Advertisement

A Minimal Solution for Non-perspective Pose Estimation from Line Correspondences

  • Gim Hee LeeEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9909)

Abstract

In this paper, we study and propose solutions to the relatively un-investigated non-perspective pose estimation problem from line correspondences. Specifically, we represent the 2D and 3D line correspondences as Plücker lines and derive the minimal solution for the minimal problem of three line correspondences with Gröbner basis. Our minimal 3-Line algorithm that gives up to eight solutions is well-suited for robust estimation with RANSAC. We show that our algorithm works as a least-squares that takes in more than three line correspondences without any reformulation. In addition, our algorithm does not require initialization in both the minimal 3-Line and least-squares n-Line cases. Furthermore, our algorithm works without a need for reformulation under the special case of perspective pose estimation when all line correspondences are observed from one single camera. We verify our algorithms with both simulated and real-world data.

Keywords

Pose estimation Plücker lines Non-perspective Gröbner basis Line correspondences 

Notes

Acknowledgement

The work is funded by a start-up grant #R-265-000-548-133 from the Faculty of Engineering at the National University of Singapore, and a Singapore’s Ministry of Education (MOE) Tier 1 grant #R-265-000-555-112.

References

  1. 1.
    Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24, 381–395 (1981)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Ansar, A., Daniilidis, K.: Linear pose estimation from points or lines. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 25, 578–589 (2003)CrossRefzbMATHGoogle Scholar
  3. 3.
    Burger, M., Repiský, J.: Problems of linear least square regression and approaches to handle them. In: Advanced Research in Scientific Areas (ARSA) (2012)Google Scholar
  4. 4.
    Chen, C.S., Chang, W.Y.: On pose recovery for generalized visual sensors. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 26, 848–861 (2004)CrossRefGoogle Scholar
  5. 5.
    Cohen, A., Zach, C., Sinha, S., Pollefeys, M.: Discovering and exploiting 3d symmetries in structure from motion. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2012)Google Scholar
  6. 6.
    Dhome, M., Richetin, M., Lapreste, J.T., Rives, G.: Determination of the attitude of 3d objects from a single perspective view. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 11, 1265–1278 (1989)CrossRefGoogle Scholar
  7. 7.
    Furgale, P., Schwesinger, U., Rufli, M., Derendarz, W., Grimmett, H., Muehlfellner, P., Wonneberger, S., Timpner, J., Rottmann, S., Li, B., Schmidt, B., Nguyen, T.N., Cardarelli, E., Cattani, S., Brning, S., Horstmann, S., Stellmacher, M., Mielenz, H., Köser, K., Beermann, M., Häne, C., Heng, L., Lee, G.H., Fraundorfer, F., Iser, R., Triebel, R., Posner, I., Newman, P., Wolf, L., Pollefeys, M., Brosig, S., Effertz, J., Pradalier, C., Siegwart, R.: Toward automated driving in cities using close-to-market sensors, an overview of the v-charge project. In. IEEE Intelligent Vehicle Symposium (IV) (2013)Google Scholar
  8. 8.
    von Gioi, R.G., Jakubowicz, J., Morel, J.M., Randall, G.: LSD: A fast line segment detector with a false detection control. Trans. Pattern Anal. Mach. Intell. (TPAMI) 32(4), 722–732 (2010)CrossRefGoogle Scholar
  9. 9.
    Haralick, R., Lee, D., Ottenburg, K., Nolle, M.: Analysis and solutions of the three point perspective pose estimation problem. In: Computer Vision and Pattern Recognition (CVPR) (1991)Google Scholar
  10. 10.
    Heng, L., Lee, G.H., Pollefeys, M.: Self-calibration and visual slam with a multi-camera system on a micro aerial vehicle. In: Robotics: Science and Systems (RSS) (2014)Google Scholar
  11. 11.
    Heng, L., Lee, G.H., Pollefeys, M.: Self-calibration and visual SLAM with a multi-camera system on a micro aerial vehicle. Autonom. Rob. (AURO) 39(3), 259–277 (2015)CrossRefGoogle Scholar
  12. 12.
    Hofer, M., Donoser, M., Bischof, H.: Semi-global 3d line modeling for incremental structure-from-motion. In: British Machine Vision Conference (BMVC) (2014)Google Scholar
  13. 13.
    Kneip, L., Furgale, P., Siegwart, R.: Using multi-camera systems in robotics: efficient solutions to the NPnP problem. In: International Conference on Robotics and Automation (ICRA) (2013)Google Scholar
  14. 14.
    Kukelova, Z., Bujnak, M., Pajdla, T.: Automatic generator of minimal problem solvers. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part III. LNCS, vol. 5304, pp. 302–315. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
    Lee, G.H., Fraundorfer, F., Pollefeys, M.: Motion estimation for a self-driving car with a generalized camera. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2013)Google Scholar
  16. 16.
    Lee, G.H., Fraundorfer, F., Pollefeys, M.: Structureless pose-graph loop-closure with a multi-camera system on a self-driving car. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2013)Google Scholar
  17. 17.
    Lee, G.H., Li, B., Pollefeys, M., Fraundorfer, F.: Minimal solutions for pose estimation of a multi-camera system. In: International Symposium on Robotics Research (ISRR) (2013)Google Scholar
  18. 18.
    Lee, G.H., Li, B., Pollefeys, M., Fraundorfer, F.: Minimal solutions for the multi-camera pose estimation problem. Int. J. Rob. Res. (IJRR) 34(7), 837–848 (2015)CrossRefGoogle Scholar
  19. 19.
    Lee, G.H., Pollefeys, M., Fraundorfer, F.: Relative pose estimation for a multi-camera system with known vertical direction. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2014)Google Scholar
  20. 20.
    Mirzaei, F.M., Roumeliotis, S.I.: Globally optimal pose estimation from line correspondences. In: IEEE International Conference on Robotics and Automation (ICRA) (2011)Google Scholar
  21. 21.
    Moreno-Noguer, F., Lepetit, V., Fua, P.: Accurate non-iterative o(n) solution to the PNP problem. In: International Conference on Computer Vision (ICCV) (2007)Google Scholar
  22. 22.
    Nistér, D.: A minimal solution to the generalised 3-point pose problem. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol. 1, pp. 560–567 (2004)Google Scholar
  23. 23.
    Pr̆ibyl, B., Zemc̆ik, P., C̆adíK, M.: Camera pose estimation from lines using plücker coordinates. In: British Machine Vision Conference (BMVC) (2015)Google Scholar
  24. 24.
    Quan, L., Lan, Z.D.: Linear n-point camera pose determination. Trans. Pattern Anal. Mach. Intell. (TPAMI) 21, 774–780 (1999)CrossRefGoogle Scholar
  25. 25.
    Ventura, J., Arth, C., Reitmayr, G., Schmalstieg, D.: A minimal solution to the generalized pose-and-scale problem. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2014)Google Scholar
  26. 26.
    Wu, C.: VisualSFM: A visual structure from motion system (2014). http://ccwu.me/vsfm/index.html
  27. 27.
    Zhang, L., Koch, R.: An efficient and robust line segment matching approach based on LBD descriptor and pairwise geometric consistency. J. Vis. Commun. Image Represent. 24(7), 794–805 (2013)CrossRefGoogle Scholar
  28. 28.
    Zhang, L., Xu, C., Lee, K.-M., Koch, R.: Robust and efficient pose estimation from line correspondences. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012, Part III. LNCS, vol. 7726, pp. 217–230. Springer, Heidelberg (2013)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.National University of SingaporeSingaporeSingapore

Personalised recommendations