Skip to main content

D-Glyceraldehyde-3-Phosphate Dehydrogenase Structure and Function

  • Chapter
  • First Online:
Macromolecular Protein Complexes

Part of the book series: Subcellular Biochemistry ((SCBI,volume 83))

Abstract

Aside from its well-established role in glycolysis, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has been shown to possess many key functions in cells. These functions are regulated by protein oligomerization , biomolecular interactions, post-translational modifications , and variations in subcellular localization . Several GAPDH functions and regulatory mechanisms overlap with one another and converge around its role in intermediary metabolism. Several structural determinants of the protein dictate its function and regulation. GAPDH is ubiquitously expressed and is found in all domains of life. GAPDH has been implicated in many diseases, including those of pathogenic, cardiovascular, degenerative, diabetic, and tumorigenic origins. Understanding the mechanisms by which GAPDH can switch between its functions and how these functions are regulated can provide insights into ways the protein can be modulated for therapeutic outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adastra KL, Chi MM, Riley JK, Moley KH (2011) A differential autophagic response to hyperglycemia in the developing murine embryo. Reproduction 141:607–615. doi:10.1530/REP-10-0265

    Article  CAS  PubMed  Google Scholar 

  • Almeida A, Moncada S, Bolaños JP (2004) Nitric oxide switches on glycolysis through the AMP protein kinase and 6-phosphofructo-2-kinase pathway. Nat Cell Biol 6:45–51. doi:10.1038/ncb1080

    Article  CAS  PubMed  Google Scholar 

  • Andrade J, Pearce ST, Zhao H, Barroso M (2004) Interactions among p22, glyceraldehyde-3-phosphate dehydrogenase and microtubules. Biochem J 384:327–336. doi:10.1042/BJ20040622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arnold H, Pette D (1968) Binding of glycolytic enzymes to structure proteins of the muscle. Eur J Biochem 6:163–171

    Article  CAS  PubMed  Google Scholar 

  • Aronov AM, Suresh S, Buckner FS et al (1999) Structure-based design of submicromolar, biologically active inhibitors of trypanosomatid glyceraldehyde-3-phosphate dehydrogenase. Proc Natl Acad Sci 96:4273–4278. doi:10.1073/pnas.96.8.4273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arutyunova EI, Danshina PV, Domnina LV et al (2003) Oxidation of glyceraldehyde-3-phosphate dehydrogenase enhances its binding to nucleic acids. Biochem Biophys Res Commun 307:547–552. doi:10.1016/S0006-291X(03)01222-1

    Article  CAS  PubMed  Google Scholar 

  • Azam S, Jouvet N, Jilani A et al (2008) Human glyceraldehyde-3-phosphate dehydrogenase plays a direct role in reactivating oxidized forms of the DNA repair enzyme APE1. J Biol Chem 283:30632–30641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Backlund M, Paukku K, Daviet L et al (2009) Posttranscriptional regulation of angiotensin II type 1 receptor expression by glyceraldehyde 3-phosphate dehydrogenase. Nucleic Acids Res 37:2346–2358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baek D, Jin Y, Jeong JC et al (2008) Suppression of reactive oxygen species by glyceraldehyde-3-phosphate dehydrogenase. Phytochemistry 69:333–338

    Article  CAS  PubMed  Google Scholar 

  • Baker BY, Shi W, Wang B, Palczewski K (2014) High-resolution crystal structures of the photoreceptor glyceraldehyde 3-phosphate dehydrogenase (GAPDH) with three and four-bound NAD molecules: structures of the GAPDH Photoreceptor. Protein Sci 23:1629–1639. doi:10.1002/pro.2543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barbini L, Rodríguez J, Dominguez F, Vega F (2007) Glyceraldehyde-3-phosphate dehydrogenase exerts different biologic activities in apoptotic and proliferating hepatocytes according to its subcellular localization. Mol Cell Biochem 300:19–28. doi:10.1007/s11010-006-9341-1

    Article  CAS  PubMed  Google Scholar 

  • Bonafe N, Gilmore-Hebert M, Folk NL et al (2005) Glyceraldehyde-3-phosphate dehydrogenase binds to the AU-Rich 3′ untranslated region of colony-stimulating factor-1 (CSF-1) messenger RNA in human ovarian cancer cells: possible role in CSF-1 posttranscriptional regulation and tumor phenotype. Cancer Res 65:3762–3271

    Article  CAS  PubMed  Google Scholar 

  • Boradia VM, Malhotra H, Thakkar JS et al (2014a) Mycobacterium tuberculosis acquires iron by cell-surface sequestration and internalization of human holo-transferrin. Nat Commun 5:4730. doi:10.1038/ncomms5730

    Article  CAS  PubMed  Google Scholar 

  • Boradia VM, Raje M, Raje CI (2014b) Protein moonlighting in iron metabolism: glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Biochem Soc Trans 42:1796–1801. doi:10.1042/BST20140220

    Article  CAS  PubMed  Google Scholar 

  • Bressi JC, Verlinde CLMJ, Aronov AM et al (2001) Adenosine analogues as selective inhibitors of glyceraldehyde-3-phosphate dehydrogenase of trypanosomatidae via structure-based drug design. J Med Chem 44:2080–2093. doi:10.1021/jm000472o

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown VM, Krynetski EY, Krynetskaia NF et al (2004) A novel CRM1-mediated nuclear export signal governs nuclear accumulation of glyceraldehyde-3-phosphate dehydrogenase following genotoxic stress. J Biol Chem 279:5984–5992. doi:10.1074/jbc.M307071200

    Article  CAS  PubMed  Google Scholar 

  • Bruns G, Gerald P, Lalley P et al (1979) Gene mapping of the mouse by somatic cell hybridization. Cytogenet Cell Genet 25:139

    Google Scholar 

  • Buck KW (1996) Comparison of the replication of positive-stranded RNA viruses of plants and animals. In: Maramorosch K, Murphy FA, Shatkin AJ (eds) Advances in virus research. Academic, Amsterdam, pp 159–251

    Google Scholar 

  • Campanella ME, Chu H, Low PS (2005) Assembly and regulation of a glycolytic enzyme complex on the human erythrocyte membrane. Proc Natl Acad Sci U S A 102:2402–2407. doi:10.1073/pnas.0409741102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Canto C, Auwerx J (2012) Targeting sirtuin 1 to improve metabolism: all you need is NAD+? Pharmacol Rev 64:166–187. doi:10.1124/pr.110.003905

    Article  CAS  PubMed  Google Scholar 

  • Carlile GW, Chalmers-Redman RME, Tatton NA et al (2000) Reduced apoptosis after nerve growth factor and serum withdrawal: conversion of tetrameric glyceraldehyde-3-phosphate dehydrogenase to a dimer. Mol Pharmacol 57:2–12

    CAS  PubMed  Google Scholar 

  • Carmona P, Rodriguez-Casado A, Molina M (1999) Conformational structure and binding mode of glyceraldehyde-3-phosphate dehydrogenase to tRNA studied by Raman and CD spectroscopy. Biochim Biophys Acta 1432:222–233

    Article  CAS  PubMed  Google Scholar 

  • Castilho MS, Pavão F, Oliva G et al (2003) Evidence for the two phosphate binding sites of an analogue of the thioacyl intermediate for the Trypanosoma cruzi glyceraldehyde-3-phosphate dehydrogenase-catalyzed reaction, from its crystal structure. Biochemistry 42:7143–7151. doi:10.1021/bi0206107

    Article  CAS  PubMed  Google Scholar 

  • Caswell AH, Corbett AM (1985) Interaction of glyceraldehyde-3-phosphate dehydrogenase with isolated microsomal subfractions of skeletal muscle. J Biol Chem 260:6892–6898

    CAS  PubMed  Google Scholar 

  • Chaikuad A, Shafqat N, Al-Mokhtar R et al (2011) Structure and kinetic characterization of human sperm-specific glyceraldehyde-3-phosphate dehydrogenase, GAPDS. Biochem J 435:401–409. doi:10.1042/BJ20101442

