Skip to main content

Protein Complexes in the Nucleus: The Control of Chromosome Segregation

  • Chapter
  • First Online:
Macromolecular Protein Complexes

Part of the book series: Subcellular Biochemistry ((SCBI,volume 83))

Abstract

Mistakes in the process of cell division can lead to the loss, gain or rearrangement of chromosomes. Significant chromosomal abnormalities are usually lethal to the cells and cause spontaneous miscarriages. However, in some cases, defects in the spindle assembly checkpoint lead to severe diseases, such as cancer and birth and development defects, including Down’s syndrome. The timely and accurate control of chromosome segregation in mitosis relies on the spindle assembly checkpoint (SAC), an evolutionary conserved, self-regulated signalling system present in higher organisms. The spindle assembly checkpoint is orchestrated by dynamic interactions between spindle microtubules and the kinetochore , a multiprotein complex that constitutes the site for attachment of chromosomes to microtubule polymers to pull sister chromatids apart during cell division. This chapter discusses the current molecular understanding of the essential, highly dynamic molecular interactions underpinning spindle assembly checkpoint signalling and how the complex choreography of interactions can be coordinated in time and space to finely regulate the process. The potential of targeting this signalling pathway to interfere with the abnormal segregation of chromosomes, which occurs in diverse malignancies and the new opportunities that recent technological developments are opening up for a deeper understanding of the spindle assembly checkpoint are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

APC/C:

Anaphase Promoting Complex/Cyclosome

ATP:

Adenosine triphosphate

Bub1:

Budding uninhibited by benzimidazoles 1

BubR1:

Budding uninhibited by benzimidazoles related 1

CCAN:

Centromeric nucleosome-associated network

Cdc20:

Cell division cycle protein 20

CENP-E:

Centromere-associated protein E

CENP-F:

Centromere-associated protein F

CIN:

Chromosomal instability

CLASP-1:

CLIP-associating protein 1

CLASP-2:

CLIP-associating protein 2

FRET:

Förster resonance energy transfer

KMN:

KNL1/Mis12/Ndc80 network

KNL1:

Kinetochore-null phenotype 1

Mad1:

Mitotic arrest deficient 1

Mad2:

Mitotic arrest deficient 2

MIND complex:

Mis12 complex

Mps1:

Monopolar spindle 1

NMR:

Nuclear magnetic resonance

ROD:

Rough deal

RZZ-complex:

Rod, Zwilch and ZW10 complex

SAC:

Spindle assembly checkpoint

SAXS:

Small angle x-ray scattering

Spc105:

Spindle pole body 105

Spc105-related:

Spc105R

TEM:

cryo-transmission electron microscopy

XFEL:

Ultrafast X-ray free-electron laser

ZW10:

Zeste-white 10

References

  • Abrieu A, Magnaghi-Jaulin L, Kahana JA, Peter M, Castro A, Vigneron S, Lorca T, Cleveland DW, LabbĂ© JC (2001) Mps1 is a kinetochore-associated kinase essential for the vertebrate mitotic checkpoint. Cell 106:83–93

    Article  CAS  PubMed  Google Scholar 

  • Agarwal S, Varma D (2014) How the SAC gets the axe: Integrating kinetochore microtubule attachments with spindle assembly checkpoint signaling. BioArchitecture 5:1–12

    Article  PubMed  Google Scholar 

  • Altenfeld A, Wohlgemuth S, Wehenkel A, Vetter IR, Musacchio A (2015) Complex assembly, crystallization and preliminary X-ray crystallographic analysis of the human Rod-Zwilch-ZW10 (RZZ) complex. Acta Crystallogr F Struct Biol Commun 71:438–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alushin GM, Ramey VH, Pasqualato S, Ball DA, Grigorieff N, Musacchio A, Nogales E (2010) The Ndc80 kinetochore complex forms oligomeric arrays along microtubules. Nature 467:805–810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aravamudhan P, Goldfarb AA, Joglekar AP (2015) The kinetochore encodes a mechanical switch to disrupt spindle assembly checkpoint signalling. Nat Cell Biol 17:868–879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Babu MM, Kriwacki RW, Pappu RV (2012) Structural biology. Versatility from protein disorder Science 337:1460–1461

    CAS  PubMed  Google Scholar 

  • Barends TR, Foucar L, Ardevol A, Nass K, Aquila A, Botha S, Doak RB, Falahati K, Hartmann E, Hilpert M, Heinz M, Hoffmann MC, Köfinger J, Koglin JE, Kovacsova G, Liang M, Milathianaki D, Lemke HT, Reinstein J, Roome CM, Shoeman RL, Williams GJ, Burghardt I, Hummer G, Boutet S, Schlichting I (2015) Direct observation of ultrafast collective motions in CO myoglobin upon ligand dissociation. Science 350:445–450

    Article  CAS  PubMed  Google Scholar 

  • Barnhart MC, Kuich PH, Stellfox ME, Ward JA, Bassett EA, Black BE, Foltz DR (2011) HJURP is a CENP-A chromatin assembly factor sufficient to form a functional de novo kinetochore. J Cell Biol 194:229–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bavetsias V, Linardopoulos S (2015) Aurora Kinase Inhibitors: Current Status and Outlook. Front Oncol 5:278

