Advertisement

Regulation and Modulation of Depression-Related Behaviours: Role of Dopaminergic Neurons

  • Basma Radwan
  • He Liu
  • Dipesh Chaudhury
Chapter

Abstract

Dopamine, a neurotransmitter produced in various brain regions, is implicated in regulation of motor control, reward, mood and addiction. Depression is a serious disorder affecting the day-to-day activities of patients that also imposes a substantial financial burden on society. The following chapter offers an expansive demonstration of the heterogeneous dopamine system in the brain, by describing some of the advances made in unraveling the various dopaminergic neural pathways and molecular mechanisms involved in depression. It also sheds some light on how these same neural pathways might be responsible for the disturbances in sleep and circadian rhythms experienced by patients suffering from depression.

Keywords

Dopamine Depression VTA Sleep Circadian Serotonin Clock genes LHb LH PPTg/LDTg MSN NAc Chronic social defeat Learned helplessness D1 and D2 neurons Orexin 

References

  1. Ablikim M et al (2015) Observation of the psi(13D2) state in e+e–> pi+pi γχc1 at BESIII. Phys Rev Lett 115:011803Google Scholar
  2. Aizawa H, Kobayashi M, Tanaka S, Fukai T, Okamoto H (2012) Molecular characterization of the subnuclei in rat habenula. J Comp Neurol 520:4051–4066. doi: 10.1002/cne.23167 PubMedCrossRefGoogle Scholar
  3. Aizawa H, Cui W, Tanaka K, Okamoto H (2013) Hyperactivation of the habenula as a link between depression and sleep disturbance. Front Hum Neurosci 7:826. doi: 10.3389/fnhum.2013.00826 PubMedPubMedCentralCrossRefGoogle Scholar
  4. Ang E et al (2001) Induction of nuclear factor-kappaB in nucleus accumbens by chronic cocaine administration. J Neurochem 79:221–224PubMedCrossRefGoogle Scholar
  5. Anstrom KK, Miczek KA, Budygin EA (2009) Increased phasic dopamine signaling in the mesolimbic pathway during social defeat in rats. Neuroscience 161:3–12. doi: 10.1016/j.neuroscience.2009.03.023 PubMedPubMedCentralCrossRefGoogle Scholar
  6. Antle MC, Mistlberger RE (2000) Circadian clock resetting by sleep deprivation without exercise in the Syrian hamster. J Neurosci Off J Soc Neurosci 20:9326–9332Google Scholar
  7. Arey RN et al (2014) An important role for cholecystokinin, a CLOCK target gene, in the development and treatment of manic-like behaviors. Mol Psychiatry 19:342–350. doi: 10.1038/mp.2013.12 PubMedCrossRefGoogle Scholar
  8. Aston-Jones G, Bloom FE (1981) Activity of norepinephrine-containing locus coeruleus neurons in behaving rats anticipates fluctuations in the sleep-waking cycle. J Neurosci Off J Soc Neurosci 1:876–886Google Scholar
  9. Aston-Jones G, Chen S, Zhu Y, Oshinsky ML (2001) A neural circuit for circadian regulation of arousal. Nat Neurosci 4:732–738. doi: 10.1038/89522 PubMedCrossRefGoogle Scholar
  10. Autry AE, Monteggia LM (2012) Brain-derived neurotrophic factor and neuropsychiatric disorders. Pharmacol Rev 64:238–258. doi: 10.1124/pr.111.005108 PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bagot RC et al (2015) Ventral hippocampal afferents to the nucleus accumbens regulate susceptibility to depression. Nat Commun 6:7062. doi: 10.1038/ncomms8062 PubMedPubMedCentralCrossRefGoogle Scholar
  12. Baik JH et al (1995) Parkinsonian-like locomotor impairment in mice lacking dopamine D2 receptors. Nature 377:424–428. doi: 10.1038/377424a0 PubMedCrossRefGoogle Scholar
  13. Bao AM, Meynen G, Swaab DF (2008) The stress system in depression and neurodegeneration: focus on the human hypothalamus. Brain Res Rev 57:531–553. doi: 10.1016/j.brainresrev.2007.04.005 PubMedCrossRefGoogle Scholar
  14. Beaulieu JM (2012) A role for Akt and glycogen synthase kinase-3 as integrators of dopamine and serotonin neurotransmission in mental health. J Psychiatry Neurosci 37:7–16. doi: 10.1503/jpn.110011 PubMedPubMedCentralCrossRefGoogle Scholar
  15. Bellet MM, Vawter MP, Bunney BG, Bunney WE, Sassone-Corsi P (2011) Ketamine influences CLOCK:BMAL1 function leading to altered circadian gene expression. PLoS One 6:e23982. doi: 10.1371/journal.pone.0023982PONE-D-11-13223 [pii]
  16. Belujon P, Grace AA (2014) Restoring mood balance in depression: ketamine reverses deficit in dopamine-dependent synaptic plasticity. Biol Psychiatry 76:927–936. doi: 10.1016/j.biopsych.2014.04.014 PubMedPubMedCentralCrossRefGoogle Scholar