    Article  CAS  PubMed  Google Scholar 

  • Chakravarti R, Aulak KS, Fox PL, Stuehr DJ (2010) GAPDH regulates cellular heme insertion into inducible nitric oxide synthase. Proc Natl Acad Sci U S A 107:18004–18009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang C-H, Curtis JD, Maggi LB Jr et al (2013) Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell 153:1239–1251. doi:10.1016/j.cell.2013.05.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang C, Su H, Zhang D et al (2015) AMPK-dependent phosphorylation of GAPDH triggers sirt1 activation and is necessary for autophagy upon glucose starvation. Mol Cell 60:930–940. doi:10.1016/j.molcel.2015.10.037

    Article  CAS  PubMed  Google Scholar 

  • Chao CC-K, Yam W-C, Lin-Chao S (1990) Coordinated induction of two unrelated glucose-regulated protein genes by a calcium ionophore: human BiPGRP78 and GAPDH. Biochem Biophys Res Commun 171:431–438. doi:10.1016/0006-291X(90)91411-K

    Article  CAS  PubMed  Google Scholar 

  • Charron C, Talfournier F, Isupov M et al (2000) The crystal structure of d-glyceraldehyde-3-phosphate dehydrogenase from the hyperthermophilic archaeon Methanothermus fervidus in the presence of NADP+ at 2.1 Å resolution. J Mol Biol 297:481–500. doi:10.1006/jmbi.2000.3565

    Article  CAS  PubMed  Google Scholar 

  • Chauhan AS, Rawat P, Malhotra H et al (2015) Secreted multifunctional Glyceraldehyde-3-phosphate dehydrogenase sequesters lactoferrin and iron into cells via a non-canonical pathway. Sci Rep 5:18465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chu H, Low PS (2006) Mapping of glycolytic enzyme-binding sites on human erythrocyte band 3. Biochem J 400:143–151. doi:10.1042/BJ20060792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chu H, Puchulu-Campanella E, Galan JA et al (2012) Identification of cytoskeletal elements enclosing the ATP pools that fuel human red blood cell membrane cation pumps. Proc Natl Acad Sci U S A 109:12794–12799. doi:10.1073/pnas.1209014109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colell A, Ricci J-E, Tait S et al (2007) GAPDH and autophagy preserve survival after apoptotic cytochrome c release in the absence of caspase activation. Cell 129:983–997. doi:10.1016/j.cell.2007.03.045

    Article  CAS  PubMed  Google Scholar 

  • Colell A, Green DR, Ricci J-E (2009) Novel roles for GAPDH in cell death and carcinogenesis. Cell Death Differ 16:1573–1581. doi:10.1038/cdd.2009.137

    Article  CAS  PubMed  Google Scholar 

  • Constantinides SM, Deal WC (1969) Reversible dissociation of tetrameric rabbit muscle glyceraldehyde 3-phosphate dehydrogenase into dimers or monomers by adenosine triphosphate. J Biol Chem 244:5695–5702

    CAS  PubMed  Google Scholar 

  • Cook WJ, Senkovich O, Chattopadhyay D (2009) An unexpected phosphate binding site in glyceraldehyde 3-phosphate dehydrogenase: crystal structures of apo, holo and ternary complex of Cryptosporidium parvum enzyme. BMC Struct Biol 9:9. doi:10.1186/1472-6807-9-9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Coussens PM, Cooper JA, Hunter T, Shalloway D (1985) Restriction of the in vitro and in vivo tyrosine protein kinase activities of pp60c-src relative to pp60v-src. Mol Cell Biol 5:2753–2763. doi:10.1128/MCB.5.10.2753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cowan-Jacob SW, Kaufmann M, Anselmo AN et al (2003) Structure of rabbit-muscle glyceraldehyde-3-phosphate dehydrogenase. Acta Crystallogr Sect D 59:2218–2227. doi:10.1107/S0907444903020493

    Article  CAS  Google Scholar 

  • Cueille N, Blanc CT, Riederer IM, Riederer BM (2007) Microtubule-associated protein 1B binds glyceraldehyde-3-phosphate dehydrogenase. J Proteome Res 6:2640–2647. doi:10.1021/pr070081z

    Article  CAS  PubMed  Google Scholar 

  • Dai R-P, Yu F-X, Goh S-R et al (2008) Histone 2B (H2B) expression is confined to a proper NAD+/NADH redox status. J Biol Chem 283:26894–26901. doi:10.1074/jbc.M804307200

    Article  CAS  PubMed  Google Scholar 

  • Danshina PV, Qu W, Temple BR et al (2016) Structural analyses to identify selective inhibitors of glyceraldehyde 3-phosphate dehydrogenase-S, a sperm-specific glycolytic enzyme. Mol Hum Reprod 22:410. doi:10.1093/molehr/gaw016

    Article  PubMed  Google Scholar 

  • Daubenberger CA, Tisdale EJ, Curcic M et al (2003) The N′-terminal domain of glyceraldehyde-3-phosphate dehydrogenase of the apicomplexan plasmodium falciparum mediates GTPase Rab2-dependent recruitment to membranes. Biol Chem 384:1227–1237

    Article  CAS  PubMed  Google Scholar 

  • De BP, Gupta S, Zhao H et al (1996) Specific Interaction in vitro and in vivo of glyceraldehyde-3-phosphate dehydrogenase and LA protein with cis-acting RNAs of human parainfluenza virus type 3. J Biol Chem 271:24728–24735. doi:10.1074/jbc.271.40.24728

    Article  PubMed  Google Scholar 

  • De Arcuri BF, Vechetti GF, Chehı́n RN et al (1999) Protein-induced fusion of phospholipid vesicles of heterogeneous sizes. Biochem Biophys Res Commun 262:586–590. doi:10.1006/bbrc.1999.1243

    Article  CAS  PubMed  Google Scholar 

  • Demarse NA, Ponnusamy S, Spicer EK et al (2009) Direct binding of glyceraldehyde 3-phosphate dehydrogenase to telomeric DNA protects telomeres against chemotherapy-induced rapid degradation. J Mol Biol 394:789–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Devalaraja-Narashimha K, Padanilam BJ (2009) PARP-1 inhibits glycolysis in ischemic idneys. J Am Soc Nephrol 20:95–103. doi:10.1681/ASN.2008030325

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Didierjean C, Corbier C, Fatih M et al (2003) Crystal structure of two ternary complexes of phosphorylating glyceraldehyde-3-phosphate dehydrogenase from Bacillus stearothermophilus with NAD and D-Glyceraldehyde 3-Phosphate. J Biol Chem 278:12968–12976. doi:10.1074/jbc.M211040200

    Article  CAS  PubMed  Google Scholar 

  • Dollenmaier G, Weitz M (2003) Interaction of glyceraldehyde-3-phosphate dehydrogenase with secondary and tertiary RNA structural elements of the hepatitis A virus 3′ translated and non-translated regions. J Gen Virol 84:403–414

    Article  CAS  PubMed  Google Scholar 

  • Du X, Matsumura T, Edelstein D et al (2003) Inhibition of GAPDH activity by poly(ADP-ribose) polymerase activates three major pathways of hyperglycemic damage in endothelial cells. J Clin Invest 112:1049–1057. doi:10.1172/JCI18127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du Z-X, Wang H-Q, Zhang H-Y, Gao D-X (2007) Involvement of glyceraldehyde-3-phosphate dehydrogenase in tumor necrosis factor-related apoptosis-inducing ligand-mediated death of thyroid cancer cells. Endocrinology 148:4352–4361. doi:10.1210/en.2006-1511

    Article  CAS  PubMed  Google Scholar 

  • Duée E, Olivier-Deyris L, Fanchon E et al (1996) Comparison of the structures of wild-type and a N313T mutant ofEscherichia coli Glyceraldehyde 3-phosphate dehydrogenases: implication for NAD binding and cooperativity. J Mol Biol 257:814–838. doi:10.1006/jmbi.1996.0204

    Article  PubMed  Google Scholar 

  • Durrieu C, Bernier-Valentin F, Rousset B (1987a) Binding of glyceraldehyde 3-phosphate dehydrogenase to microtubules. Mol Cell Biochem 74:55–65. doi:10.1007/BF00221912

    Article  CAS  PubMed  Google Scholar 

  • Durrieu C, Bernier-Valentin F, Rousset B (1987b) Microtubules bind glyceraldehyde 3-phosphate dehydrogenase and modulate its enzyme activity and quaternary structure. Arch Biochem Biophys 252:32–40. doi:10.1016/0003-9861(87)90005-1