    Article  PubMed  PubMed Central  Google Scholar 

  • Biggins S (2013) The composition, functions, and regulation of the budding yeast kinetochore. Genetics 194:817–846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blundell TL, Bolanos-Garcia VM, Chirgadze DY, Harmer NJ, Lo T, Pellegrini L, Sibanda BL (2002) Asymmetry in the multiprotein systems of molecular biology. Struct Chem 13:405–412

    Article  CAS  Google Scholar 

  • Bolanos-Garcia VM, Blundell TL (2011) BUB1 and BUBR1: multifaceted kinases of the cell cycle. Trends Biochem Sci 36:141–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolanos-Garcia VM, Lischetti T, Matak-Vinkovic D, Cota E, Simpson PJ, Chirgadze DY, Spring DR, Robinson CV, Nilsson J, Blundell TL (2011) Structure of a Blinkin-BUBR1 complex reveals an interaction crucial for kinetochore-mitotic checkpoint regulation via an unanticipated binding Site. Structure 19:1691–1700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolanos-Garcia VM, Wu Q, Ochi T, Chirgadze DY, Sibanda BL, Blundell TL (2012) Spatial and temporal organisation of multiprotein assemblies: achieving sensitive control in information-rich cell regulatory systems. Philos Transact A Math Phys Eng Sci 370:3023–3039

    Article  CAS  Google Scholar 

  • Boyarchuk Y, Salic A, Dasso M, Arnaoutov A (2007) Bub1 is essential for assembly of the functional inner centromere. J Cell Biol 176:919–928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caldas GV, DeLuca JG (2014) KNL1: bringing order to the kinetochore. Chromosoma 123:169–181

    Article  CAS  PubMed  Google Scholar 

  • Carroni M, Saibil HR (2016) Cryo electron microscopy to determine the structure of macromolecular complexes. Methods 95:78–85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carter SL, Eklund AC, Kohane IS, Harris LN. Szallasi Z (2006) A signature of chromosomal instability inferred from gene expression profiles predicts clinical outcome in multiple human cancers. Nat Genet 38:1043–1048.

    Google Scholar 

  • Chao W, Kulkarni K, Zhang Z, Kong E, Barford D (2012) Structure of the mitotic checkpoint complex. Nature 484:208–213

    Article  CAS  PubMed  Google Scholar 

  • Chaudhuri BN (2015) Emerging applications of small angle solution scattering in structural biology. Protein Sci 24:267–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheeseman IM, Niessen S, Anderson S, Hyndman F, Yates JR 3rd, Oegema K, Desai A (2004) A conserved protein network controls assembly of the outer kinetochore and its ability to sustain tension. Genes Dev 18:2255–2268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheeseman IM, Chappie JS, Wilson-Kubalek EM, Desai A (2006) The conserved KMN network constitutes the core microtubule-binding site of the kinetochore. Cell 127:983–997

    Article  CAS  PubMed  Google Scholar 

  • Chmielewska AE, Tang NH, Toda T (2016) The hairpin region of Ndc80 is important for the kinetochore recruitment of Mph1/MPS1 in fission yeast. Cell Cycle 15:740–747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ciferri C, De Luca J, Monzani S, Ferrari KJ, Ristic D, Wyman C, Stark H, Kilmartin J, Salmon ED, Musacchio A (2005) Architecture of the human ndc80-hec1 complex, a critical constituent of the outer kinetochore. J Biol Chem 280:29088–29095

    Article  CAS  PubMed  Google Scholar 

  • Ciferri C, Pasqualato S, Screpanti E, Varetti G, Santaguida S, Dos Reis G, Maiolica A, Polka J, De Luca JG, De Wulf P, Salek M, Rappsilber J, Moores CA, Salmon ED, Musacchio A (2008) Implications for kinetochore-microtubule attachment from the structure of an engineered Ndc80 complex. Cell 133:427–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cino EA, Karttunen M, Choy W-Y (2012) Effects of Molecular Crowding on the Dynamics of Intrinsically Disordered Proteins. PLoS One 7:e49876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Civril F, Wehenkel A, Giorgi FM, Santaguida S, Di Fonzo A, Grigorean G, Ciccarelli FD, Musacchio A (2010) Structural analysis of the RZZ complex reveals common ancestry with multisubunit vesicle tethering machinery. Structure 18:616–626

    Article  CAS  PubMed  Google Scholar 

  • Cojoc G, Roscioli E, Zhang L, GarcĂ­a-Ulloa A, Shah JV, Berns MW, Pavin N, Cimini D, Tolić IM, Gregan J (2016) Laser microsurgery reveals conserved viscoelastic behavior of the kinetochore. J Cell Biol 212:767–776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daniel J, Coulter J, Woo JH, Wilsbach K, Gabrielson E (2011) High levels of the Mps1 checkpoint protein are protective of aneuploidy in breast cancer cells. Proc Natl Acad Sci U S A 108:5384–5389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeLano WL (2002) The PyMOL molecular graphics system. DeLano Scientific, San Carlos

    Google Scholar 

  • DeLuca JG, Musacchio A (2012) Structural organization of the kinetochore-microtubule interface. Curr Opin Cell Biol 24:48–56

    Article  CAS  PubMed  Google Scholar 

  • Desai A, Rybina S, MĂĽller-Reichert T, Shevchenko A, Shevchenko A, Hyman A, Oegema K (2003) KNL-1 directs assembly of the microtubule-binding interface of the kinetochore in C. elegans. Genes Dev 17:2421–2435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dosztányi Z, Chen J, Dunker AK, Simon I, Tompa P (2006) Disorder and sequence repeats in hub proteins and their implications for network evolution. J Proteome Res 5:2985–2995

