Advertisement

Network Flow Formulations for Learning Binary Hashing

  • Lopamudra MukherjeeEmail author
  • Jiming Peng
  • Trevor Sigmund
  • Vikas Singh
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9909)

Abstract

The problem of learning binary hashing seeks the identification of a binary mapping for a set of n examples such that the corresponding Hamming distances preserve high fidelity with a given \(n \times n\) matrix of distances (or affinities). This formulation has numerous applications in efficient search and retrieval of images (and other high dimensional data) on devices with storage/processing constraints. As a result, the problem has received much attention recently in vision and machine learning and a number of interesting solutions have been proposed. A common feature of most existing solutions is that they adopt continuous iterative optimization schemes which is then followed by a post-hoc rounding process to recover a feasible discrete solution. In this paper, we present a fully combinatorial network-flow based formulation for a relaxed version of this problem. The main maximum flow/minimum cut modules which drive our algorithm can be solved efficiently and can directly learn the binary codes. Despite its simplicity, we show that on most widely used benchmarks, our proposal yields competitive performance relative to a suite of nine different state of the art algorithms.

Notes

Acknowledgments

This research is funded by NIH R01 AG040396, NSF CAREER 1252725, NSF CGV 1219016 and NSF CMMI 1359548 and 1537712.

References

  1. 1.
    Mukherjee, L., Singh, V., Peng, J.: Scale invariant cosegmentation for image groups. In: CVPR (2011)Google Scholar
  2. 2.
    Mukherjee, L., Singh, V., Dyer, C.R.: Half-integrality based algorithms for cosegmentation of images. In: CVPR (2009)Google Scholar
  3. 3.
    Weiss, Y., Torralba, A., Fergus, R.: Spectral hashing. In: NIPS (2008)Google Scholar
  4. 4.
    Kulis, B., Darrell, T.: Learning to hash with binary reconstructive embeddings. In: NIPS (2009)Google Scholar
  5. 5.
    Gong, Y., Lazebnik, S.: Iterative quantization: a procrustean approach to learning binary codes. In: CVPR (2011)Google Scholar
  6. 6.
    Norouzi, M., Fleet, D.M.: Minimal loss hashing for compact binary codes. In: Proceedings of the 28th International Conference on Machine Learning (ICML-11) (2011)Google Scholar
  7. 7.
    Indyk, P., Motwani, R.: Approximate nearest neighbors: towards removing the curse of dimensionality. In: Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing, STOC 1998, pp. 604–613. ACM, New York (1998)Google Scholar
  8. 8.
    Liu, W., Mu, C., Kumar, S., Chang, S.: Discrete graph hashing. In: NIPS (2014)Google Scholar
  9. 9.
    Salakhutdinov, R., Hinton, G.: Semantic hashing. Int. J. Approximate Reasoning 50(7), 969–978 (2009)CrossRefGoogle Scholar
  10. 10.
    Krizhevsky, A., Hinton, G.E.: Using very deep autoencoders for content-based image retrieval. In: ESANN (2011)Google Scholar
  11. 11.
    Kulis, B., Grauman, K.: Kernelized locality-sensitive hashing for scalable image search. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 2130–2137. IEEE (2009)Google Scholar
  12. 12.
    Weiss, Y., Fergus, R., Torralba, A.: Multidimensional spectral hashing. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7576, pp. 340–353. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-33715-4_25 Google Scholar
  13. 13.
    Liu, W., Wang, J., Kumar, S., Chang, S.: Hashing with graphs. In: ICML (2011)Google Scholar
  14. 14.