  17. Benca R et al (2009) Biological rhythms, higher brain function, and behavior: gaps, opportunities, and challenges. Brain Res Rev 62:57–70. doi: 10.1016/S0165-0173(09)00099-X [pii]
  18. Benedetti F, Barbini B, Campori E, Colombo C, Smeraldi E (1996) Dopamine agonist amineptine prevents the antidepressant effect of sleep deprivation. Psychiatry Res 65:179–184. doi: 10.1016/S0165-1781(96)03000-4 [pii]
  19. Benedetti F et al (2003) Antidepressant effects of light therapy combined with sleep deprivation are influenced by a functional polymorphism within the promoter of the serotonin transporter gene. Biol Psychiatry 54:687–692PubMedCrossRefGoogle Scholar
  20. Benraiss A, Chmielnicki E, Lerner K, Roh D, Goldman SA (2001) Adenoviral brain-derived neurotrophic factor induces both neostriatal and olfactory neuronal recruitment from endogenous progenitor cells in the adult forebrain. J Neurosci Off J Soc Neurosci 21:6718–6731Google Scholar
  21. Berton O, Nestler EJ (2006) New approaches to antidepressant drug discovery: beyond monoamines. Nat Rev Neurosci 7:137–151. doi: 10.1038/nrn1846 PubMedCrossRefGoogle Scholar
  22. Berton O et al (2006) Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress. Science 311:864–868. doi: 10.1126/science.1120972 PubMedCrossRefGoogle Scholar
  23. Birchler-Pedross A et al (2009) Subjective well-being is modulated by circadian phase, sleep pressure, age, and gender. J Biol Rhythms 24:232–242. doi: 10.1177/0748730409335546 PubMedCrossRefGoogle Scholar
  24. Blaze J, Roth TL (2013) Exposure to caregiver maltreatment alters expression levels of epigenetic regulators in the medial prefrontal cortex. Int J Dev Neurosci 31:804–810. doi: 10.1016/j.ijdevneu.2013.10.001 PubMedCrossRefGoogle Scholar
  25. Blum R, Kafitz KW, Konnerth A (2002) Neurotrophin-evoked depolarization requires the sodium channel Na(V)1.9. Nature 419:687–693. doi: 10.1038/nature01085
  26. Boivin DB et al (1997) Complex interaction of the sleep-wake cycle and circadian phase modulates mood in healthy subjects. Arch Gen Psychiatry 54:145–152PubMedCrossRefGoogle Scholar
  27. Borbely AA (1982) A two process model of sleep regulation. Hum Neurobiol 1:195–204PubMedGoogle Scholar
  28. Borbely AA, Daan S, Wirz-Justice A, Deboer T (2016a) The two-process model of sleep regulation: a reappraisal. J Sleep Res. doi: 10.1111/jsr.12371 PubMedGoogle Scholar
  29. Borbely AA, Daan S, Wirz-Justice A, Deboer T (2016b) The two-process model of sleep regulation: a reappraisal. J Sleep Res 25:131–143. doi: 10.1111/jsr.12371 PubMedCrossRefGoogle Scholar
  30. Bredt DS, Nicoll RA (2003) AMPA receptor trafficking at excitatory synapses. Neuron 40:361–379PubMedCrossRefGoogle Scholar
  31. Bremner JD et al (2000) Hippocampal volume reduction in major depression. Am J Psychiatry 157:115–118. doi: 10.1176/ajp.157.1.115 PubMedCrossRefGoogle Scholar
  32. Brischoux F, Chakraborty S, Brierley DI, Ungless MA. (2009) Phasic excitation of dopamine neurons in ventral VTA by noxious stimuli, Proc Natl Acad Sci U S A, 106:4894–4899. doi: 10.1073/pnas.0811507106 (0811507106 [pii])
  33. Broms U et al (2011) Evening types are more often current smokers and nicotine-dependent-a study of Finnish adult twins. Addiction 106:170–177. doi: 10.1111/j.1360-0443.2010.03112.x PubMedCrossRefGoogle Scholar
  34. Brown SA, Zumbrunn G, Fleury-Olela F, Preitner N, Schibler U (2002) Rhythms of mammalian body temperature can sustain peripheral circadian clocks. Curr Biol 12:1574–1583PubMedCrossRefGoogle Scholar
  35. Brunel S, de Montigny C (1987) Diurnal rhythms in the responsiveness of hippocampal pyramidal neurons to serotonin, norepinephrine, gamma-aminobutyric acid and acetylcholine. Brain Res Bull 18:205–212PubMedCrossRefGoogle Scholar
  36. Buhr ED, Takahashi JS (2013) Molecular components of the Mammalian circadian clock. Handb Exp Pharmacol: 3–27. doi: 10.1007/978-3-642-25950-0_1
  37. Buijs RM, Kalsbeek A, van der Woude TP, van Heerikhuize JJ, Shinn S (1993) Suprachiasmatic nucleus lesion increases corticosterone secretion. Am J Physiol 264:R1186–R1192PubMedGoogle Scholar
  38. Bunney JN, Potkin SG (2008) Circadian abnormalities, molecular clock genes and chronobiological treatments in depression. Br Med Bull 86:23–32. doi: 10.1093/bmb/ldn019 PubMedCrossRefGoogle Scholar
  39. Bunney BG, Bunney WE (2012) Rapid-acting antidepressant strategies: mechanisms of action. Int J Neuropsychopharmacol 15:695–713. doi: 10.1017/S1461145711000927 PubMedCrossRefGoogle Scholar
