Advertisement

Cluster Sparsity Field for Hyperspectral Imagery Denoising

  • Lei Zhang
  • Wei WeiEmail author
  • Yanning Zhang
  • Chunhua Shen
  • Anton van den Hengel
  • Qinfeng Shi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9909)

Abstract

Hyperspectral images (HSIs) can facilitate extensive computer vision applications with the extra spectra information. However, HSIs often suffer from noise corruption during the practical imaging procedure. Though it has been testified that intrinsic correlation across spectrum and spatial similarity (i.e., local similarity in locally smooth areas and non-local similarity among recurrent patterns) in HSIs are useful for denoising, how to fully exploit them together to obtain a good denoising model is seldom studied. In this study, we present an effective cluster sparsity field based HSIs denoising (CSFHD) method by exploiting those two characteristics simultaneously. Firstly, a novel Markov random field prior, named cluster sparsity field (CSF), is proposed for the sparse representation of an HSI. By grouping pixels into several clusters with spectral similarity, the CSF prior defines both a structured sparsity potential and a graph structure potential on each cluster to model the correlation across spectrum and spatial similarity in the HSI, respectively. Then, the CSF prior learning and the image denoising are unified into a variational framework for optimization, where all unknown variables are learned directly from the noisy observation. This guarantees to learn a data-dependent image model, thus producing satisfying denoising results. Plenty experiments on denoising synthetic and real noisy HSIs validated that the proposed CSFHD outperforms several state-of-the-art methods.

Keywords

Hyperspectral Denoising Structured sparsity Spatial similarity 

Notes

Acknowledgements

This work is in part supported by National Natural Science Foundation of China (No. 61231016, 61301192 and 61571354), Fundamental Research Funds for the Central Universities (No. 3102015JSJ0006), Innovation Foundation for Doctoral Dissertation of Northwestern Polytechnical University (No. CX201521) and Australian Research Council grants (DP140102270, DP160100703, FT120100969).

Supplementary material

419978_1_En_38_MOESM1_ESM.pdf (219 kb)
Supplementary material 1 (pdf 218 KB)