    Mukherjee, L., Ravi, S.N., Ithapu, V.K., Holmes, T., Singh, V.: An NMF perspective on binary hashing. In: IEEE International Conference on Computer Vision (ICCV), pp. 4184–4192 (2015)Google Scholar
  15. 15.
    Zhang, D., Wang, J., Cai, D., Lu, J.: Self-taught hashing for fast similarity search. In: SIGIR, pp. 18–25 (2010)Google Scholar
  16. 16.
    Lin, G., Shen, C., Suter, D., van den Hengel, A.: A general two-step approach to learning-based hashing. In: ICCV (2013)Google Scholar
  17. 17.
    Shakhnarovich, G., Viola, P., Darrell, T.: Fast pose estimation with parameter-sensitive hashing. In: ICCV (2003)Google Scholar
  18. 18.
    Neyshabur, B., Srebro, N., Salakhutdinov, R., Makarychev, Y., Yadollahpour, P.: The power of asymmetry in binary hashing. In: NIPS (2013)Google Scholar
  19. 19.
    Ge, T., He, K., Sun, J.: Graph cuts for supervised binary coding. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8695, pp. 250–264. Springer, Heidelberg (2014). doi: 10.1007/978-3-319-10584-0_17 Google Scholar
  20. 20.
    Shen, F., Shen, C., Liu, W., Shen, H.T.: Supervised discrete hashing. In: CVPR (2015)Google Scholar
  21. 21.
    Li, H., Liu, W., Ji, H.: Two-stage hashing for fast document retrieval. In: ACL (2014)Google Scholar
  22. 22.
    Stoer, M., Wagner, F.: A simple min-cut algorithm. J. ACM 44(4), 585–591 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Wu, Z., Leahy, R.: An optimal graph theoretic approach to data clustering: theory and its application to image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 15(11), 1101–1113 (1993)CrossRefGoogle Scholar
  24. 24.
    Andreev, K., Racke, H.: Balanced graph partitioning. Theory Comput. Syst. 39(6), 929–939 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Chen, Y., Zhang, Y., Ji, X.: Size regularized cut for data clustering. In: Advances in Neural Information Processing Systems, pp. 211–218 (2005)Google Scholar
  26. 26.
    Boros, E., Hammer, P.L.: Pseudo-Boolean optimization. Discrete Appl. Math. 123(1–3), 155–225 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Kolmogorov, V., Rother, C.: Minimizing nonsubmodular functions with graph cuts-a review. IEEE Trans. Pattern Anal. Mach. Intell. 29(7), 1274–1279 (2007)CrossRefGoogle Scholar
  28. 28.
    Rother, C., Kohli, P., Feng, W., Jia, J.: Minimizing sparse higher order energy functions of discrete variables. In: IEEE Conference on Computer Vision and Pattern Recognition, 2009, CVPR 2009, pp. 1382–1389. IEEE (2009)Google Scholar
  29. 29.
    Rother, C., Kolmogorov, V., Lempitsky, V., Szummer, M.: Optimizing binary MRFs via extended roof duality. In: IEEE Conference on Computer Vision and Pattern Recognition, 2007, CVPR 2007, pp. 1–8. IEEE (2007)Google Scholar
  30. 30.
    Balcan, M.F., Blum, A., Vempala, S.: Kernels as features: on kernels, margins, and low-dimensional mappings. Mach. Learn. 65(1), 79–94 (2006)CrossRefzbMATHGoogle Scholar
  31. 31.
    Kahl, F., Strandmark, P.: Generalized roof duality for pseudo-boolean optimization. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 255–262. IEEE (2011)Google Scholar
  32. 32.
    Kolmogorov, V.: Generalized roof duality and bisubmodular functions. In: Advances in Neural Information Processing Systems, pp. 1144–1152 (2010)Google Scholar
  33. 33.
    Wang, J., Shen, H.T., Zhang, T.: A survey on learning to hash. MSRC Technical Report (2014)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Lopamudra Mukherjee
    • 1
    Email author
  • Jiming Peng
    • 2
  • Trevor Sigmund
    • 1
  • Vikas Singh
    • 3
  1. 1.University of Wisconsin–WhitewaterWhitewaterUSA
  2. 2.University of HoustonHoustonUSA
  3. 3.University of Wisconsin–MadisonMadisonUSA

Personalised recommendations