  40. Bunney BG, Bunney WE (2013) Mechanisms of rapid antidepressant effects of sleep deprivation therapy: clock genes and circadian rhythms. Biol Psychiatry 73:1164–1171. doi: 10.1016/j.biopsych.2012.07.020 (S0006-3223(12)00634-8 [pii])
  41. Bunney BG et al (2015) Circadian dysregulation of clock genes: clues to rapid treatments in major depressive disorder. Mol Psychiatry 20:48–55. doi: 10.1038/mp.2014.138 PubMedCrossRefGoogle Scholar
  42. Cacioppo JT, Hughes ME, Waite LJ, Hawkley LC, Thisted RA (2006) Loneliness as a specific risk factor for depressive symptoms: cross-sectional and longitudinal analyses. Psychol Aging 21:140–151. doi: 10.1037/0882-7974.21.1.140 PubMedCrossRefGoogle Scholar
  43. Cao JL et al (2010) Mesolimbic dopamine neurons in the brain reward circuit mediate susceptibility to social defeat and antidepressant action. J Neurosci Off J Soc Neurosci 30:16453–16458. doi: 10.1523/JNEUROSCI.3177-10.2010 (30/49/16453 [pii])
  44. Cardasis HL et al (2007) The actin-binding interface of a myosin III is phosphorylated in vivo in response to signals from a circadian clock. Biochemistry 46:13907–13919. doi: 10.1021/bi701409f PubMedCrossRefGoogle Scholar
  45. Castren E (2004) Neurotrophic effects of antidepressant drugs. Curr Opin Pharmacol 4:58–64. doi: 10.1016/j.coph.2003.10.004 PubMedCrossRefGoogle Scholar
  46. Chakravarthy S et al (2006) Postsynaptic TrkB signaling has distinct roles in spine maintenance in adult visual cortex and hippocampus. Proc Natl Acad Sci USA 103:1071–1076. doi: 10.1073/pnas.0506305103 PubMedPubMedCentralCrossRefGoogle Scholar
  47. Chang CH, Grace AA (2014) Amygdala-ventral pallidum pathway decreases dopamine activity after chronic mild stress in rats. Biol Psychiatry 76:223–230. doi: 10.1016/j.biopsych.2013.09.020 PubMedCrossRefGoogle Scholar
  48. Charney DS, Dejesus G, Manji HK (2004) Cellular plasticity and resilience and the pathophysiology of severe mood disorders. Dialogues Clin Neurosci 6:217–225PubMedPubMedCentralGoogle Scholar
  49. Chaudhury D, Wang LM, Colwell CS (2005) Circadian regulation of hippocampal long-term potentiation. J Biol Rhythms 20:225–236. doi: 10.1177/0748730405276352 (20/3/225 [pii])
  50. Chaudhury D et al (2013) Rapid regulation of depression-related behaviours by control of midbrain dopamine neurons. Nature 493:532–536. doi: 10.1038/nature11713 PubMedCrossRefGoogle Scholar
  51. Chaudhury D, Barbara Juarez, Allyson Friedman, Stacy Ku, Ming-Hu Han (2014) Lateral habenula projections to a subset of ventral tegmental area neurons rapidly encodes for susceptibility to social defeat stress. Soc Neurosci AbsGoogle Scholar
  52. Christoffel DJ et al (2011) IkappaB kinase regulates social defeat stress-induced synaptic and behavioral plasticity. J Neurosci Off J Soc Neurosci 31:314–321. doi: 10.1523/JNEUROSCI.4763-10.2011 (31/1/314 [pii])
  53. Christoph GR, Leonzio RJ, Wilcox KS (1986) Stimulation of the lateral habenula inhibits dopamine-containing neurons in the substantia nigra and ventral tegmental area of the rat. J Neurosci 6:613–619PubMedGoogle Scholar
  54. Chung S et al (2014) Impact of circadian nuclear receptor REV-ERBalpha on midbrain dopamine production and mood regulation. Cell 157:858–868. doi: 10.1016/j.cell.2014.03.039 PubMedCrossRefGoogle Scholar
  55. Cirelli C, Tononi G (2000) Gene expression in the brain across the sleep-waking cycle. Brain Res 885:303–321PubMedCrossRefGoogle Scholar
  56. Coffin VL, Latranyi MB, Chipkin RE (1989) Acute extrapyramidal syndrome in Cebus monkeys: development mediated by dopamine D2 but not D1 receptors. J Pharmacol Exp Ther 249:769–774PubMedGoogle Scholar
  57. Cohen JY, Haesler S, Vong L, Lowell BB, Uchida N (2012) Neuron-type-specific signals for reward and punishment in the ventral tegmental area. Nature 482:85–88. doi: 10.1038/nature10754 PubMedPubMedCentralCrossRefGoogle Scholar
  58. Covington HE 3rd et al (2009) Antidepressant actions of histone deacetylase inhibitors. J Neurosci Off J Soc Neurosci 29:11451–11460. doi: 10.1523/JNEUROSCI.1758-09.2009 (29/37/11451 [pii])
  59. Covington HE 3rd et al (2011) A role for repressive histone methylation in cocaine-induced vulnerability to stress. Neuron 71:656–670. doi: 10.1016/j.neuron.2011.06.007 PubMedPubMedCentralCrossRefGoogle Scholar
  60. Cromwell HC, Berridge KC, Drago J, Levine MS (1998) Action sequencing is impaired in D1A-deficient mutant mice. Eur J Neurosci 10:2426–2432PubMedCrossRefGoogle Scholar