    Article  CAS  PubMed  Google Scholar 

  • Ercolani L, Brown D, Stuart-Tilley A, Alper SL (1992) Colocalization of GAPDH and band 3 (AE1) proteins in rat erythrocytes and kidney intercalated cell membranes. Am J Physiol Ren Physiol 262:F892–F896

    CAS  Google Scholar 

  • Fengsrud M, Raiborg C, Berg TO et al (2000) Autophagosome-associated variant isoforms of cytosolic enzymes. Biochem J 352:773–781. doi:10.1042/bj3520773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Filipovic MR (2015) Persulfidation (S-sulfhydration) and H2S. In: Moore PK, Whiteman M (eds) Chemistry, biochemistry and pharmacology of hydrogen sulfide. Springer, Cham, pp 29–59

    Chapter  Google Scholar 

  • Galán C, Sola I, Nogales A et al (2009) Host cell proteins interacting with the 3′ end of TGEV coronavirus genome influence virus replication. Virology 391:304–314. doi:10.1016/j.virol.2009.06.006

    Article  PubMed  CAS  Google Scholar 

  • Ganapathy-Kanniappan S, Geschwind J-FH, Kunjithapathham R et al (2009) Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is pyruvylated during 3-bromopyruvate mediated cancer cell death. Anticancer Res 29:4909–4918

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosh A, Stuehr D (2016) Regulation of sGC via hsp90, cellular heme, sGC agonists, and NO: new pathways and clinical perspectives. Antioxid Redox Signal 14:1039. doi:10.1089/ars.2016.6690

    Google Scholar 

  • Glaser PE, Gross RW (1995) Rapid plasmenylethanolamine-selective fusion of membrane bilayers catalyzed by an isoform of glyceraldehyde-3-phosphate dehydrogenase: discrimination between glycolytic and fusogenic roles of individual isoforms. Biochemistry 34:12193–12203. doi:10.1021/bi00038a013

    Article  CAS  PubMed  Google Scholar 

  • Glaser PE, Han X, Gross RW (2002) Tubulin is the endogenous inhibitor of the glyceraldehyde 3-phosphate dehydrogenase isoform that catalyzes membrane fusion: implications for the coordinated regulation of glycolysis and membrane fusion. Proc Natl Acad Sci 99:14104–14109. doi:10.1073/pnas.222542999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grant CM, Quinn KA, Dawes IW (1999) Differential protein S-thiolation of glyceraldehyde-3-phosphate dehydrogenase isoenzymes influences sensitivity to oxidative stress. Mol Cell Biol 19:2650–2656. doi:10.1128/MCB.19.4.2650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graven KK, Troxler RF, Kornfeld H et al (1994) Regulation of endothelial cell glyceraldehyde-3-phosphate dehydrogenase expression by hypoxia. J Biol Chem 269:24446–24453

    CAS  PubMed  Google Scholar 

  • Grosse F, Nasheuer H, Scholtissek S, Schomburg U (1986) Lactate dehydrogenase and glyceraldehyde-phosphate dehydrogenase are single-stranded DNA-binding proteins that affect the DNA-polymerase-alpha-primase comple15. Eur J Biochem 160:459–467

    Article  CAS  PubMed  Google Scholar 

  • Han X, Ramanadham S, Turk J, Gross RW (1998) Reconstitution of membrane fusion between pancreatic islet secretory granules and plasma membranes: catalysis by a protein constituent recognized by monoclonal antibodies directed against glyceraldehyde-3-phosphate dehydrogenase. Biochim Biophys Acta Biomembr 1414:95–107. doi:10.1016/S0005-2736(98)00154-0

    Article  CAS  Google Scholar 

  • Hannibal L, Collins D, Brassard J et al (2012) Heme binding properties of glyceraldehyde-3-phosphate dehydrogenase. Biochemistry 51:8514–8529. doi:10.1021/bi300863a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hara MR, Snyder SH (2006) Nitric oxide-GAPDH-Siah: a novel cell death cascade. Cell Mol Neurobiol 26:527–538

    Article  CAS  PubMed  Google Scholar 

  • Hara MR, Agrawal N, Kim SF et al (2005) S-nitrosylated GAPDH initiates apoptotic cell death by nuclear translocation following Siah1 binding. Nat Cell Biol 7:665–674

    Article  CAS  PubMed  Google Scholar 

  • Hara MR, Thomas B, Cascio MB et al (2006) Neuroprotection by pharmacologic blockade of the GAPDH death cascade. Proc Natl Acad Sci U S A 103:3887–3889. doi:10.1073/pnas.0511321103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harada N, Yasunaga R, Higashimura Y et al (2007) Glyceraldehyde-3-phosphate dehydrogenase enhances transcriptional activity of androgen receptor in prostate cancer cells. J Biol Chem 282:22651–22661. doi:10.1074/jbc.M610724200

    Article  CAS  PubMed  Google Scholar 

  • Harraz M, Snyder S (2015) Nitric oxide-GAPDH transcriptional signaling mediates behavioral actions of cocaine. Former Curr Drug Targets CNS Neurol Disord 14:757–763. doi:10.2174/1871527314666150529150143

    Article  CAS  Google Scholar 

  • Hessler RJ, Blackwood RA, Brock TG et al (1998) Identification of glyceraldehyde-3-phosphate dehydrogenase as a Ca2+-dependent fusogen in human neutrophil cytosol. J Leukoc Biol 63:331–336

    CAS  PubMed  Google Scholar 

  • Hildebrandt T, Knuesting J, Berndt C et al (2015) Cytosolic thiol switches regulating basic cellular functions: GAPDH as an information hub? Biol Chem 396:523. doi:10.1515/hsz-2014-0295

    Article  CAS  PubMed  Google Scholar 

  • Huang T-S, Nagy PD (2011) Direct inhibition of tombusvirus plus-strand RNA synthesis by a dominant negative mutant of a host metabolic enzyme, glyceraldehyde-3-phosphate dehydrogenase, in yeast and plants. J Virol 85:9090–9102. doi:10.1128/JVI.00666-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang J, Hao L, Xiong N et al (2009) Involvement of glyceraldehyde-3-phosphate dehydrogenase in rotenone-induced cell apoptosis: relevance to protein misfolding and aggregation. Brain Res 1279:1–8. doi:10.1016/j.brainres.2009.05.011

    Article  CAS  PubMed  Google Scholar 

  • Huang Q, Lan F, Zheng Z et al (2011) Akt2 kinase suppresses Glyceraldehyde-3-phosphate Dehydrogenase (GAPDH)-mediated apoptosis in ovarian cancer cells via phosphorylating GAPDH at threonine 237 and decreasing its nuclear translocation. J Biol Chem 286:42211–42220. doi:10.1074/jbc.M111.296905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huitorel P, Pantaloni D (1985) Bundling of microtubules by glyceraldehyde-3-phosphate dehydrogenase and its modulation by ATP. Eur J Biochem 150:265–269

    Article  CAS  PubMed  Google Scholar 

  • Ikeda Y, Yamaji R, Irie K et al (2012) Glyceraldehyde-3-phosphate dehydrogenase regulates cyclooxygenase-2 expression by targeting mRNA stability. Arch Biochem Biophys 528:141–147. doi:10.1016/j.abb.2012.09.004

    Article  CAS  PubMed  Google Scholar 

  • Ishitani R, Chuang DM (1996) Glyceraldehyde-3-phosphate dehydrogenase antisense oligodeoxynucleotides protect against cytosine arabinonucleoside-induced apoptosis in cultured cerebellar neurons. Proc Natl Acad Sci U S A 93:9937–9941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishitani R, Sunaga K, Hirano A et al (1996) Evidence that glyceraldehyde-3-phosphate dehydrogenase is involved in age-induced apoptosis in mature cerebellar neurons in culture. J Neurochem 66:928–935. doi:10.1046/j.1471-4159.1996.66030928.x

    Article  CAS  PubMed  Google Scholar 

  • Ishitani R, Sunaga K, Tanaka M et al (1997) Overexpression of glyceraldehyde-3-phosphate dehydrogenase is involved in low K+-induced apoptosis but not necrosis of cultured cerebellar granule cells. Mol Pharmacol 51:542–550. doi:10.1124/mol.51.4.542

