Advertisement

Minimal Solvers for Generalized Pose and Scale Estimation from Two Rays and One Point

  • Federico CamposecoEmail author
  • Torsten Sattler
  • Marc Pollefeys
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9909)

Abstract

Estimating the poses of a moving camera with respect to a known 3D map is a key problem in robotics and Augmented Reality applications. Instead of solving for each pose individually, the trajectory can be considered as a generalized camera. Thus, all poses can be jointly estimated by solving a generalized PnP (gPnP) problem. In this paper, we show that the gPnP problem for camera trajectories permits an extremely efficient minimal solution when exploiting the fact that pose tracking allows us to locally triangulate 3D points. We present a problem formulation based on one point-point and two point-ray correspondences that encompasses both the case where the scale of the trajectory is known and where it is unknown. Our formulation leads to closed-form solutions that are orders of magnitude faster to compute than the current state-of-the-art, while resulting in a similar or better pose accuracy.

Keywords

Absolute camera pose Pose solver Generalized cameras 

Notes

Acknowledgements

This research was funded by Google’s Tango.

Supplementary material

Supplementary material 1 (mp4 18880 KB)

References

  1. 1.
    Arth, C., Klopschitz, M., Reitmayr, G., Schmalstieg, D.: Real-time self-localization from panoramic images on mobile devices. In: International Symposium on Mixed and Augmented Reality (ISMAR) (2011)Google Scholar
  2. 2.
    Bujnak, M., Kukelova, Z., Pajdla, T.: A General solution to the P4P problem for camera with unknown focal length. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2008)Google Scholar
  3. 3.
    Chen, C.S., Chang, W.Y.: On pose recovery for generalized visual sensors. IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) 26(7), 848–861 (2004)CrossRefGoogle Scholar
  4. 4.
    Clipp, B., Zach, C., Frahm, J.M., Pollefeys, M.: A new minimal solution to the relative pose of a calibrated stereo camera with small field of view overlap. In: International Conference on Computer Vision (2009)Google Scholar
  5. 5.
    Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: MonoSLAM: real-time single camera SLAM. IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) 29(6), 1052–1067 (2007)CrossRefGoogle Scholar
  6. 6.
    Engel, J., Schöps, T., Cremers, D.: LSD-SLAM: large-scale direct monocular SLAM. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part II. LNCS, vol. 8690, pp. 834–849. Springer, Heidelberg (2014)Google Scholar
  7. 7.
    Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM (CACM) 24(6), 381–395 (1981)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Haralick, R., Lee, C.N., Ottenberg, K., Nölle, M.: Review and analysis of solutions of the three point perspective pose estimation problem. Int. J. Comput. Vis. (IJCV) 13(3), 331–356 (1994)CrossRefGoogle Scholar
  9. 9.
    Hesch, J.A., Kottas, D.G., Bowman, S.L., Roumeliotis, S.I.: Camera-IMU-based localization: observability analysis and consistency improvement. Int. J. Robot. Res. (IJRR) 33(1), 182–201 (2014)CrossRefGoogle Scholar
  10. 10.
    Josephson, K., Byröd, M.: Pose estimation with radial distortion and unknown focal length. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2009)Google Scholar
  11. 11.
    Kneip, L., Furgale, P., Siegwart, R.: Using multi-camera systems in robotics: efficient solutions to the NPnP problem. In: International Conference on Robotics and Automation (ICRA), pp. 3770–3776. IEEE (2013)Google Scholar
  12. 12.
    Kneip, L., Li, H., Seo, Y.: UPnP: an optimal O(n) solution to the absolute pose problem with universal applicability. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part I. LNCS, vol. 8689, pp. 127–142. Springer, Heidelberg (2014). doi: 10.1007/978-3-319-10590-1_9 Google Scholar
  13. 13.
    Kneip, L., Scaramuzza, D., Siegwart, R.: A novel parametrization of the perspective-three-point problem for a direct computation of absolute camera position and orientation. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2011)Google Scholar
  14. 14.
    Kroeger, T., Van Gool, L.: Video registration to SfM models. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part V. LNCS, vol. 8693, pp. 1–16. Springer, Heidelberg (2014)Google Scholar
