, Lorimer GH, Seetharam R, Gupta RS, Oppenheim J, Thomas JO, Cowan NJ (1992) Mammalian mitochondrial chaperonin 60 functions as a single toroidal ring. J Biol Chem 267:695–698

    CAS  PubMed  Google Scholar 

  • Vilasi S, Carrotta R, Mangione MR, Campanella C, Librizzi F, Randazzo L, Martorana V, Marino Gammazza A, Ortore MG, Vilasi A, Pocsfalvi G, Burgio G, Corona D, Palumbo Piccionello A, Zummo G, Bulone D, Conway de Macario E, Macario AJL, San Biagio PL, Cappello F (2014) Human Hsp60 with its mitochondrial import signal occurs in solution as heptamers and tetradecamers remarkably stable over a wide range of concentrations. PLoS One 9:e97657

    Article  PubMed Central  PubMed  Google Scholar 

  • Walter S (2002) Structure and function of the GroE chaperone. Cell Mol Life Sci 59:1589–1597

    Article  CAS  PubMed  Google Scholar 

  • Xu Z, Horwich AL, Sigler PB (1997) The crystal structure of the asymmetric GroEL-GroES-(ADP)7 chaperonin complex. Nature 388:741–750

    Article  CAS  PubMed  Google Scholar 

  • Yamakoshi M, Taguchi H, Yoshida M, Ishii N (1998) A chaperonin from a thermophilic bacterium, Thermus thermophiles. In: Fink AL, Goto Y (eds) Molecular chaperons in the life cycle of proteins. Structure, function, and mode of action. Marcell Dekker, Inc, New York, pp 301–330

    Google Scholar 

  • Zahn R, Harris JR, Pfeifer G, Plückthun A, Baumeister W (1993) Two-dimensional crystals of the molecular chaperone GroEL reveal structural plasticity. J Mol Biol 229:579–584

    Article  CAS  PubMed  Google Scholar 

  • Zanin-Zhorov A, Cohen IR (2007) HSP60: a pleiotropic immune signal. In: Asea AAA, De Maio A (eds) Heat shock proteins: potent mediators of inflammation and immunity. Springer, Dordrecht, pp 265–272

    Chapter  Google Scholar 

Download references

Acknowledgements

The author would like to express thanks to the book editor, Professor Dr. Robin Harris for giving him this precious opportunity to review the progress thus far made on the Group I chaperonins , GroEL and the GroEL-GroES complexes research and to introduce some interdisciplinary applications using GroEL as a building nano-block, which forms the basis of a collaboration with Professor Dr. Takuzo Aida. The author’s appreciation is directed to him and his group members. He also appreciates Dr. Kenneth S. Kim for critical reading of the draft stage of the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noriyuki Ishii .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ishii, N. (2017). GroEL and the GroEL-GroES Complex. In: Harris, J., Marles-Wright, J. (eds) Macromolecular Protein Complexes. Subcellular Biochemistry, vol 83. Springer, Cham. https://doi.org/10.1007/978-3-319-46503-6_17

Download citation

Publish with us

Policies and ethics