    CAS  PubMed  Google Scholar 

  • Ishitani R, Tanaka M, Sunaga K et al (1998) Nuclear localization of overexpressed glyceraldehyde-3-phosphate dehydrogenase in cultured cerebellar neurons undergoing apoptosis. Mol Pharmacol 53:701–707. doi:10.1124/mol.53.4.701

    CAS  PubMed  Google Scholar 

  • Ishitani R, Tajima H, Takata H et al (2003) Proapoptotic protein glyceraldehyde-3-phosphate dehydrogenase: a possible site of action of antiapoptotic drugs. Prog Neuro-Psychopharmacol Biol Psychiatry 27:291–301. doi:10.1016/S0278-5846(03)00024-1

    Article  CAS  Google Scholar 

  • Ismail SA, Park HW (2005) Structural analysis of human liver glyceraldehyde-3-phosphate dehydrogenase. Acta Crystallogr D Biol Crystallogr 61:1508–1513

    Article  CAS  PubMed  Google Scholar 

  • Isupov MN, Fleming TM, Dalby AR et al (1999) Crystal structure of the glyceraldehyde-3-phosphate dehydrogenase from the hyperthermophilic archaeon Sulfolobus solfataricus. J Mol Biol 291:651–660. doi:10.1006/jmbi.1999.3003

    Article  CAS  PubMed  Google Scholar 

  • Jacob F, Guertler R, Naim S et al (2013) Careful selection of reference genes is required for reliable performance of RT-qPCR in human normal and cancer cell lines. PLoS ONE 8:e59180. doi:10.1371/journal.pone.0059180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaffrey S, Erdjument-Bromage H, Ferris C et al (2001) Protein S-nitrosylation: a physiological signal for neuronal nitric oxide. Nat Cell Biol 3:193–197. doi:10.1038/35055104

    Article  CAS  PubMed  Google Scholar 

  • Jarosz AP, Wei W, Gauld JW et al (2015) Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is inactivated by S-sulfuration in vitro. Free Radic Biol Med 89:512–521. doi:10.1016/j.freeradbiomed.2015.09.007

    Article  CAS  PubMed  Google Scholar 

  • Jenkins JL, Tanner JJ (2006) High-resolution structure of human D-glyceraldehyde-3-phosphate dehydrogenase. Acta Crystallogr D Biol Crystallogr 62:290–301

    Article  PubMed  CAS  Google Scholar 

  • Jia J, Arif A, Willard B et al (2012) Protection of extraribosomal RPL13a by GAPDH and dysregulation by S-nitrosylation. Mol Cell 47:656–663 doi: http://d15.doi.org/10.1016/j.molcel.2012.06.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaneda M, Takeuchi K, Inoue K, Umeda M (1997) Localization of the phosphatidylserine-binding site of glyceraldehyde-3-phosphate dehydrogenase responsible for membrane fusion. J Biochem 122:1233–1240

    Article  CAS  PubMed  Google Scholar 

  • Kang HT, Hwang ES (2009) Nicotinamide enhances mitochondria quality through autophagy activation in human cells. Aging Cell 8:426–438. doi:10.1111/j.1474-9726.2009.00487.x

    Article  CAS  PubMed  Google Scholar 

  • Kang HT, Lee HI, Hwang ES (2006) Nicotinamide extends replicative lifespan of human cells. Aging Cell 5:423–436. doi:10.1111/j.1474-9726.2006.00234.x

    Article  CAS  PubMed  Google Scholar 

  • Karpel RL, Burchard AC (1981) A basic isozyme of yeast glyceraldehyde-3-phosphate dehydrogenase with nucleic acid helix-destabilizing activity. Biochim Biophys Acta Nucl Acids Protein Synth 654:256–267 doi: http://d15.doi.org/10.1016/0005-2787(81)90180-5

    Article  CAS  Google Scholar 

  • Kawamoto R, Caswell A (1986) Autophosphorylation of glyceraldehydephosphate dehydrogenase and phosphorylation of protein from skeletal muscle microsome. Biochemistry 25:656–661

    Article  CAS  Google Scholar 

  • Kim H, Hol WGJ (1998) Crystal structure of Leishmania mexicana glycosomal glyceraldehyde-3-phosphate dehydrogenase in a new crystal form confirms the putative physiological active site structure. J Mol Biol 278:5–11. doi:10.1006/jmbi.1998.1661

    Article  CAS  PubMed  Google Scholar 

  • Kim H, Feil IK, Verlinde CLMJ et al (1995) Crystal structure of glycosomal glyceraldehyde-3-phosphate dehydrogenase from Leishmania mexicana: implications for structure-based drug design and a new position for the inorganic phosphate binding site. Biochemistry 34:14975–14986. doi:10.1021/bi00046a004

    Article  CAS  PubMed  Google Scholar 

  • Kim JH, Lee S, Park JB et al (2003) Hydrogen peroxide induces association between glyceraldehyde 3-phosphate dehydrogenase and phospholipase D2 to facilitate phospholipase D2 activation in PC12 cells. J Neurochem 85:1228–1236. doi:10.1046/j.1471-4159.2003.01755.x

    Article  CAS  PubMed  Google Scholar 

  • Kiri A, Goldspink G (2002) RNA–protein interactions of the 3′ untranslated regions of myosin heavy chain transcripts. J Muscle Res Cell Motil 23:119–129. doi:10.1023/A:1020211729728

    Article  CAS  PubMed  Google Scholar 

  • Kondo S, Kubota S, Mukudai Y et al (2011) Binding of glyceraldehyde-3-phosphate dehydrogenase to the cis-acting element of structure-anchored repression in ccn2 mRNA. Biochem Biophys Res Commun 405:382–387. doi:10.1016/j.bbrc.2011.01.034

    Article  CAS  PubMed  Google Scholar 

  • Kornberg MD, Sen N, Hara MR et al (2010) GAPDH mediates nitrosylation of nuclear proteins. Nat Cell Biol 12:1094–1100. doi:10.1038/ncb2114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korndörfer I, Steipe BS, Huber R et al (1995) The crystal structure of holo-glyceraldehyde-3-phosphate dehydrogenase from the hyperthermophilic bacterium thermotoga maritima at 2.5 Å resolution. J Mol Biol 246:511–521. doi:10.1006/jmbi.1994.0103

    Article  PubMed  Google Scholar 

  • Kumagai H, Sakai H (1983) A porcine brain protein (35 K Protein) which bundles microtubules and its identification as glyceraldehyde 3-phosphate dehydrogenase. J Biochem 93:1259–1269

    Article  CAS  PubMed  Google Scholar 

  • Kusov Y, Weitz M, Dollenmeier G et al (1996) RNA-protein interactions at the 3′ end of the hepatitis A virus RNA. J Virol 70:1890–1897

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kwon H, Rhim J, Jang I et al (2010) Activation of AMP-activated protein kinase stimulates the nuclear localization of glyceraldehyde 3-phosphate dehydrogenase in human diploid fibroblasts. Exp Mol Med 42:254–269. doi:10.3858/emm.2010.42.4.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ladame S, Castilho M, Silva C et al (2003) Crystal structure of trypanosoma cruzi glyceraldehyde-3-phosphate dehydrogenase complexed with an analogue of 1,3-bisphospho-d-glyceric acid. Eur J Biochem 270:4574–4586

    Article  CAS  PubMed  Google Scholar 

  • Landino LM, Hagedorn TD, Kennett KL (2014) Evidence for thiol/disulfide exchange reactions between tubulin and glyceraldehyde-3-phosphate dehydrogenase: evidence for thiol/disulfide exchange reactions. Cytoskeleton 71:707–718. doi:10.1002/cm.21204

    Article  CAS  PubMed  Google Scholar 

  • Lane DJR, Merlot AM, Huang ML-H et al (2015) Cellular iron uptake, trafficking and metabolism: key molecules and mechanisms and their roles in disease. Biochim Biophys Acta Mol Cell Res 1853:1130–1144. doi:10.1016/j.bbamcr.2015.01.021

    Article  CAS  Google Scholar 

  • Laschet JJ (2004) Glyceraldehyde-3-phosphate dehydrogenase is a GABAA receptor kinase linking glycolysis to neuronal inhibition. J Neurosci 24:7614–7622. doi:10.1523/JNEUROSCI.0868-04.2004