  15. 15.
    Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications to computer vision. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2016)Google Scholar
  16. 16.
    Lee, G., Fraundorfer, F., Pollefeys, M.: Motion estimation for self-driving cars with a generalized camera. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2013)Google Scholar
  17. 17.
    Hee Lee, G., Li, B., Pollefeys, M., Fraundorfer, F.: Minimal solutions for pose estimation of a multi-camera system. In: Inaba, M., Corke, P. (eds.) Robotics Research. STAR, vol. 114, pp. 521–538. Springer, Heidelberg (2016). doi: 10.1007/978-3-319-28872-7_30 CrossRefGoogle Scholar
  18. 18.
    Li, Y., Snavely, N., Huttenlocher, D., Fua, P.: Worldwide pose estimation using 3d point clouds. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part I. LNCS, vol. 7572, pp. 15–29. Springer, Heidelberg (2012)Google Scholar
  19. 19.
    Lindstrom, P.: Triangulation made easy. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2010)Google Scholar
  20. 20.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. (IJCV) 60(2), 91–110 (2004)CrossRefGoogle Scholar
  21. 21.
    Lynen, S., Sattler, T., Bosse, M., Hesch, J., Pollefeys, M., Siegwart, R.: Get out of my lab: large-scale, real-time visual-inertial localization. In: Robotics Science and Systems (RSS) (2015)Google Scholar
  22. 22.
    Middelberg, S., Sattler, T., Untzelmann, O., Kobbelt, L.: Scalable 6-DOF localization on mobile devices. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part II. LNCS, vol. 8690, pp. 268–283. Springer, Heidelberg (2014)Google Scholar
  23. 23.
    Nister, D., Naroditsky, O., Bergen, J.: Visual odometry. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2004)Google Scholar
  24. 24.
    Nistér, D., Stewénius, H.: A minimal solution to the generalised 3-point pose problem. J. Math. Imaging Vis. 27(1), 67–79 (2007)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Pless, R.: Using many cameras as one. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2003)Google Scholar
  26. 26.
    Sattler, T., Havlena, M., Radenovic, F., Schindler, K., Pollefeys, M.: Hyperpoints and fine vocabularies for large-scale location recognition. In: International Conference on Computer Vision (ICCV) (2015)Google Scholar
  27. 27.
    Snavely, N., Seitz, S.M., Szeliski, R.: Photo tourism: exploring photo collections in 3D. In: SIGGRAPH (2006)Google Scholar
  28. 28.
    Stewénius, H., Nistér, D., Oskarsson, M., Åström, K.: Solutions to minimal generalized relative pose problems. In: Workshop on Omnidirectional Vision, Beijing, China (2005)Google Scholar
  29. 29.
    Svärm, L., Enqvist, O., Oskarsson, M., Kahl, F.: Accurate localization and pose estimation for large 3d models. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2014)Google Scholar
  30. 30.
    Sweeney, C., Fragoso, V., Höllerer, T., Turk, M.: gDLS: a scalable solution to the generalized pose and scale problem. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part IV. LNCS, vol. 8692, pp. 16–31. Springer, Heidelberg (2014)Google Scholar
  31. 31.
    Sweeney, C., Fragoso, V., Höllerer, T., Turk, M.: Large scale SfM with the distributed camera model (2016). arXiv:1607.03949
  32. 32.
    Umeyama, S.: Least-squares estimation of transformation parameters between two point patterns. IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) 13(4), 376–380 (1991)CrossRefGoogle Scholar
  33. 33.
    Ventura, J., Arth, C., Reitmayr, G., Schmalstieg, D.: A minimal solution to the generalized pose-and-scale problem. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2014)Google Scholar
  34. 34.
    Xu, S., Honegger, D., Pollefeys, M., Heng, L.: Real-time 3d navigation for autonomous vision-guided MAVs. In: Intelligent Robots and Systems (IROS) (2015)Google Scholar
  35. 35.
    Zeisl, B., Sattler, T., Pollefeys, M.: Camera pose voting for large-scale image-based localization. In: International Conference on Computer Vision (ICCV) (2015)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Federico Camposeco
    • 1
    Email author
  • Torsten Sattler
    • 1
  • Marc Pollefeys
    • 1
    • 2
  1. 1.Department of Computer ScienceETH ZurichZurichSwitzerland
  2. 2.MicrosoftRedmondUSA

Personalised recommendations