    Article  PubMed  CAS  Google Scholar 

  • Dunker AK, Garner E, Guilliot S, Romero P, Albrecht K, Hart J, Obradovic Z, Kissinger C, Villafranca JE (1998) Protein disorder and the evolution of molecular recognition: theory, predictions and observations. Pac Symp Biocomput:473–484

    Google Scholar 

  • Dunker AK, Cortese MS, Romero P, Iakoucheva LM, Uversky VN (2005) Flexible nets: the roles of intrinsic disorder in protein interaction networks. FEBS J 272:5129–5148

    Article  CAS  PubMed  Google Scholar 

  • Dunker AK, Oldfield CJ, Meng J, Romero P, Yang JY, Chen JW, Vacic V, Obradovic Z, Uversky VN (2008) The unfoldomics decade: an update on intrinsically disordered proteins. BMC Genomics 9:S1

    Article  Google Scholar 

  • Dunsch AK, Linnane E, Barr FA, Gruneberg U (2011) The astrin-kinastrin/SKAP complex localizes to microtubule plus ends and facilitates chromosome alignment. J Cell Biol 192:959–968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Efimov A, Kharitonov A, Efimova N, Loncarek J, Miller PM, Andreyeva N, Gleeson P, Galjart N, Maia AR, McLeod IX, Yates JR 3rd, Maiato H, Khodjakov A, Akhmanova A, Kaverina I (2007) Asymmetric CLASP-dependent nucleation of noncentrosomal microtubules at the trans-Golgi network. Dev Cell 12:917–930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eginton C, Cressman WJ, Bachas S, Wade H, Beckett D (2015) Allosteric Coupling via Distant Disorder-to-Order Transitions. J Mol Biol 427:1695–1704

    Article  CAS  PubMed  Google Scholar 

  • Eisch V, Lu X, Gabriel D, Djaali K (2016) Progerin impairs chromosome maintenance by depleting CENP-F from metaphase kinetochores in Hutchinson-Gilford progeria fibroblasts. Oncotarget Mar 22. 7(17):24700–24718 doi: 10.18632/oncotarget.8267.

  • Elowe S (2011) Bub1 and BubR1: at the Interface between Chromosome Attachment and the Spindle Checkpoint. Mol Cell Biol 31:3085–3093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fachinetti D, Folco HD, Nechemia-Arbely Y, Valente LP, Nguyen K, Wong AJ, Zhu Q, Holland AJ, Desai A, Jansen LE, Cleveland DW (2013) A two-step mechanism for epigenetic specification of centromere identity and function. Nat Cell Biol 15:1056–1066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang L, Seki A, Fang G (2009) SKAP associates with kinetochores and promotes the metaphase-to-anaphase transition. Cell Cycle 8:2819–2827

    Article  CAS  PubMed  Google Scholar 

  • Foltz DR, Jansen LE, Black BE, Bailey AO, Yates JR 3rd, Cleveland DW (2006) The human CENP-A centromeric nucleosome-associated complex. Nat Cell Biol 8:458–469

    Article  CAS  PubMed  Google Scholar 

  • Fu Y, Guo Y, Wang Y, Luo J, Pu X, Li M, Zhang Z (2015) Exploring the relationship between hub proteins and drug targets based on GO and intrinsic disorder. Comput Biol Chem 56:41–48

    Article  CAS  PubMed  Google Scholar 

  • Fujimitsu K, Grimaldi M, Yamano H (2016) Cyclin-dependent kinase 1-dependent activation of APC/C ubiquitin ligase. Science 352:1121–1124

    Article  CAS  PubMed  Google Scholar 

  • Fuller AA, Du D, Liu F, Davoren JE, Bhabha G, Kroon G, Case DA, Dyson HJ, Powers ET, Wipf P, Gruebele M, Kelly JW (2009) Evaluating beta-turn mimics as beta-sheet folding nucleators. Proc Natl Acad Sci U S A 106:11067–11072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Funabiki H, Wynne DJ (2013) Making an effective switch at the kinetochore by phosphorylation and dephosphorylation. Chromosoma 122:135–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gardner MK, Odde DJ, Bloom K (2008) Kinesin-8 molecular motors: putting the brakes on chromosome oscillations. Trends Cell Biol 18:307–310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gascoigne KE, Takeuchi K, Suzuki A, Hori T, Fukagawa T, Cheeseman IM (2011) Induced ectopic kinetochore assembly bypasses the requirement for CENP-A nucleosomes. Cell 145:410–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • George AA, Walworth NC (2016) Microtubule dynamics decoded by the epigenetic state of centromeric chromatin. Curr Genet Mar 14. 62(4):691–695 PMID: 26976145.