    Article  CAS  PubMed  Google Scholar 

  • Launay JF, Jellali A, Vanier MT (1989) Glyceraldehyde-3-phosphate dehydrogenase is a microtubule binding protein in a human colon tumor cell line. Biochim Biophys Acta Protein Struct Mol Enzymol 996:103–109. doi:10.1016/0167-4838(89)90101-5

    Article  CAS  Google Scholar 

  • Lee SB, Kim CK, Lee K-H, Ahn J-Y (2012) S-nitrosylation of B23/nucleophosmin by GAPDH protects cells from the SIAH1–GAPDH death cascade. J Cell Biol 199:65–76. doi:10.1083/jcb.201205015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin S-S, Chang SC, Wang Y-H et al (2000) Specific interaction between the hepatitis delta virus RNA and glyceraldehyde 3-phosphate dehydrogenase: an enhancement on ribozyme catalysis. Virology 271:46–57. doi:10.1006/viro.2000.0302

    Article  CAS  PubMed  Google Scholar 

  • Littlechild JA, Guy JE, Isupov MN (2004) Hyperthermophilic dehydrogenase enzymes. Biochem Soc Trans 32:255–258. doi:10.1042/bst0320255

    Article  CAS  PubMed  Google Scholar 

  • Lowe SL, Adrian C, Ouporov IV et al (2003) Brownian dynamics simulations of glycolytic enzyme subsets with F-actin. Biopolymers 70:456–470. doi:10.1002/bip.10530

    Article  CAS  PubMed  Google Scholar 

  • Malay AD, Bessho Y, Ellis MJ et al (2009) Structure of glyceraldehyde-3-phosphate dehydrogenase from the archaeal hyperthermophile Methanocaldococcus jannaschii. Acta Crystallogr Sect F Struct Biol Cryst Commun 65:1227–1233. doi:10.1107/S1744309109047046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mansur NR, Meyer-Siegler K, Wurzer JC, Sirover MA (1993) Cell cycle regulation of the glyceraldehyde3phosphate dehydrogenaseluracil DNA glycosylase gene in normal human cells. Nucleic Acids Res 21:993–998. doi:10.1093/nar/21.4.993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maris C, Dominguez C, Allain FH-T (2005) The RNA recognition motif, a plastic RNA-binding platform to regulate post-transcriptional gene expression: the RRM domain, a plastic RNA-binding platform. FEBS J 272:2118–2131. doi:10.1111/j.1742-4658.2005.04653.x

    Article  CAS  PubMed  Google Scholar 

  • Mazzola JL, Sirover MA (2002) Alteration of nuclear glyceraldehyde-3-phosphate dehydrogenase structure in Huntington’s disease fibroblasts. Mol Brain Res 100:95–101. doi:10.1016/S0169-328X(02)00160-2

    Article  CAS  PubMed  Google Scholar 

  • Mazzola JL, Sirover MA (2003) Subcellular alteration of glyceraldehyde-3-phosphate dehydrogenase in Alzheimer’s disease fibroblasts. J Neurosci Res 71:279–285. doi:10.1002/jnr.10484

    Article  CAS  PubMed  Google Scholar 

  • McGowan K, Pekala PH (1996) Dehydrogenase binding to the 3′-untranslated region of GLUT1 mRNA. Biochem Biophys Res Commun 221:42–45. doi:10.1006/bbrc.1996.0541

    Article  CAS  PubMed  Google Scholar 

  • Méjean C, Pons F, Benyamin Y, Roustan C (1989) Antigenic probes locate binding sites for the glycolytic enzymes glyceraldehyde-3-phosphate dehydrogenase, aldolase and phosphofructokinase on the actin monomer in microfilaments. Biochem J 264:671–677. doi:10.1042/bj2640671

    Article  PubMed  PubMed Central  Google Scholar 

  • Mezquita J, Pau M, Mezquita C (1998) Several novel transcripts of glyceraldehyde-3-phosphate dehydrogenase expressed in adult chicken testis. J Cell Biochem 71:127–139

    Article  CAS  PubMed  Google Scholar 

  • Miki K, Qu W, Goulding E et al (2004) Glyceraldehyde 3-phosphate dehydrogenase-S, a sperm-specific glycolytic enzyme, is required for sperm motility and male fertility. Proc Natl Acad Sci 101:16501–16506. doi:10.1073/pnas.0407708101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Millet P, Vachharajani V, McPhail L et al (2016) GAPDH binding to TNF-alpha mRNA contributes to posttranscriptional repression in monocytes: a novel mechanism of communication between inflammation and metabolism. J Immunol 196:2541–2551. doi:10.4049/jimmunol.1501345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Modun B, Williams P (1999) The staphylococcal transferrin-binding protein is a cell wall glyceraldehyde-3-phosphate dehydrogenase. Infect Immun 67:1086–1092

    CAS  PubMed  PubMed Central  Google Scholar 

  • Modun B, Morrissey J, Williams P (2000) The staphylococcal transferrin receptor: a glycolytic enzyme with novel functions. Trends Microbiol 8:231–237. doi:10.1016/S0966-842X(00)01728-5

    Article  CAS  PubMed  Google Scholar 

  • Mohr S, Stamler JS, Brune B (1996) Posttranslational modification of glyceraldehyde-3-phosphate dehydrogenase by S-nitrosylation and subsequent NADH attachment. J Biol Chem 271:4209–4214

    Article  CAS  PubMed  Google Scholar 

  • Molina y Vedia L, McDonald B, Reep B et al (1992) Nitric oxide-induced S-nitrosylation of glyceraldehyde-3-phosphate dehydrogenase inhibits enzymatic activity and increases endogenous ADP-ribosylation. J Biol Chem 267:24929–24932

    CAS  PubMed  Google Scholar 

  • Moniot S, Bruno S, Vonrhein C et al (2008) Trapping of the thioacylglyceraldehyde-3-phosphate dehydrogenase intermediate from Bacillus stearothermophilus: direct evidence for a flip-flop mechanism. J Biol Chem 283:21693–21702. doi:10.1074/jbc.M802286200

    Article  CAS  PubMed  Google Scholar 

  • Moras D, Olsen KW, Sabesan MN et al (1975) Studies of asymmetry in the three-dimensional structure of lobster D-glyceraldehyde-3-phosphate dehydrogenase. J Biol Chem 250:9137–9162

    CAS  PubMed  Google Scholar 

  • Muronetz VI, Wang ZX, Keith TJ et al (1994) Binding constants and stoichiometries of glyceraldehyde 3-phosphate dehydrogenase-tubulin complexes. Arch Biochem Biophys 313:253–260. doi:10.1006/abbi.1994.1385

    Article  CAS  PubMed  Google Scholar 

  • Mustafa AK, Gadalla MM, Sen N et al (2009) H2S signals through protein S-sulfhydration. Sci Signal 2:ra72. doi:10.1126/scisignal.2000464

    PubMed  PubMed Central  Google Scholar 

  • Nagy E, Rigby WFC (1995) Glyceraldehyde-3-phosphate dehydrogenase selectively binds AU-rich RNA in the NAD+-binding region (Rossmann fold). J Biol Chem 270:2755–2763

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa T, Hirano Y, Inomata A et al (2003) Participation of a fusogenic protein, glyceraldehyde-3-phosphate dehydrogenase, in nuclear membrane assembly. J Biol Chem 278:20395–20404. doi:10.1074/jbc.M210824200

    Article  CAS  PubMed  Google Scholar 

  • Nakajima H, Amano W, Fujita A et al (2007) The active site cysteine of the proapoptotic protein glyceraldehyde-3-phosphate dehydrogenase is essential in oxidative stress-induced aggregation and cell death. J Biol Chem 282:26562–26574

    Article  CAS  PubMed  Google Scholar 

  • Nakajima H, Amano W, Kubo T et al (2009) Glyceraldehyde-3-phosphate dehydrogenase aggregate formation participates in oxidative stress-induced cell death. J Biol Chem 284:34331–34341. doi:10.1074/jbc.M109.027698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicholls C, Pinto AR, Li H et al (2012) Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) induces cancer cell senescence by interacting with telomerase RNA component. Proc Natl Acad Sci 109:13308–13313. doi:10.1073/pnas.1206672109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nüesch JPF, Weitz M, Siegl G (1993) Proteins specifically binding to the 3′ untranslated region of hepatitis A virus RNA in persistently infected cells. Arch Virol 128:65–79. doi:10.1007/BF01309789