References

  1. 1.
    Wang, Z., Nasrabadi, N.M., Huang, T.S.: Semisupervised hyperspectral classification using task-driven dictionary learning with Laplacian regularization. IEEE Trans. Geosci. Remote Sens. 53(3), 1161–1173 (2015)CrossRefGoogle Scholar
  2. 2.
    Van Nguyen, H., Banerjee, A., Chellappa, R.: Tracking via object reflectance using a hyperspectral video camera. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 44–51. IEEE (2010)Google Scholar
  3. 3.
    Akbari, H., Kosugi, Y., Kojima, K., Tanaka, N.: Detection and analysis of the intestinal Ischemia using visible and invisible hyperspectral imaging. IEEE Trans. Biomed. Eng. 57(8), 2011–2017 (2010)CrossRefGoogle Scholar
  4. 4.
    Kerekes, J.P., Baum, J.E.: Full-spectrum spectral imaging system analytical model. IEEE Trans. Geosci. Remote Sens. 43(3), 571–580 (2005)CrossRefGoogle Scholar
  5. 5.
    Renard, N., Bourennane, S., Blanc-Talon, J.: Denoising and dimensionality reduction using multilinear tools for hyperspectral images. IEEE Geosci. Remote Sens. Lett. 5(2), 138–142 (2008)CrossRefGoogle Scholar
  6. 6.
    Liu, X., Bourennane, S., Fossati, C.: Denoising of hyperspectral images using the PARAFAC model and statistical performance analysis. IEEE Trans. Geosci. Remote Sens. 50(10), 3717–3724 (2012)CrossRefGoogle Scholar
  7. 7.
    Peng, Y., Meng, D., Xu, Z., Gao, C., Yang, Y., Zhang, B.: Decomposable nonlocal tensor dictionary learning for multispectral image denoising. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2949–2956. IEEE (2014)Google Scholar
  8. 8.
    Othman, H., Qian, S.E.: Noise reduction of hyperspectral imagery using hybrid spatial-spectral derivative-domain wavelet shrinkage. IEEE Trans. Geosci. Remote Sens. 44(2), 397–408 (2006)CrossRefGoogle Scholar
  9. 9.
    Greer, J.B.: Sparse demixing of hyperspectral images. IEEE Trans. Image Process. 21(1), 219–228 (2012)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Rasti, B., Sveinsson, J.R., Ulfarsson, M.O., Benediktsson, J.A.: Hyperspectral image denoising using a new linear model and sparse regularization. In: IEEE International Geoscience and Remote Sensing Symposium, pp. 457–460. IEEE (2013)Google Scholar
  11. 11.
    Zhang, L., Wei, W., Zhang, Y., Tian, C., Li, F.: Reweighted Laplace prior based hyperspectral compressive sensing for unknown sparsity. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2274–2281. IEEE (2015)Google Scholar
  12. 12.
    Qian, Y., Shen, Y., Ye, M., Wang, Q.: 3-D nonlocal means filter with noise estimation for hyperspectral imagery denoising. In: Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, pp. 1345–1348. IEEE (2012)Google Scholar
  13. 13.
    Maggioni, M., Boracchi, G., Foi, A., Egiazarian, K.: Video denoising, deblocking, and enhancement through separable 4-D nonlocal spatiotemporal transforms. IEEE Trans. Image Process. 21(9), 3952–3966 (2012)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Buades, A., Coll, B., Morel, J.M.: A non-local algorithm for image denoising. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 60–65. IEEE (2005)Google Scholar
  15. 15.
    Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans. Image Process. 16(8), 2080–2095 (2007)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Qian, Y., Ye, M.: Hyperspectral imagery restoration using nonlocal spectral-spatial structured sparse representation with noise estimation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 6(2), 499–515 (2013)CrossRefGoogle Scholar
  17. 17.
    Fu, Y., Lam, A., Sato, I., Sato, Y.: Adaptive spatial-spectral dictionary learning for hyperspectral image denoising. In: Proceedings of the IEEE Conference on Computer Vision, pp. 343–351 (2015)Google Scholar
  18. 18.
    Baraniuk, R.G., Cevher, V., Wakin, M.B.: Low-dimensional models for dimensionality reduction and signal recovery: a geometric perspective. Proc. IEEE 98(6), 959–971 (2010)CrossRefGoogle Scholar
  19. 19.
    Camps-Valls, G., Tuia, D., Bruzzone, L., Atli Benediktsson, J.: Advances in hyperspectral image classification: earth monitoring with statistical learning methods. IEEE Signal Process. Mag. 31(1), 45–54 (2014)CrossRefGoogle Scholar
  20. 20.
    Li, B., Zhang, Y., Lin, Z., Lu, H., Center, C.M.I.: Subspace clustering by mixture of Gaussian regression. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2094–2102 (2015)Google Scholar
  21. 21.
    Lin, D., Fisher, J.: Manifold guided composite of Markov random fields for image modeling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2176–2183. IEEE (2012)Google Scholar
  22. 22.
    Schmidt, U., Roth, S.: Shrinkage fields for effective image restoration. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2774–2781. IEEE (2014)Google Scholar
  23. 23.
    Zhang, H., He, W., Zhang, L., Shen, H., Yuan, Q.: Hyperspectral image restoration using low-rank matrix recovery. IEEE Trans. Geosci. Remote Sens. 52(8), 4729–4743 (2014)CrossRefGoogle Scholar
  24. 24.
    Dong, W., Zhang, D., Shi, G.: Centralized sparse representation for image restoration. In: Proceedings of the IEEE Conference on Computer Vision, pp. 1259–1266. IEEE (2011)Google Scholar
  25. 25.
    Lu, C.-Y., Min, H., Zhao, Z.-Q., Zhu, L., Huang, D.-S., Yan, S.: Robust and efficient subspace segmentation via least squares regression. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7578, pp. 347–360. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-33786-4_26 CrossRefGoogle Scholar
  26. 26.
    Wipf, D.P., Rao, B.D., Nagarajan, S.: Latent variable Bayesian models for promoting sparsity. IEEE Trans. Inf. Theory 57(9), 6236–6255 (2011)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Aharon, M., Elad, M., Bruckstein, A.: K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process. 54(11), 4311–4322 (2006)CrossRefGoogle Scholar
  28. 28.
    Yasuma, F., Mitsunaga, T., Iso, D., Nayar, S.K.: Generalized assorted pixel camera: postcapture control of resolution, dynamic range, and spectrum. IEEE Trans. Image Process. 19(9), 2241–2253 (2010)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Maggioni, M., Katkovnik, V., Egiazarian, K., Foi, A.: Nonlocal transform-domain filter for volumetric data denoising and reconstruction. IEEE Trans. Image Process. 22(1), 119–133 (2013)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Yuan, Q., Zhang, L., Shen, H.: Hyperspectral image denoising employing a spectral-spatial adaptive total variation model. IEEE Trans. Geosci. Remote Sens. 50(10), 3660–3677 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Lei Zhang
    • 1
  • Wei Wei
    • 1
    Email author
  • Yanning Zhang
    • 1
  • Chunhua Shen
    • 2
  • Anton van den Hengel
    • 2
  • Qinfeng Shi
    • 2
  1. 1.School of Computer Science and EngineeringNorthwestern Polytechnical UniversityXi’anChina
  2. 2.School of Computer ScienceThe University of AdelaideAdelaideAustralia

Personalised recommendations