  • Ghongane P, Kapanidou M, Asghar A, Elowe S, Bolanos-Garcia VM (2014) The dynamic protein Knl1- a kinetochore rendezvous. J Cell Sci 127:3415–3423

    Article  CAS  PubMed  Google Scholar 

  • Ginn HM, Messerschmidt M, Ji X, Zhang H, Axford D, Gildea RJ, Winter G, Brewster AS, Hattne J, Wagner A, Grimes JM, Evans G, Sauter NK, Sutton G, Stuart DI (2015) Structure of CPV17 polyhedrin determined by the improved analysis of serial femtosecond crystallographic data. Nat Commun 6:6435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glaeser RM (2016) How good can cryo-EM become? Nat Methods 13:28–32

    Article  CAS  PubMed  Google Scholar 

  • Godek KM, Kabeche L, Compton DA (2015) Regulation of kinetochore-microtubule attachments through homeostatic control during mitosis. Nat Rev Mol Cell Biol 16:57–64

    Article  CAS  PubMed  Google Scholar 

  • Gruber J, Harborth J, Schnabel J, Weber K, Hatzfeld M (2002) The mitotic-spindle-associated protein astrin is essential for progression through mitosis. J Cell Sci 115:4053–4059

    Article  CAS  PubMed  Google Scholar 

  • Gsponer J, Babu MM (2009) The rules of disorder or why disorder rules. Prog Biophys Mol Biol 99:94–103

    Article  CAS  PubMed  Google Scholar 

  • Haynes C, Oldfield CJ, Ji F, Klitgord N, Cusick ME, Radivojac P, Uversky VN, Vidal M, Iakoucheva LM (2006) Intrinsic disorder is a common feature of hub proteins from four eukaryotic interactomes. PLoS Comput Biol 2:e100

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hellwig D, MĂĽnch S, Orthaus S, Hoischen C, Hemmerich P, Diekmann S (2008) Live-cell imaging reveals sustained centromere binding of CENP-T via CENP-A and CENP-B. J Biophotonics 1:245–254

    Article  CAS  PubMed  Google Scholar 

  • Herman JA, Toledo CM, Olson JM, DeLuca JG, Paddison PJ (2015) Molecular pathways: regulation and targeting of kinetochore-microtubule attachment in cancer. Clin Cancer Res 21:233–239

    Article  CAS  PubMed  Google Scholar 

  • Hiruma Y, Sacristan C, Pachis ST, Adamopoulos A, Kuijt T, Ubbink M, von Castelmur E, Perrakis A, Kops GJ (2015) Competition between MPS1 and microtubules at kinetochores regulates spindle checkpoint signaling. Science 348:1264–1267

    Article  CAS  PubMed  Google Scholar 

  • Hood EA, Kettenbach AN, Gerber SA, Compton DA (2012) Plk1 regulates the kinesin-13 protein Kif2b to promote faithful chromosome segregation. Mol Biol Cell 23:2264–2274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang Y, Yao Y, Xu HZ, Wang ZG, Lu L, Dai W (2009) Defects in chromosome congression and mitotic progression in KIF18A-deficient cells are partly mediated through impaired functions of CENP-E. Cell Cycle 8:2643–2649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang Y, Wang W, Yao P, Wang X, Liu X, Zhuang X, Yan F, Zhou J, Du J, Ward T, Zou H, Zhang J, Fang G, Ding X, Dou Z, Yao X (2012) CENP-E kinesin interacts with SKAP protein to orchestrate accurate chromosome segregation in mitosis. J Biol Chem 287:1500–1509

    Article  CAS  PubMed  Google Scholar 

  • Janssen A, Kops GJ, Medema RH (2009) Elevating the frequency of chromosome mis-segregation as a strategy to kill tumor cells. Proc Natl Acad Sci U S A 106:19108–19113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ji Z, Gao H, Yu H (2015) Kinetochore attachment sensed by competitive Mps1 and microtubule binding to Ndc80C. Science 48:1260–1264

    Article  CAS  Google Scholar 

  • Jiang H, He X, Wang S, Jia J, Wan Y, Wang Y, Zeng R, Yates J 3rd, Zhu X, Zheng Y (2014) A Microtubule-Associated Zinc Finger Protein, BuGZ, Regulates Mitotic Chromosome Alignment by Ensuring Bub3 Stability and Kinetochore Targeting. Dev Cell 28:268–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang H, Wang S, Huang Y, He X, Cui H, Zhu X, Zheng Y (2015) Phase transition of spindle-associated protein regulate spindle apparatus assembly. Cell 163:108–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joglekar AP, DeLuca JG (2009) Chromosome segregation: Ndc80 can carry the load. Curr Biol 19:R404–R407

    Article  CAS  PubMed  Google Scholar 

  • Kapanidou M, Bolanos-Garcia VM (2014) Spindle Assembly Checkpoint (SAC): More New Targets for Anti-Cancer Drug Therapies. Adv Cancer Drug Targ 2:54–79

    Google Scholar 

  • Karess R (2005) Rod-ZW10-ZWILCH: a key player in the spindle checkpoint. Trends Cell Biol 15:386–392

    Article  CAS  PubMed  Google Scholar 

  • Karess RE, Glover DM (1989) Rough deal: a gene required for proper mitotic segregation in Drosophila. J Cell Biol 109:2951–2961

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Yu H (2015) Multiple assembly mechanisms anchor the KMN spindle checkpoint platform at human mitotic kinetochores. J Cell Biol 208:181–196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim PM, Lu LJ, Xia Y, Gerstein MB (2006) Relating three-dimensional structures to protein networks provides evolutionary insights. Science 314:1938–1941

    Article  CAS  PubMed  Google Scholar 

  • Kiyomitsu T, Obuse C, Yanagida M (2007) Human Blinkin/AF15q14 is required for chromosome alignment and the mitotic checkpoint through direct interaction with Bub1 and BubR1. Dev Cell 13:663–676