    Article  PubMed  Google Scholar 

  • Ouporov IV, Keith TJ, Knull HR, Thomasson KA (2000) Computer simulations of glycolytic enzyme interactions with F-actin. J Biomol Struct Dyn 18:311–323. doi:10.1080/07391102.2000.10506668

    Article  CAS  PubMed  Google Scholar 

  • Ouporov IV, Knull HR, Lowe SL, Thomasson KA (2001) Interactions of glyceraldehyde-3-phosphate dehydrogenase with G- and F-actin predicted by Brownian dynamics. J Mol Recognit 14:29–41. doi:10.1002/1099-1352(200101/02)14:1<29::AID-JMR517>3.0.CO;2-T

    Article  CAS  PubMed  Google Scholar 

  • Pancholi V, Fischetti VA (1992) A major surface protein on group A streptococci is a glyceraldehyde-3-phosphate-dehydrogenase with multiple binding activity. J Exp Med 176:415–426. doi:10.1084/jem.176.2.415

    Article  CAS  PubMed  Google Scholar 

  • Park J, Han D, Kim K et al (2009) O-GlcNAcylation disrupts glyceraldehyde-3-phosphate dehydrogenase homo-tetramer formation and mediates its nuclear translocation. Biochim Biophys Acta Proteins Proteomics 1794:254–262. doi:10.1016/j.bbapap.2008.10.003

    Article  CAS  Google Scholar 

  • Persons DA, Schek N, Hall BL, Finn OJ (1989) Increased expression of glycolysis-associated genes in oncogene-transformed and growth-accelerated states. Mol Carcinog 2:88–94

    Article  CAS  PubMed  Google Scholar 

  • Perucho M, Salas J, Salas M (1977) Identification of mammalian DNA-binding protein P8 as glyceraldehyde-3-phosphate dehydrogenase. Eur J Bochem 81:557–562

    Article  CAS  Google Scholar 

  • Petrik J, Parker H, Alexander GJM (1999) Human hepatic glyceraldehyde-3-phosphate dehydrogenase binds to the poly(U) tract of the 3′ non-coding region of hepatitis C virus genomic RNA. J Gen Virol 80:3109–3113. doi:10.1099/0022-1317-80-12-3109

    Article  CAS  PubMed  Google Scholar 

  • Piechaczyk M, Blanchard J, Sabouty S et al (1984) Unusual abundance of vertebrate 3-phosphate dehydrogenase pseudogenes. Nature 312:469–471

    Article  CAS  PubMed  Google Scholar 

  • Pierce A, Mirzaei H, Muller F et al (2008) GAPDH is conformationally and functionally altered in association with oxidative stress in mouse models of amyotrophic lateral sclerosis. J Mol Biol 382:1195–1210

    Article  CAS  PubMed  Google Scholar 

  • Polati R, Castagna A, Bossi AM et al (2012) Murine macrophages response to iron. J Proteome 76:10–27. doi:10.1016/j.jprot.2012.07.018

    Article  CAS  Google Scholar 

  • Puchulu-Campanella E, Chu H, Anstee DJ et al (2013) Identification of the components of a glycolytic enzyme metabolon on the human red blood cell membrane. J Biol Chem 288:848–858. doi:10.1074/jbc.M112.428573

    Article  CAS  PubMed  Google Scholar 

  • Puder M, Soberman RJ (1997) Glutathione conjugates recognize the Rossmann fold of glyceraldehyde-3-phosphate dehydrogenase. J Biol Chem 272:10936–10940. doi:10.1074/jbc.272.16.10936

    Article  CAS  PubMed  Google Scholar 

  • Quail EA, Yeoh GCT (1995) The effect of iron status on glyceraldehyde 3-phosphate dehydrogenase expression in rat liver. FEBS Lett 359:126–128. doi:10.1016/0014-5793(95)00023-3

    Article  CAS  PubMed  Google Scholar 

  • Raje CI, Kumar S, Harle A et al (2007) The macrophage cell surface glyceraldehyde-3-phosphate dehydrogenase is a novel transferrin receptor. J Biol Chem 282:3252–3261. doi:10.1074/jbc.M608328200

    Article  CAS  PubMed  Google Scholar 

  • Ralser M, Wamelink MM, Kowald A et al (2007) Dynamic rerouting of the carbohydrate flux is key to counteracting oxidative stress. J Biol 6:10. doi:10.1186/jbiol61

    Article  PubMed  PubMed Central  Google Scholar 

  • Randall G, Panis M, Cooper JD et al (2007) Cellular cofactors affecting hepatitis C virus infection and replication. Proc Natl Acad Sci USA 104:12884–12889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ravichandran V, Seres T, Moriguchi T et al (1994) S-thiolation of glyceraldehyde-3-phosphate dehydrogenase induced by the phagocytosis-associated respiratory burst in blood monocytes. J Biol Chem 269:25010–25015

    CAS  PubMed  Google Scholar 

  • Rawat P, Kumar S, Sheokand N et al (2012) The multifunctional glycolytic protein glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a novel macrophage lactoferrin receptor. Biochem Cell Biol 90:329–338. doi:10.1139/o11-058

    Article  CAS  PubMed  Google Scholar 

  • Robbins AR, Ward RD, Oliver C (1995) A mutation in glyceraldehyde 3-phosphate dehydrogenase alters endocytosis in CHO cells. J Cell Biol 130:1093–1104. doi:10.1083/jcb.130.5.1093

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Pascual F, Redondo-Horcajo M, Magan-Marchal N et al (2008) Glyceraldehyde-3-phosphate dehydrogenase regulates endothelin-1 expression by a novel, redox-sensitive mechanism involving mRNA stability. Mol Cell Biol 28:7139–7155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogalski-Wilk AA, Cohen RS (1997) Glyceraldehyde-3-phosphate dehydrogenase activity and F-actin associations in synaptosomes and postsynaptic densities of porcine cerebral corte15. Cell Mol Neurobiol 17:51–70. doi:10.1023/A:1026377004261

    Article  CAS  PubMed  Google Scholar 

  • Ryazanov AG (1985) Glyceraldehyde-3-phosphate dehydrogenase is one of the three major RNA-binding proteins of rabbit reticulocytes. FEBS Lett 192:131–134. doi:10.1016/0014-5793(85)80058-2

    Article  CAS  PubMed  Google Scholar 

  • Samson AL, Knaupp AS, Kass I et al (2014) Oxidation of an exposed methionine instigates the aggregation of glyceraldehyde-3-phosphate dehydrogenase. J Biol Chem 289:26922–26936. doi:10.1074/jbc.M114.570275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarkar A, Dai Y, Haque MM et al (2015) Heat shock protein 90 associates with the Per-Arnt-Sim domain of Heme-free soluble guanylate cyclase: implications for enzyme maturation. J Biol Chem 290:21615–21628. doi:10.1074/jbc.M115.645515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Satchell JF, Malby RL, Luo CS et al (2005) Structure of glyceraldehyde-3-phosphate dehydrogenase from Plasmodium falciparum. Acta Crystallogr D Biol Crystallogr 61:1213–1221. doi:10.1107/S0907444905018317

    Article  PubMed  CAS  Google Scholar 

  • Saunders PA, Chalecka-Franaszek E, Chuang D-M (1997) Subcellular distribution of glyceraldehyde-3-phosphate dehydrogenase in cerebellar granule cells undergoing cytosine arabinoside-induced apoptosis. J Neurochem 69:1820–1828. doi:10.1046/j.1471-4159.1997.69051820.x

    Article  CAS  PubMed  Google Scholar 

  • Sawa A, Khan AA, Hester LD, Snyder SH (1997) Glyceraldehyde-3-phosphate dehydrogenase: nuclear translocation participates in neuronal and nonneuronal cell death. Proc Natl Acad Sci 94:11669–11674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmitz H (2001) Reversible nuclear translocation of glyceraldehyde-3-phosphate dehydrogenase upon serum depletion. Eur J Cell Biol 80:419–427

    Article  CAS  PubMed  Google Scholar 

  • Schmitz H, Bereiter-Hahn J (2002) Glyceraldehyde-3-phosphate dehydrogenase associates with actin filaments in serum deprived NIH 3 T3 cells only. Cell Biol Int 26:155–164. doi:10.1006/cbir.2001.0819