  61. Czeisler CA, Dijk DJ (1995) Use of bright light to treat maladaptation to night shift work and circadian rhythm sleep disorders. J Sleep Res 4:70–73PubMedCrossRefGoogle Scholar
  62. Daan S, Beersma DG, Borbely AA (1984) Timing of human sleep: recovery process gated by a circadian pacemaker. Am J Physiol 246:R161–R183PubMedGoogle Scholar
  63. De Bundel D, Gangarossa G, Biever A, Bonnefont X, Valjent E (2013) Cognitive dysfunction, elevated anxiety, and reduced cocaine response in circadian clock-deficient cryptochrome knockout mice. Front Behav Neurosci 7:152. doi: 10.3389/fnbeh.2013.00152 PubMedPubMedCentralCrossRefGoogle Scholar
  64. Deboer T, Vansteensel MJ, Detari L, Meijer JH (2003) Sleep states alter activity of suprachiasmatic nucleus neurons. Nat Neurosci 6:1086–1090. doi: 10.1038/nn1122 PubMedCrossRefGoogle Scholar
  65. Deboer T, Detari L, Meijer JH (2007) Long term effects of sleep deprivation on the mammalian circadian pacemaker. Sleep 30:257–262PubMedGoogle Scholar
  66. Deshauer D, Grof E, Alda M, Grof P (1999) Patterns of DST positivity in remitted affective disorders. Biol Psychiatry 45:1023–1029PubMedCrossRefGoogle Scholar
  67. Destexhe A, Marder E (2004) Plasticity in single neuron and circuit computations. Nature 431:789–795. doi: 10.1038/nature03011 PubMedCrossRefGoogle Scholar
  68. Dibner C, Schibler U, Albrecht U (2010) The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu Rev Physiol 72:517–549. doi: 10.1146/annurev-physiol-021909-135821 PubMedCrossRefGoogle Scholar
  69. Dickman DK, Davis GW (2009) The schizophrenia susceptibility gene dysbindin controls synaptic homeostasis. Science 326:1127–1130. doi: 10.1126/science.1179685 PubMedPubMedCentralCrossRefGoogle Scholar
  70. Dijk DJ, Czeisler CA (1994) Paradoxical timing of the circadian rhythm of sleep propensity serves to consolidate sleep and wakefulness in humans. Neurosci Lett 166:63–68PubMedCrossRefGoogle Scholar
  71. Dijk DJ, Czeisler CA (1995) Contribution of the circadian pacemaker and the sleep homeostat to sleep propensity, sleep structure, electroencephalographic slow waves, and sleep spindle activity in humans. J Neurosci Off J Soc Neurosci 15:3526–3538Google Scholar
  72. Dijk DJ, von Schantz M (2005) Timing and consolidation of human sleep, wakefulness, and performance by a symphony of oscillators. J Biol Rhythms 20:279–290. doi: 10.1177/0748730405278292 PubMedCrossRefGoogle Scholar
  73. Dominguez G et al (2014) Rescuing prefrontal cAMP-CREB pathway reverses working memory deficits during withdrawal from prolonged alcohol exposure. Brain Struct Funct. doi: 10.1007/s00429-014-0941-3 PubMedGoogle Scholar
  74. Dremencov E (2009) Aiming at new targets for the treatment of affective disorders: an introduction. Curr Drug Targets 10:1050–1051PubMedCrossRefGoogle Scholar
  75. Dunlop BW, Nemeroff CB (2007) The role of dopamine in the pathophysiology of depression. Arch Gen Psychiatry 64:327–337. doi: 10.1001/archpsyc.64.3.327 PubMedCrossRefGoogle Scholar
  76. Dupuis J et al (2010) New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat Genet 42:105–116. doi: 10.1038/ng.520 PubMedPubMedCentralCrossRefGoogle Scholar
  77. Dwivedi Y et al (2003) Altered gene expression of brain-derived neurotrophic factor and receptor tyrosine kinase B in postmortem brain of suicide subjects. Arch Gen Psychiatry 60:804–815. doi: 10.1001/archpsyc.60.8.804 PubMedCrossRefGoogle Scholar
  78. Easton A, Meerlo P, Bergmann B, Turek FW (2004) The suprachiasmatic nucleus regulates sleep timing and amount in mice. Sleep 27:1307–1318PubMedGoogle Scholar
  79. Eckel-Mahan KL et al (2008) Circadian oscillation of hippocampal MAPK activity and cAmp: implications for memory persistence. Nat Neurosci 11:1074–1082PubMedPubMedCentralCrossRefGoogle Scholar
  80. Eder DN, Zdravkovic M, Wildschiodtz G (2003) Selective alterations of the first NREM sleep cycle in humans by a dopamine D1 receptor antagonist (NNC-687). J Psychiatr Res 37:305–312PubMedCrossRefGoogle Scholar
  81. Ehlers CL, Kupfer DJ (1987) Hypothalamic peptide modulation of EEG sleep in depression: a further application of the S-process hypothesis. Biol Psychiatry 22:513–517PubMedCrossRefGoogle Scholar
  82. Elliott AS, Huber JD, O’Callaghan JP, Rosen CL, Miller DB (2014) A review of sleep deprivation studies evaluating the brain transcriptome. SpringerPlus 3:728. doi: 10.1186/2193-1801-3-728 PubMedPubMedCentralCrossRefGoogle Scholar