    Article  CAS  PubMed  Google Scholar 

  • Kops GJ, Kim Y, Weaver BA, Mao Y, McLeod I, Yates JR 3rd, Tagaya M, Cleveland DW (2005a) ZW10 links mitotic checkpoint signaling to the structural kinetochore. J Cell Biol 169:49–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kops GJ, Weaver BA, Cleveland DW (2005b) On the road to cancer: aneuploidy and the mitotic checkpoint. Nat Rev Cancer 5:773–785

    Article  CAS  PubMed  Google Scholar 

  • Krenn V, Musacchio A (2015) The Aurora B Kinase in Chromosome Bi-Orientation and Spindle Checkpoint Signaling. Front Oncol 5:225

    Article  PubMed  PubMed Central  Google Scholar 

  • Krenn V, Wehenkel A, Li X, Santaguida S, Musacchio A (2012) Structural analysis reveals features of the spindle checkpoint kinase Bub1-kinetochore subunit Knl1 interaction. J Cell Biol 196:451–467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kudalkar EM, Scarborough EA, Umbreit NT, Zelter A, Gestaut DR, Riffle M, Johnson RS, MacCoss MJ, Asbury CL, Davis TN (2015) Regulation of outer kinetochore Ndc80 complex-based microtubule attachments by the central kinetochore Mis12/MIND complex. Proc Natl Acad Sci U S A 112:E5583–E5589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwiatkowski N, Jelluma N, Filippakopoulos P, Soundararajan M, Manak MS, Kwon M, Choi HG, Sim T, Deveraux QL, Rottmann S, Pellman D, Shah JV, Kops GJ, Knapp S, Gray NS (2010) Small-molecule kinase inhibitors provide insight into Mps1 cell cycle function. Nat Chem Biol 6:359–368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lara-Gonzalez P, Westhorpe F, Taylor S (2012) The Spindle Assembly Checkpoint. Curr Biol 22:966–980

    Article  CAS  Google Scholar 

  • Leduc C, Padberg-Gehle K, Varga V, Helbing D, Diez S, Howard J (2012) Molecular crowding creates traffic jams of kinesin motors on microtubules. Proc Natl Acad Sci U S A 109:6100–6105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu D, Ding X, Du J, Cai X, Huang Y, Ward T, Shaw A, Yang Y, Hu R, Jin C, Yao X (2007) Human NUF2 interacts with centromere-associated protein E and is essential for a stable spindle microtubule-kinetochore attachment. J Biol Chem 282:21415–21424

    Article  CAS  PubMed  Google Scholar 

  • Liu D, Vleugel M, Backer CB, Hori T, Fukagawa T, Cheeseman IM, Lampson LA (2010) Regulated targeting of protein phosphatase 1 to the outer kinetochore by KNL1 opposes Aurora B kinase. J Cell Biol 188:809–920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Petrovic A, Rombaut P, Mosalaganti S, Keller J, Raunser S, Herzog F, Musacchio A (2016) Insights from the reconstitution of the divergent outer kinetochore of Drosophila melanogaster. Open Biol 6(2) pii: 150236.

    Google Scholar 

  • London N, Ceto S, Ranish JA, Biggins S (2012) Phosphoregulation of Spc105 by Mps1 and PP1 regulates Bub1 localization to kinetochores. Curr Biol 22:900–906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Louder RK, He Y, LĂłpez-Blanco JR, Fang J, ChacĂłn P, Nogales E (2016) Structure of promoter-bound TFIID and model of human pre-initiation complex assembly. Nature 531:604–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maiato H, Fairley EA, Rieder CL, Swedlow JR, Sunkel CE, Earnshaw WC (2003) Human CLASP1 is an outer kinetochore component that regulates spindle microtubule dynamics. Cell 113:891–904

    Article  CAS  PubMed  Google Scholar 

  • Manic G, Corradi F, Sistigu A, Siteni S, Vitale I (2017) Molecular regulation of the spindle assembly checkpoint by kinases and phosphatases. Int Rev Cell Mol Biol 328:105–161

    Article  CAS  PubMed  Google Scholar 

  • Manning AL, Ganem NJ, Bakhoum SF, Wagenbach M, Wordeman L, Compton DA (2007) The kinesin-13 proteins Kif2a, Kif2b, and Kif2c/MCAK have distinct roles during mitosis in human cells. Mol Biol Cell 18:2970–2979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mayr MI, HĂĽmmer S, Bormann J, GrĂĽner T, Adio S, Woehlke G, Mayer TU (2007) The human kinesin Kif18A is a motile microtubule depolymerase essential for chromosome congression. Curr Biol 17:488–498

    Article  CAS  PubMed  Google Scholar 

  • Mendiburo MJ, Padeken J, Fulop S, Schepers A, Heun P (2011) Drosophila CENH3 is sufficient for centromere formation. Science 334:686–690

    Article  CAS  PubMed  Google Scholar 

  • Mimori-Kiyosue Y, Grigoriev I, Lansbergen G, Sasaki H, Matsui C, Severin F, Galjart N, Grosveld F, Vorobjev I, Tsukita S, Akhmanova A (2005) CLASP1 and CLASP2 bind to EB1 and regulate microtubule plus-end dynamics at the cell cortex. J Cell Biol 168:141–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mirzaa GM, Vitre B, Carpenter G, Abramowicz I, Gleeson JG, Paciorkowski AR, Cleveland DW, Dobyns WB, O’Driscoll M (2014) Mutations in CENPE define a novel kinetochore-centromeric mechanism for microcephalic primordial dwarfism. Hum Genet 133:1023–1039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MourĂŁo MA, Hakim JB, Schnell S (2014) Connecting the dots: the effects of macromolecular crowding on cell physiology. Biophys J 107:2761–2766