    Article  CAS  PubMed  Google Scholar 

  • Schneider ML, Post CB (1995) Solution structure of a band 3 peptide inhibitor bound to aldolase: a proposed mechanism for regulating binding by tyrosine phosphorylation. Biochemistry 34:16574–16584. doi:10.1021/bi00051a005

    Article  CAS  PubMed  Google Scholar 

  • Schultz D, Hardin C, Lemon S (1996) Specific interaction of glyceraldehyde 3-phopshate dehydrogenase with the 5′-nontranslated RNA of hepatitis A virus. J Biol Chem 271:14134–14142

    Article  CAS  PubMed  Google Scholar 

  • Schuppe-Koistinen I, Moldéus P, Bergman T, Cotgreave I (1994) S-thiolation of human endothelial cell glyceraldehyde-3-phosphate dehydrogenase after hydrogen peroxide treatment. Eur J Biochem 221:1033–1037

    Article  CAS  PubMed  Google Scholar 

  • Sen N, Hara MR, Kornberg MD et al (2008) Nitric oxide-induced nuclear GAPDH activates p300/CBP and mediates apoptosis. Nat Cell Biol 10:866–873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sen N, Hara MR, Ahmad AS et al (2009) GOSPEL: a neuroprotective protein that binds to GAPDH upon S-nitrosylation. Neuron 63:81–91. doi:10.1016/j.neuron.2009.05.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sergienko EA, Kharitonenkov AI, Bulargina TV et al (1992) d-Glyceraldehyde-3-phosphate dehydrogenase purified from rabbit muscle contains phosphotyrosine. FEBS Lett 304:21–23. doi:10.1016/0014-5793(92)80580-A

    Article  CAS  PubMed  Google Scholar 

  • Sheedy R, Clarke F (2001) Predicting interaction sites between glycolytic enzymes and cytoskeletal proteins employing the concepts of the molecular recognition theory. In: Thomas DD, dos Remedios CG (eds) Molecular interactions of actin. Actin structure and actin-binding proteins. Springer-Verlag, Heidelberg, pp 155–164

    Chapter  Google Scholar 

  • Sheokand N, Malhotra H, Kumar S et al (2014) Moonlighting cell-surface GAPDH recruits apotransferrin to effect iron egress from mammalian cells. J Cell Sci 127:4279–4291. doi:10.1242/jcs.154005

    Article  CAS  PubMed  Google Scholar 

  • Shiozawa M, Fukutani Y, Arai N et al (2003) Glyceraldehyde 3-phosphate dehydrogenase and endothelin-1 immunoreactivity is associated with cerebral white matter damage in dentatorubral–pallidoluysian atrophy. Neuropathology 23:36–43. doi:10.1046/j.1440-1789.2003.00480.x

    Article  PubMed  Google Scholar 

  • Silva B, Faustino P (2015) An overview of molecular basis of iron metabolism regulation and the associated pathologies. Biochim Biophys Acta (BBA) - Mol Basis Dis 1852:1347–1359. doi:10.1016/j.bbadis.2015.03.011

    Article  CAS  Google Scholar 

  • Singh R, Green M (1993) Sequence-specific binding of transfer RNA by glyceraldehyde-3-phosphate dehydrogenase. Science 259:365–368. doi:10.1126/science.8420004

    Article  CAS  PubMed  Google Scholar 

  • Sioud M, Jespersen L (1996) Enhancement of hammerhead ribozyme catalysis by glyceraldehyde-3-phosphate dehydrogenase. J Mol Biol 257:775–789. doi:10.1006/jmbi.1996.0201

    Article  CAS  PubMed  Google Scholar 

  • Sirover MA (2012) Subcellular dynamics of multifunctional protein regulation: mechanisms of GAPDH intracellular translocation. J Cell Biochem 113:2193–2200. doi:10.1002/jcb.24113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sirover MA (2014) Structural analysis of glyceraldehyde-3-phosphate dehydrogenase functional diversity. Int J Biochem Cell Biol 57:20–26. doi:10.1016/j.biocel.2014.09.026

    Article  CAS  PubMed  Google Scholar 

  • Skarżyński T, Wonacott AJ (1988) Coenzyme-induced conformational changes in glyceraldehyde-3-phosphate dehydrogenase from Bacillus stearothermophilus. J Mol Biol 203:1097–1118. doi:10.1016/0022-2836(88)90130-1

    Article  PubMed  Google Scholar 

  • Sneve ML, Øverbye A, Fengsrud M, Seglen PO (2005) Comigration of two autophagosome-associated dehydrogenases on two-dimensional polyacrylamide gels. Autophagy 1:157–162. doi:10.4161/auto.1.3.2037

    Article  CAS  PubMed  Google Scholar 

  • Somers M, Engelborghs Y, Baert J (1990) Analysis of the binding of glyceraldehyde-3-phosphate dehydrogenase to microtubules, the mechanism of bundle formation and the linkage effect. Eur J Biochem 193:437–444

    Article  CAS  PubMed  Google Scholar 

  • Song S, Finkel T (2007) GAPDH and the search for alternative energy. Nat Cell Biol 9:869–870. doi:10.1038/ncb0807-869

    Article  CAS  PubMed  Google Scholar 

  • Stone E, Rothblum K, Alevy M et al (1985) Complete sequence of the chicken glyceraldehyde-3-phosphate dehydrogenase gene. Proc Natl Acad Sci 82:1628–1632. doi:10.1073/pnas.82.6.1628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su Y, Blake-Palmer KG, Fry AC et al (2011) Glyceraldehyde 3-phosphate dehydrogenase is required for band 3 (anion exchanger 1) membrane residency in the mammalian kidney. Am J Physiol Ren Physiol 300:F157–F166. doi:10.1152/ajprenal.00228.2010

    Article  CAS  Google Scholar 

  • Sundararaj KP, Wood RE, Ponnusamy S et al (2004) Rapid shortening of telomere length in response to ceramide involves the inhibition of telomere binding activity of nuclear glyceraldehyde-3-phosphate dehydrogenase. J Biol Chem 279:6152–6162

    Article  CAS  PubMed  Google Scholar 

  • Suresh S, Bressi JC, Kennedy KJ et al (2001) Conformational changes in Leishmania mexicana glyceraldehyde-3-phosphate dehydrogenase induced by designed inhibitors. J Mol Biol 309:423–435. doi:10.1006/jmbi.2001.4588

    Article  CAS  PubMed  Google Scholar 

  • Talfournier F, Colloc’h N, Mornon JP, Branlant G (1998) Comparative study of the catalytic domain of phosphorylating glyceraldehyde-3-phosphate dehydrogenases from bacteria and archaea via essential cysteine probes and site-directed mutagenesis. Eur J Biochem 252:447–457

    Article  CAS  PubMed  Google Scholar 

  • Tarze A, Deniaud A, Le Bras M et al (2007) GAPDH, a novel regulator of the pro-apoptotic mitochondrial membrane permeabilization. Oncogene 26:2606–2620. doi:10.1038/sj.onc.1210074

    Article  CAS  PubMed  Google Scholar 

  • Tatton NA (2000) Increased caspase 3 and bax immunoreactivity accompany nuclear GAPDH translocation and neuronal apoptosis in Parkinson’s disease. Exp Neurol 166:29–43. doi:10.1006/exnr.2000.7489

    Article  CAS  PubMed  Google Scholar 

  • Taylor J, Heinrichs D (2002) Transferrin binding in Staphylococcus aureus: involvement of a cell wall-anchored protein. Mol Microbiol 43:1603–1614

    Article  CAS  PubMed  Google Scholar 

  • Tisdale EJ (2001) Glyceraldehyde-3-phosphate dehydrogenase is required for vesicular transport in the early secretory pathway. J Biol Chem 276:2480–2486

    Article  CAS  PubMed  Google Scholar 

  • Tisdale EJ (2002) Glyceraldehyde-3-phosphate dehydrogenase is phosphorylated by protein kinase C/and plays a role in microtubule dynamics in the early secretory pathway. J Biol Chem 277:3334–3341. doi:10.1074/jbc.M109744200