  83. El-Sayed AM, Palma A, Freedman LP, Kruk ME (2015) Does health insurance mitigate inequities in non-communicable disease treatment? Evidence from 48 low- and middle-income countries. Health Policy 119:1164–1175. doi: 10.1016/j.healthpol.2015.07.006 PubMedCrossRefGoogle Scholar
  84. Estabrooke IV et al (2001) Fos expression in orexin neurons varies with behavioral state. J Neurosci Off J Soc Neurosci 21:1656–1662Google Scholar
  85. Flourakis M et al (2015) A conserved bicycle model for circadian clock control of membrane excitability. Cell 162:836–848. doi: 10.1016/j.cell.2015.07.036 PubMedPubMedCentralCrossRefGoogle Scholar
  86. Francis D, Diorio J, Liu D, Meaney MJ (1999) Nongenomic transmission across generations of maternal behavior and stress responses in the rat. Science 286:1155–1158PubMedCrossRefGoogle Scholar
  87. Francis TC et al (2015) Nucleus accumbens medium spiny neuron subtypes mediate depression-related outcomes to social defeat stress. Biol Psychiatry 77:212–222. doi: 10.1016/j.biopsych.2014.07.021 PubMedCrossRefGoogle Scholar
  88. Franken P, Dijk DJ (2009) Circadian clock genes and sleep homeostasis. Eur J Neurosci 29:1820–1829. doi: 10.1111/j.1460-9568.2009.06723.x PubMedCrossRefGoogle Scholar
  89. Freedman MS et al (1999) Regulation of mammalian circadian behavior by non-rod, non-cone, ocular photoreceptors. Science 284:502–504PubMedCrossRefGoogle Scholar
  90. Friedman AK et al (2014) Enhancing depression mechanisms in midbrain dopamine neurons achieves homeostatic resilience. Science 344:313–319. doi: 10.1126/science.1249240 PubMedPubMedCentralCrossRefGoogle Scholar
  91. Friedman AK et al (2016) KCNQ channel openers reverse depressive symptoms via an active resilience mechanism. Nat Commun 7:11671. doi: 10.1038/ncomms11671 PubMedPubMedCentralCrossRefGoogle Scholar
  92. Frodl T et al (2002) Enlargement of the amygdala in patients with a first episode of major depression. Biol Psychiatry 51:708–714PubMedCrossRefGoogle Scholar
  93. Fujihara H, Sei H, Morita Y, Ueta Y, Morita K (2003) Short-term sleep disturbance enhances brain-derived neurotrophic factor gene expression in rat hippocampus by acting as internal stressor. J Mol Neurosci MN 21:223–232PubMedCrossRefGoogle Scholar
  94. Fuller PM, Gooley JJ, Saper CB (2006) Neurobiology of the sleep-wake cycle: sleep architecture, circadian regulation, and regulatory feedback. J Biol Rhythms 21:482–493. doi: 10.1177/0748730406294627 PubMedCrossRefGoogle Scholar
  95. Geisler S, Zahm DS (2005) Afferents of the ventral tegmental area in the rat-anatomical substratum for integrative functions. J Comp Neurol 490:270–294. doi: 10.1002/cne.20668 PubMedCrossRefGoogle Scholar
  96. Gervais J, Rouillard C (2000) Dorsal raphe stimulation differentially modulates dopaminergic neurons in the ventral tegmental area and substantia nigra. Synapse 35:281–291. doi: 10.1002/(SICI)1098-2396(20000315)35:4<281::AID-SYN6>3.0.CO;2-A
  97. Gervasoni D et al (2000) Role and origin of the GABAergic innervation of dorsal raphe serotonergic neurons. J Neurosci Off J Soc Neurosci 20:4217–4225Google Scholar
  98. Goetze U, Tolle R (1987) Circadian rhythm of free urinary cortisol, temperature and heart rate in endogenous depressives and under antidepressant therapy. Neuropsychobiology 18:175–184. doi:118414Google Scholar
  99. Goldwater DS et al (2009) Structural and functional alterations to rat medial prefrontal cortex following chronic restraint stress and recovery. Neuroscience 164:798–808. doi: 10.1016/j.neuroscience.2009.08.053 PubMedPubMedCentralCrossRefGoogle Scholar
  100. Gong X et al (2016) Levo-tetrahydropalmatine, a natural, mixed dopamine receptor antagonist, inhibits methamphetamine self-administration and methamphetamine-induced reinstatement. Pharmacol Biochem Behav 144:67–72. doi: 10.1016/j.pbb.2016.01.010 PubMedCrossRefGoogle Scholar
  101. Goto Y, Grace AA (2005a) Dopamine-dependent interactions between limbic and prefrontal cortical plasticity in the nucleus accumbens: disruption by cocaine sensitization. Neuron 47:255–266. doi: 10.1016/j.neuron.2005.06.017 (S0896-6273(05)00522-2 [pii])
  102. Goto Y, Grace AA (2005b) Dopaminergic modulation of limbic and cortical drive of nucleus accumbens in goal-directed behavior. Nat Neurosci 8:805–812. doi: 10.1038/nn1471 (nn1471 [pii])
  103. Gottschlich MM et al (2011) The effect of ketamine administration on nocturnal sleep architecture. J Burn Care Res 32:535–540. doi: 10.1097/BCR.0b013e31822ac7d1 PubMedCrossRefGoogle Scholar