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Musacchio A (2011) Spindle assembly checkpoint: the third decade. Philos Trans R Soc Lond Ser B Biol Sci 366:3595–3604

    Article  CAS  Google Scholar 

  • Nekrasov VS, Smith MA, Peak-Chew S, Kilmartin JV (2003) Interactions between centromere complexes in Saccharomyces cerevisiae. Mol Biol Cell 14:4931–4946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nilsson J (2015) Mps1-Ndc80: one interaction to rule them all. Oncotarget 6:16822–16823

    Article  PubMed  PubMed Central  Google Scholar 

  • Nishino T, Takeuchi K, Gascoigne KE, Suzuki A, Hori T, Oyama T, Morikawa K, Cheeseman IM, Fukagawa T (2012) CENP-T-W-S-X forms a unique centromeric chromatin structure with a histone-like fold. Cell 148:487–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishino T, Rago F, Hori T, Tomii K, Cheeseman IM, Fukagawa T (2013) CENP-T provides a structural platform for outer kinetochore assembly. EMBO J 32:424–436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nogales E (2016) The development of cryo-EM into a mainstream structural biology technique. Nat Methods 13:24–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orthaus S, Ohndorf S, Diekmann S (2006) RNAi knockdown of human kinetochore protein CENP-H. Biochem Biophys Res Commun 348:36–46

    Article  CAS  PubMed  Google Scholar 

  • Palmer DK, O’Day K, Trong HL, Charbonneau H, Margolis RL (1991) Purification of the centromerespecific protein CENP-A and demonstration that it is a distinctive histone. Proc Natl Acad Sci U S A 88:3734–3738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parigi G, Rezaei-Ghaleh N, Giachetti A, Becker S, Fernandez C, Blackledge M, Griesinger C, Zweckstetter M, Luchinat C (2014) Long-range correlated dynamics in intrinsically disordered proteins. J Am Chem Soc 136:16201–16209

    Article  CAS  PubMed  Google Scholar 

  • Pereira AL, Pereira AJ, Maia AR, Drabek K, Sayas CL, Hergert PJ, Lince-Faria M, Matos I, Duque C, Stepanova T, Rieder CL, Earnshaw WC, Galjart N, Maiato H (2006) Mammalian CLASP1 and CLASP2 cooperate to ensure mitotic fidelity by regulating spindle and kinetochore function. Mol Biol Cell 17:4526–4542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perpelescu M, Fukagawa T (2011) The ABCs of CENPs. Chromosoma 120:425–446

    Article  PubMed  Google Scholar 

  • Pesenti ME, Weir JR, Musacchio A (2016) Progress in the structural and functional characterization of kinetochores. Curr Opin Struct Biol 37:152–163

    Article  CAS  PubMed  Google Scholar 

  • Petrovic A, Pasqualato S, Dube P, Krenn V, Santaguida S, Cittaro D, Monzani S, Massimiliano L, Keller J, Tarricone A, Maiolica A, Stark H, Musacchio A (2010) The MIS12 complex is a protein interaction hub for outer kinetochore assembly. J Cell Biol 190:835–852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petrovic A, Mosalaganti S, Keller J, Mattiuzzo M, Overlack K, Krenn V, De Antoni A, Wohlgemuth S, Cecatiello V, Pasqualato S, Raunser S, Musacchio A (2014) Modular assembly of RWD domains on the Mis12 complex underlies outer kinetochore organization. Mol Cell 53:591–605

    Article  CAS  PubMed  Google Scholar 

  • Prendergast L, van Vuuren C, Kaczmarczyk A, Doering V, Hellwig D, Quinn N, Hoischen C, Diekmann S, Sullivan KF (2011) Premitotic assembly of human CENPs -T and -W switches centromeric chromatin to a mitotic state. PLoS Biol 9:e1001082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Primorac I, Weir JR, Chiroli E, Gross F, Hoffmann I, van Gerwen S, Ciliberto A. Musacchio A (2013) Bub3 reads phosphorylated MELT repeats to promote spindle assembly checkpoint signaling. Elife 2:01030.

    Google Scholar 

  • Przewloka MR, Glover DM (2009) The kinetochore and the centromere: a working long distance relationship. Annu Rev Genet 43:439–465

    Article  CAS  PubMed  Google Scholar 

  • Qiu S, Wang J, Yu C, He D (2009) CENP-K and CENP-H may form coiled-coils in the kinetochores. Sci China C Life Sci 52:352–359

    Article  CAS  PubMed  Google Scholar 

  • Rago F, Gascoigne KE, Cheeseman IM (2015) Distinct Organization and Regulation of the Outer Kinetochore KMN Network Downstream of CENP-C and CENP-T. Curr Biol 25:671–677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richter MM, Poznanski J, Zdziarska A, Czarnocki-Cieciura M, Lipinszki Z, Dadlez M, Glover DM, Przewloka MR (2016) Network of protein interactions within the Drosophila inner kinetochore. Open Biol 6:150238