    Article  CAS  PubMed  Google Scholar 

  • Tisdale EJ, Artalejo CR (2006) Src-dependent a protein kinase C/(aPKC / ) tyrosine phosphorylation is required for aPKC/association with Rab2 and glyceraldehyde-3-phosphate dehydrogenase on pre-golgi intermediates. J Biol Chem 281:8436–8442. doi:10.1074/jbc.M513031200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tisdale EJ, Artalejo CR (2007) A GAPDH mutant defective in Src-dependent tyrosine phosphorylation impedes Rab2-mediated events. Traffic 8:733–741. doi:10.1111/j.1600-0854.2007.00569.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tisdale EJ, Kelly C, Artalejo CR (2004) Glyceraldehyde-3-phosphate dehydrogenase Interacts with Rab2 and plays an essential role in endoplasmic reticulum to golgi transport exclusive of its glycolytic activity. J Biol Chem 279:54046–54052. doi:10.1074/jbc.M409472200

    Article  CAS  PubMed  Google Scholar 

  • Tisdale EJ, Azizi F, Artalejo CR (2009) Rab2 utilizes glyceraldehyde-3-phosphate dehydrogenase and protein kinase C to associate with microtubules and to recruit dynein. J Biol Chem 284:5876–5884. doi:10.1074/jbc.M807756200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tokunaga K, Nakamura Y, Sakata K et al (1987) Enhanced expression of a glyceraldehyde-3-phosphate dehydrogenase gene in human lung cancers. Cancer Res 47:5616–5619

    PubMed  Google Scholar 

  • Tristan C, Shahani N, Sedlak TW, Sawa A (2011) The diverse functions of GAPDH: views from different subcellular compartments. Cell Signal 23:317–323. doi:10.1016/j.cellsig.2010.08.003

    Article  CAS  PubMed  Google Scholar 

  • Tsai IH, Murthy SN, Steck TL (1982) Effect of red cell membrane binding on the catalytic activity of glyceraldehyde-3-phosphate dehydrogenase. J Biol Chem 257:1438–1442

    CAS  PubMed  Google Scholar 

  • Tsuchiya K, Tajima H, Yamada M et al (2004) Disclosure of a pro-apoptotic glyceraldehyde-3-phosphate dehydrogenase promoter: anti-dementia drugs depress its activation in apoptosis. Life Sci 74:3245–3258. doi:10.1016/j.lfs.2003.11.029

    Article  CAS  PubMed  Google Scholar 

  • Ventura M, Mateo F, Serratosa J et al (2010) Nuclear translocation of glyceraldehyde-3-phosphate dehydrogenase is regulated by acetylation. Int J Biochem Cell Biol 42:1672–1680 doi: http://d15.doi.org/10.1016/j.biocel.2010.06.014

    Article  CAS  PubMed  Google Scholar 

  • Verlinde CLMJ, Callens M, Van Calenbergh S et al (1994) Selective inhibition of trypanosomal glyceraldehyde-3-phosphate dehydrogenase by protein structure-based design: toward new drugs for the treatment of sleeping sickness. J Med Chem 37:3605–3613. doi:10.1021/jm00047a017

    Article  CAS  PubMed  Google Scholar 

  • Volker KW, Knull HR (1993) Glycolytic enzyme-tubulin interactions: role of tubulin carboxy terminals. J Mol Recognit 6:167–177. doi:10.1002/jmr.300060405

    Article  CAS  PubMed  Google Scholar 

  • Volker KW, Knull HR (1997) A glycolytic enzyme binding domain on tubulin. Arch Biochem Biophys 338:237–243. doi:10.1006/abbi.1996.9819

    Article  CAS  PubMed  Google Scholar 

  • Waingeh VF, Lowe SL, Thomasson KA (2004) Brownian dynamics of interactions between glyceraldehyde-3-phosphate dehydrogenase (GAPDH) mutants and F-actin. Biopolymers 73:533–541. doi:10.1002/bip.10560

    Article  CAS  PubMed  Google Scholar 

  • Walsh JL, Keith TJ, Knull HR (1989) Glycolytic enzyme interactions with tubulin and microtubules. Biochim Biophys Acta Protein Struct Mol Enzymol 999:64–70. doi:10.1016/0167-4838(89)90031-9

    Article  CAS  Google Scholar 

  • Wang RY, Nagy PD (2008) Tomato bushy stunt virus co-opts the RNA-binding function of a host metabolic enzyme for viral genomic RNA synthesis. Cell Host Microbe 3:178–187

    Article  CAS  PubMed  Google Scholar 

  • White MR, Garcin ED (2016) The sweet side of RNA regulation: glyceraldehyde-3-phosphate dehydrogenase as a noncanonical RNA-binding protein. Wiley Interdiscip Rev RNA 7:53–70. doi:10.1002/wrna.1315

    Article  CAS  PubMed  Google Scholar 

  • White MR, Khan MM, Deredge D et al (2015) A dimer interface mutation in glyceraldehyde-3-phosphate dehydrogenase regulates its binding to AU-rich RNA. J Biol Chem 290:1770–1785. doi:10.1074/jbc.M114.618165

    Article  PubMed  CAS  Google Scholar 

  • Yamaji R, Chatani E, Harada N et al (2005) Glyceraldehyde-3-phosphate dehydrogenase in the extracellular space inhibits cell spreading. Biochim Biophys Acta Gen Subj 1726:261–271. doi:10.1016/j.bbagen.2005.07.013

    Article  CAS  Google Scholar 

  • Yang S-H, Liu M-L, Tien C-F et al (2009) Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) interaction with 3′ ends of Japanese encephalitis virus RNA and colocalization with the viral NS5 protein. J Biomed Sci 16:40. doi:10.1186/1423-0127-16-40

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yego ECK, Mohr S (2010) siah-1 protein is necessary for high glucose-induced glyceraldehyde-3-phosphate dehydrogenase nuclear accumulation and cell death in Muller cells. J Biol Chem 285:3181–3190. doi:10.1074/jbc.M109.083907

    Article  CAS  PubMed  Google Scholar 

  • Yego ECK, Vincent JA, Sarthy V et al (2009) Differential regulation of high glucose–induced glyceraldehyde-3-phosphate dehydrogenase nuclear accumulation in Müller cells by IL-1β and IL-6. Invest Opthalmol Vis Sci 50:1920. doi:10.1167/iovs.08-2082

    Article  Google Scholar 

  • Yi M, Schultz DE, Lemon SM (2000) Functional significance of the interaction of Hepatitis A virus RNA with Glyceraldehyde 3-Phosphate Dehydrogenase (GAPDH): opposing effects of GAPDH and polypyrimidine tract binding protein on internal ribosome entry site function. J Virol 74:6459–6468. doi:10.1128/JVI.74.14.6459-6468.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan A, Mills RG, Bamburg JR, Bray JJ (1999) Cotransport of glyceraldehyde-3-phosphate dehydrogenase and actin in axons of chicken motoneurons. Cell Mol Neurobiol 19:733–744. doi:10.1023/A:1006953022763

    Article  CAS  PubMed  Google Scholar 

  • Yun M, Park C-G, Kim J-Y, Park H-W (2000) Structural analysis of glyceraldehyde 3-phosphate dehydrogenase from Escherichia coli: direct evidence of substrate binding and cofactor-induced conformational changes. Biochemistry 39:10702–10710. doi:10.1021/bi9927080

    Article  CAS  PubMed  Google Scholar 

  • Zeng T, Dong Z-F, Liu S-J et al (2014) A novel variant in the 3′ UTR of human SCN1A gene from a patient with Dravet syndrome decreases mRNA stability mediated by GAPDH’s binding. Hum Genet 133:801–811. doi:10.1007/s00439-014-1422-8

    Article  PubMed  Google Scholar 

  • Zheng L, Roeder RG, Luo Y (2003) S phase activation of the histone H2B promoter by OCA-S, a coactivator complex that contains GAPDH as a key component. Cell 114:255–266

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Yi X, Stoffer JB et al (2008) The multifunctional protein glyceraldehyde-3-phosphate dehydrogenase is both regulated and controls colony-stimulating factor-1 messenger RNA stability in ovarian cancer. Mol Cancer Res 6:1375–1384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael R. White .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

White, M.R., Garcin, E.D. (2017). D-Glyceraldehyde-3-Phosphate Dehydrogenase Structure and Function. In: Harris, J., Marles-Wright, J. (eds) Macromolecular Protein Complexes. Subcellular Biochemistry, vol 83. Springer, Cham. https://doi.org/10.1007/978-3-319-46503-6_15

Download citation

Publish with us

Policies and ethics