  104. Grace AA, Onn SP (1989) Morphology and electrophysiological properties of immunocytochemically identified rat dopamine neurons recorded in vitro. J Neurosci Off J Soc Neurosc 9:3463–3481Google Scholar
  105. Grace AA, Floresco SB, Goto Y, Lodge DJ (2007) Regulation of firing of dopaminergic neurons and control of goal-directed behaviors. Trends Neurosci 30:220–227. doi: 10.1016/j.tins.2007.03.003 (S0166-2236(07)00050-1 [pii])
  106. Grenhoff J, Svensson TH (1989) Clonidine modulates dopamine cell firing in rat ventral tegmental area. Eur J Pharmacol 165:11–18PubMedCrossRefGoogle Scholar
  107. Gronli J, Soule J, Bramham CR (2013) Sleep and protein synthesis-dependent synaptic plasticity: impacts of sleep loss and stress. Front Behav Neurosci 7:224. doi: 10.3389/fnbeh.2013.00224 PubMedGoogle Scholar
  108. Guiard BP, El Mansari M, Merali Z, Blier P (2008) Functional interactions between dopamine, serotonin and norepinephrine neurons: an in-vivo electrophysiological study in rats with monoaminergic lesions. Int J Neuropsychopharmacol 11:625–639. doi: 10.1017/S1461145707008383 [pii]
  109. Gunaydin LA et al (2014) Natural neural projection dynamics underlying social behavior. Cell 157:1535–1551. doi: 10.1016/j.cell.2014.05.017 PubMedPubMedCentralCrossRefGoogle Scholar
  110. Guzman-Marin R et al (2006) Suppression of hippocampal plasticity-related gene expression by sleep deprivation in rats. J Physiol 575:807–819. doi: 10.1113/jphysiol.2006.115287 PubMedPubMedCentralCrossRefGoogle Scholar
  111. Hairston IS et al (2004) Sleep deprivation effects on growth factor expression in neonatal rats: a potential role for BDNF in the mediation of delta power. J Neurophysiol 91:1586–1595. doi: 10.1152/jn.00894.2003 PubMedCrossRefGoogle Scholar
  112. Hampp G et al (2008) Regulation of monoamine oxidase A by circadian-clock components implies clock influence on mood. Curr Biol 18:678–683. doi: 10.1016/j.cub.2008.04.012 PubMedCrossRefGoogle Scholar
  113. Han MH, Friedman AK (2012) Virogenetic and optogenetic mechanisms to define potential therapeutic targets in psychiatric disorders. Neuropharmacology 62:89–100. doi: 10.1016/j.neuropharm.2011.09.009 PubMedCrossRefGoogle Scholar
  114. Heller EA et al (2014) Locus-specific epigenetic remodeling controls addiction- and depression-related behaviors. Nat Neurosci 17:1720–1727. doi: 10.1038/nn.3871 PubMedPubMedCentralCrossRefGoogle Scholar
  115. Hemmeter UM, Hemmeter-Spernal J, Krieg JC (2010) Sleep deprivation in depression. Expert Rev Neurother 10:1101–1115. doi: 10.1586/ern.10.83 PubMedCrossRefGoogle Scholar
  116. Henriques-Alves AM, Queiroz CM (2015) Ethological evaluation of the effects of social defeat stress in mice: beyond the social interaction ratio. Front Behav Neurosci 9:364. doi: 10.3389/fnbeh.2015.00364 PubMedGoogle Scholar
  117. Hikida T, Kimura K, Wada N, Funabiki K, Nakanishi S (2010) Distinct roles of synaptic transmission in direct and indirect striatal pathways to reward and aversive behavior. Neuron 66(6):896–907. doi: 10.1016/j.neuron.2010.05.011
  118. Holly EN, Miczek KA (2016) Ventral tegmental area dopamine revisited: effects of acute and repeated stress. Psychopharmacology 233:163–186. doi: 10.1007/s00213-015-4151-3 PubMedCrossRefGoogle Scholar
  119. Holsboer F (2000) The corticosteroid receptor hypothesis of depression. Neuropsychopharmacol Off Pub Am Coll Neuropsychopharmacol 23:477–501. doi: 10.1016/S0893-133X(00)00159-7 CrossRefGoogle Scholar
  120. Holt-Lunstad J, Smith TB, Layton JB (2010) Social relationships and mortality risk: a meta-analytic review. PLoS medicine 7:e1000316. doi: 10.1371/journal.pmed.1000316 PubMedPubMedCentralCrossRefGoogle Scholar
  121. Holtmaat A, Svoboda K (2009) Experience-dependent structural synaptic plasticity in the mammalian brain. Nat Rev Neurosci 10:647–658. doi: 10.1038/nrn2699 PubMedCrossRefGoogle Scholar
  122. House JS, Landis KR, Umberson D (1988) Social relationships and health. Science 241:540–545PubMedCrossRefGoogle Scholar
  123. Hu L, Jing XH, Cui CL, Xing GG, Zhu B (2014) NMDA receptors in the midbrain play a critical role in dopamine-mediated hippocampal synaptic potentiation caused by morphine. Addict Biol 19:380–391. doi: 10.1111/adb.12010 PubMedCrossRefGoogle Scholar
  124. Huang J et al (2015) Circadian modulation of dopamine levels and dopaminergic neuron development contributes to attention deficiency and hyperactive behavior. J Neurosci Off J Soc Neurosci 35:2572–2587. doi: 10.1523/JNEUROSCI.2551-14.2015 CrossRefGoogle Scholar