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rosenberg JS, Cross FR, Funabiki H (2011) KNL1/Spc105 recruits PP1 to silence the spindle assembly checkpoint. Curr Biol 21:942–947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santaguida S, Musacchio A (2009) The life and miracles of kinetochores. EMBO J 28:2511–2531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • ScaĂ«rou F, Aguilera I, Saunders R, Kane N, Blottière L, Karess R (1999) The rough deal protein is a new kinetochore component required for accurate chromosome segregation in Drosophila. J Cell Sci 112:3757–3768

    PubMed  Google Scholar 

  • ScaĂ«rou F, Starr DA, Piano F, Papoulas O, Karess RE, Goldberg ML (2001) The ZW10 and Rough Deal checkpoint proteins function together in a large, evolutionarily conserved complex targeted to the kinetochore. J Cell Sci 114:3103–3114

    PubMed  Google Scholar 

  • Schleiffer A, Maier M, Litos G, Lampert F, Hornung P, Mechtler K, Westermann S (2012) CENP-T proteins are conserved centromere receptors of the Ndc80 complex. Nat Cell Biol 14:604–613

    Article  CAS  PubMed  Google Scholar 

  • Schneider R, Maurin D, Communie G, Kragelj J, Hansen DF, Ruigrok RW, Jensen MR, Blackledge M (2015) Visualizing the molecular recognition trajectory of an intrinsically disordered protein using multinuclear relaxation dispersion NMR. J Am Chem Soc 137:1220–1229

    Article  CAS  PubMed  Google Scholar 

  • Shepperd LA, Meadows JC, Sochaj AM, Lancaster TC, Zou J, Buttrick GJ, Rappsilber J, Hardwick KG, Millar JB (2012) Phosphodependent recruitment of Bub1 and Bub3 to Spc7/KNL1 by Mph1 kinase maintains the spindle checkpoint. Curr Biol 22:891–899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stoler S, Keith KC, Curnick KE, Fitzgerald-Hayes M (1995) A mutation in CSE4, an essential gene encoding a novel chromatin-associated protein in yeast, causes chromosome nondisjunction and cell cycle arrest at mitosis. Genes Dev 9:573–586

    Article  CAS  PubMed  Google Scholar 

  • Stumpff J, von Dassow G, Wagenbach M, Asbury C, Wordeman L (2008) The kinesin-8 motor Kif18A suppresses kinetochore movements to control mitotic chromosome alignment. Dev Cell 14:252–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki A, Badger BL, Salmon ED (2015) A quantitative description of Ndc80 complex linkage to human kinetochores. Nat Commun 6:8161

    Article  PubMed  PubMed Central  Google Scholar 

  • Tachiwana H, Kagawa W, Shiga T, Osakabe A, Miya Y, Saito K, Hayashi-Takanaka Y, Oda T, Sato M, Park SY, Kimura H, Kurumizaka H (2011) Crystal structure of the human centromeric nucleosome containing CENP-A. Nature 476:232–235

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi K, Nishino T, Mayanagi K, Horikoshi N, Osakabe A, Tachiwana H, Hori T, Kurumizaka H, Fukagawa T (2014) The centromeric nucleosome-like CENP-T-W-S-X complex induces positive supercoils into DNA. Nucleic Acids Res 42:1644–1655

    Article  CAS  PubMed  Google Scholar 

  • Tanaka K (2013) Regulatory mechanisms of kinetochore-microtubule interaction in mitosis. Cell Mol Life Sci 70:559–579

    Article  CAS  PubMed  Google Scholar 

  • Tenboer J, Basu S, Zatsepin N, Pande K, Milathianaki D, Frank M, Hunter M, Boutet S, Williams GJ, Koglin JE, Oberthuer D, Heymann M, Kupitz C, Conrad C, Coe J, Roy-Chowdhury S, Weierstall U, James D, Wang D, Grant T, Barty A, Yefanov O, Scales J, Gati C, Seuring C, Srajer V, Henning R, Schwander P, Fromme R, Ourmazd A, Moffat K, Van Thor JJ, Spence JC, Fromme P, Chapman HN, Schmidt M (2014) Time-resolved serial crystallography captures high-resolution intermediates of photoactive yellow protein. Science 346:1242–1246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • The Gene Ontology Consortium (2010) The gene ontology in 2010: extensions and refinements. Nucleic Acids Res 38:D331–D335

    Article  CAS  Google Scholar 

  • Thedieck K, Holzwarth B, Prentzell MT, Boehlke C, Kläsener K, Ruf S, Sonntag AG, Maerz L, Grellscheid SN, Kremmer E, Nitschke R, Kuehn EW, Jonker JW, Groen AK, Reth M, Hall MN, Baumeister R (2013) Inhibition of mTORC1 by astrin and stress granules prevents apoptosis in cancer cells. Cell 154:859–874

    Article  CAS  PubMed  Google Scholar 

  • Thein KH, Kleylein-Sohn J, Nigg EA, Gruneberg U (2007) Astrin is required for the maintenance of sister chromatid cohesion and centrosome integrity. J Cell Biol 178:345–354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toledo CM, Herman JA, Olsen JB, Ding Y, Corrin P, Girard EJ, Olson JM, Emili A, DeLuca JG, Paddison PJ (2014) BuGZ Is Required for Bub3 Stability, Bub1 Kinetochore Function, and Chromosome Alignment. Dev Cell 28:282–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tooley J, Stukenberg PT (2011) The Ndc80 complex: integrating the kinetochore’s many movements. Chromosom Res 19:377–391