  125. Hyde J et al (2005) A qualitative study exploring how GPs decide to prescribe antidepressants. Br J Gen Pract 55:755–762 PubMedPubMedCentralGoogle Scholar
  126. Isaac JTR, Ashby MC, McBain CJ (2007) The role of the GluR2 subunit in AMPA receptor function and synaptic plasticity. Neuron 54:859–871Google Scholar
  127. Isingrini E et al (2016) Resilience to chronic stress is mediated by noradrenergic regulation of dopamine neurons. Nat Neurosci 19:560–563. doi: 10.1038/nn.4245 PubMedCrossRefGoogle Scholar
  128. Jiang WG et al (2011) Chronic unpredictable stress induces a reversible change of PER2 rhythm in the suprachiasmatic nucleus. Brain Res 1399:25–32. doi: 10.1016/j.brainres.2011.05.001 PubMedCrossRefGoogle Scholar
  129. Jones BE (2003) Arousal systems. Front Biosci 8:s438–s451PubMedCrossRefGoogle Scholar
  130. Jones MD, Gubbins S (1973) Genetic differences in circadian flight-activity in Anopheles stephensi. Trans R Soc Trop Med Hyg 67:439PubMedCrossRefGoogle Scholar
  131. Jones BE, Bobillier P, Pin C, Jouvet M (1973) The effect of lesions of catecholamine-containing neurons upon monoamine content of the brain and EEG and behavioral waking in the cat. Brain Res 58:157–177PubMedCrossRefGoogle Scholar
  132. Jope RS, Roh MS (2006) Glycogen synthase kinase-3 (GSK3) in psychiatric diseases and therapeutic interventions. Curr Drug Targets 7:1421–1434PubMedPubMedCentralCrossRefGoogle Scholar
  133. Kauer JA, Malenka RC (2007) Synaptic plasticity and addiction. Nat Rev Neurosci 8:844–858. doi: 10.1038/nrn2234 (nrn2234 [pii])
  134. Kavcic P et al (2011) The impact of sleep deprivation and nighttime light exposure on clock gene expression in humans. Croat Med J 52:594–603PubMedPubMedCentralCrossRefGoogle Scholar
  135. Kelz et al (1999) Expression of the transcription factor ΔFosB in the brain controls sensitivity to cocaine. Nature 401:272–276. doi: 10.1038/45790
  136. Kelly MA et al (1998) Locomotor activity in D2 dopamine receptor-deficient mice is determined by gene dosage, genetic background, and developmental adaptations. J Neurosci Off J Soc Neurosci 18:3470–3479Google Scholar
  137. Ko CH, Takahashi JS (2006) Molecular components of the mammalian circadian clock. Hum Mol Genet 15 Spec No 2:R271–277. doi: 10.1093/hmg/ddl207
  138. Kondratova AA, Dubrovsky YV, Antoch MP, Kondratov RV (2010) Circadian clock proteins control adaptation to novel environment and memory formation. Aging (Albany NY) 2:285–297CrossRefGoogle Scholar
  139. Koob GF (2008) A role for brain stress systems in addiction. Neuron 59:11–34. doi: 10.1016/j.neuron.2008.06.012 PubMedPubMedCentralCrossRefGoogle Scholar
  140. Korotkova TM, Sergeeva OA, Eriksson KS, Haas HL, Brown RE (2003) Excitation of ventral tegmental area dopaminergic and nondopaminergic neurons by orexins/hypocretins. J Neurosci Off J Soc Neurosci 23:7–11Google Scholar
  141. Krishnan V, Nestler EJ (2011) Animal models of depression: molecular perspectives. Curr Top Behav Neurosci 7:121–147. doi: 10.1007/7854_2010_108 PubMedPubMedCentralCrossRefGoogle Scholar
  142. Krishnan V et al (2007) Molecular adaptations underlying susceptibility and resistance to social defeat in brain reward regions. Cell 131:391–404. doi: 10.1016/j.cell.2007.09.018 (S0092-8674(07)01206-8 [pii])
  143. Kropf W, Kuschinsky K (1993) Effects of stimulation of dopamine D1 receptors on the cortical EEG in rats: different influences by a blockade of D2 receptors and by an activation of putative dopamine autoreceptors. Neuropharmacology 32:493–500PubMedCrossRefGoogle Scholar
  144. Lammel S et al (2008) Unique properties of mesoprefrontal neurons within a dual mesocorticolimbic dopamine system. Neuron 57:760–773. doi: 10.1016/j.neuron.2008.01.022 PubMedCrossRefGoogle Scholar
  145. Lammel S, Ion DI, Roeper J, Malenka RC (2011) Projection-specific modulation of dopamine neuron synapses by aversive and rewarding stimuli. Neuron 70:855–862. doi: 10.1016/j.neuron.2011.03.025 PubMedPubMedCentralCrossRefGoogle Scholar
  146. Lammel S et al (2012) Input-specific control of reward and aversion in the ventral tegmental area. Nature 491:212–217. doi: 10.1038/nature11527 PubMedPubMedCentralCrossRefGoogle Scholar
  147. Lammel S, Lim BK, Malenka RC (2014a) Reward and aversion in a heterogeneous midbrain dopamine system. Neuropharmacology 76 Pt B:351–359. doi: 10.1016/j.neuropharm.2013.03.019