    Article  Google Scholar 

  • Uversky VN (2015) The multifaceted roles of intrinsic disorder in protein complexes. FEBS Lett 589:2498–2506

    Article  CAS  PubMed  Google Scholar 

  • Varma D, Salmon ED (2012) The KMN protein network--chief conductors of the kinetochore orchestra. J Cell Sci 125:5927–5936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vleugel M, Omerzu M, Groenewold V, Hadders MA, Lens SM, Kops GJ (2015) Sequential Multisite Phospho-Regulation of KNL1-BUB3 Interfaces at Mitotic Kinetochores. Mol Cell 57:824–835

    Article  CAS  PubMed  Google Scholar 

  • Wan X, O’Quinn RP, Pierce HL, Joglekar AP, Gall WE, DeLuca JG, Carroll CW, Liu ST, Yen TJ, McEwen BF, Stukenberg PT, Desai A, Salmon ED (2009) Protein architecture of the human kinetochore microtubule attachment site. Cell 137:672–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Zhuang X, Cao D, Chu Y, Yao P, Liu W, Liu L, Adams G, Fang G, Dou Z, Ding X, Huang Y, Wang D, Yao X (2012a) Mitotic regulator SKAP forms a link between kinetochore core complex KMN and dynamic spindle microtubules. J Biol Chem 287:39380–39390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Sarkar M, Smith AE, Krois AS, Pielak GJ (2012b) Macromolecular Crowding and Protein Stability. J Am Chem Soc 134:16614–16618

    Article  CAS  PubMed  Google Scholar 

  • Wei RR, Sorger PK, Harrison SC (2005) Molecular organization of the Ndc80 complex, an essential kinetochore component. Proc Natl Acad Sci U S A 102:5363–5367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei RR, Al-Bassam J, Harrison SC (2007) The Ndc80/HEC1 complex is a contact point for kinetochore-microtubule attachment. Nat Struct Mol Biol 14:54–59

    Article  CAS  PubMed  Google Scholar 

  • Weis F, Giudice E, Churcher M, Jin L, Hilcenko C, Wong CC, Traynor D, Kay RR, Warren AJ (2015) Mechanism of eIF6 release from the nascent 60S ribosomal subunit. Nat Struct Mol Biol 22:914–919

    CAS  PubMed  PubMed Central  Google Scholar 

  • Williams BC, Karr TL, Montgomery JM, Goldberg ML (1992) The Drosophila l(1)ZW10 gene product, required for accurate mitotic chromosome segregation, is redistributed at anaphase onset. J Cell Biol 118:759–773

    Article  CAS  PubMed  Google Scholar 

  • Williams BC, Li Z, Liu S, Williams EV, Leung G, Yen TJ, Goldberg ML (2003) ZWILCH, a New Component of the ZW10/ROD Complex Required for Kinetochore Functions. Mol Biol Cell 14:1379–1391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xue B, Dunbrack RL, Williams RW, Dunker AK, Uversky VN (2010) PONDR-FIT: a meta-predictor of intrinsically disordered amino acids. Biochim Biophys Acta 180:996–1010

    Article  CAS  Google Scholar 

  • Zaoui K, Benseddik K, Daou P, SalaĂĽn D, Badache A (2010) ErbB2 receptor controls microtubule capture by recruiting ACF7 to the plasma membrane of migrating cells. Proc Natl Acad Sci U S A 107:18517–18522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Wan L, Dai X, Sun Y, Wei W (2014) Functional characterization of Anaphase Promoting Complex/Cyclosome (APC/C) E3 ubiquitin ligases in tumorigenesis. Biochim Biophys Acta 1845:277–293

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang S, Chang L, Alfieri C, Zhang Z, Yang J, Maslen S, Skehel M, Barford D (2016) Molecular mechanism of APC/C activation by mitotic phosphorylation. Nature 533:260–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhonghua Liu, Vong QP, Yixian Zheng (2007) CLASPing Microtubules at the trans-Golgi Network. Dev Cell 12:839–840

    Article  PubMed  CAS  Google Scholar 

  • Zhou W, Wei W, Sun Y (2013) Genetically engineered mouse models for functional studies of SKP1-CUL1-F-box-protein (SCF) E3 ubiquitin ligases. Cell Res 23:599–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Z, He M, Shah AA, Wan Y (2016) Insights into APC/C: from cellular function to diseases and therapeutics. Cell Div 11:9

    Article  PubMed  PubMed Central  Google Scholar 

  • Zich J, May K, Paraskevopoulos K, Sen O, Syred HM, van der Sar S, Patel H, Moresco JJ, Sarkeshik A, Yates JR 3rd, Rappsilber J, Hardwick KG (2016) Mps1Mph1 Kinase Phosphorylates Mad3 to Inhibit Cdc20Slp1-APC/C and Maintain Spindle Checkpoint Arrests. PLoS Genet 12:e1005834

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor M. Bolanos-Garcia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bolanos-Garcia, V.M. (2017). Protein Complexes in the Nucleus: The Control of Chromosome Segregation. In: Harris, J., Marles-Wright, J. (eds) Macromolecular Protein Complexes. Subcellular Biochemistry, vol 83. Springer, Cham. https://doi.org/10.1007/978-3-319-46503-6_16

Download citation

Publish with us

Policies and ethics