  148. Lammel S, Tye KM, Warden MR (2014b) Progress in understanding mood disorders: optogenetic dissection of neural circuits. Genes Brain Behav 13:38–51. doi: 10.1111/gbb.12049
  149. Larkin JE, Yokogawa T, Heller HC, Franken P, Ruby NF (2004) Homeostatic regulation of sleep in arrhythmic Siberian hamsters. Am J Physiol Regul Integr Comp Physiol 287:R104–R111. doi: 10.1152/ajpregu.00676.2003 PubMedCrossRefGoogle Scholar
  150. Lavebratt C et al (2010) CRY2 is associated with depression. PLoS ONE 5:e9407. doi: 10.1371/journal.pone.0009407 PubMedPubMedCentralCrossRefGoogle Scholar
  151. Lecca S, Meye FJ, Mameli M (2014) The lateral habenula in addiction and depression: an anatomical, synaptic and behavioral overview. Eur J Neurosci 39:1170–1178. doi: 10.1111/ejn.12480 PubMedCrossRefGoogle Scholar
  152. Lee RS, Steffensen SC, Henriksen SJ (2001) Discharge profiles of ventral tegmental area GABA neurons during movement, anesthesia, and the sleep-wake cycle. J Neurosci Off J Soc Neurosci 21:1757–1766Google Scholar
  153. Lee MG, Hassani OK, Alonso A, Jones BE (2005) Cholinergic basal forebrain neurons burst with theta during waking and paradoxical sleep. J Neurosci Off J Soc Neurosci 25:4365–4369. doi: 10.1523/JNEUROSCI.0178-05.2005 CrossRefGoogle Scholar
  154. LeGates TA et al (2012) Aberrant light directly impairs mood and learning through melanopsin-expressing neurons. Nature 491:594–598. doi: 10.1038/nature11673 PubMedPubMedCentralCrossRefGoogle Scholar
  155. LeGates TA, Fernandez DC, Hattar S (2014) Light as a central modulator of circadian rhythms, sleep and affect. Nat Rev Neurosci 15:443–454. doi: 10.1038/nrn3743 PubMedPubMedCentralCrossRefGoogle Scholar
  156. Lessmann V, Gottmann K, Malcangio M (2003) Neurotrophin secretion: current facts and future prospects. Prog Neurobiol 69:341–374PubMedCrossRefGoogle Scholar
  157. Levine A, Worrell TR, Zimnisky R, Schmauss C (2012) Early life stress triggers sustained changes in histone deacetylase expression and histone H4 modifications that alter responsiveness to adolescent antidepressant treatment. Neurobiol Dis 45:488–498. doi: 10.1016/j.nbd.2011.09.005 PubMedCrossRefGoogle Scholar
  158. Li B, Piriz J, Mirrione M, Chung C, Proulx CD, Schulz D, Henn F, Malinow R (2011) Synaptic potentiation onto habenula neurons in the learned helplessness model of depression. Nature 470:535–539. doi: 10.1038/nature09742 (nature09742 [pii])
  159. Li DP, Byan HS, Pan HL (2012) Switch to glutamate receptor 2-lacking AMPA receptors increases neuronal excitability in hypothalamus and sympathetic drive in hypertension. J Neurosci Off J Soc Neurosci 32:372–380. doi: 10.1523/JNEUROSCI.3222-11.2012 CrossRefGoogle Scholar
  160. Li X, Qi J, Yamaguchi T, Wang HL, Morales M (2013) Heterogeneous composition of dopamine neurons of the rat A10 region: molecular evidence for diverse signaling properties. Brain Struct Funct 218:1159–1176. doi: 10.1007/s00429-012-0452-z PubMedCrossRefGoogle Scholar
  161. Li Z et al (2015) A common variant near TGFBR3 is associated with primary open angle glaucoma. Hum Mol Genet. doi: 10.1093/hmg/ddv128 Google Scholar
  162. Lim BK, Huang KW, Grueter BA, Rothwell PE, Malenka RC (2012) Anhedonia requires MC4R-mediated synaptic adaptations in nucleus accumbens. Nature 487:183–189. doi: 10.1038/nature11160 PubMedPubMedCentralCrossRefGoogle Scholar
  163. Liu SQJ, Cull-Candy SG (2000) Synaptic activity at calcuim-permeable AMPA receptors induces a switch in receptor subtype. Nature 405:454–458Google Scholar
  164. Liu AC, Lewis WG, Kay SA (2007) Mammalian circadian signaling networks and therapeutic targets. Nat Chem Biol 3:630–639. doi: 10.1038/nchembio.2007.37 PubMedCrossRefGoogle Scholar
  165. Liu D et al (2014) Histone acetylation and expression of mono-aminergic transmitters synthetases involved in CUS-induced depressive rats. Exp Biol Med (Maywood) 239:330–336. doi: 10.1177/1535370213513987 CrossRefGoogle Scholar
  166. Lobo MK, Nestler EJ (2011) The striatal balancing act in drug addiction: distinct roles of direct and indirect pathway medium spiny neurons. Front Neuroanat 5:41. doi: 10.3389/fnana.2011.00041 PubMedPubMedCentralCrossRefGoogle Scholar
  167. Lowrey PL, Takahashi JS (2004) Mammalian circadian biology: elucidating genome-wide levels of temporal organization. Annu Rev Genomics Hum Genet 5:407–441. doi: 10.1146/annurev.genom.5.061903.175925 PubMedPubMedCentralCrossRefGoogle Scholar
  168. Luo AH, Aston-Jones G (2009) Circuit projection from suprachiasmatic nucleus to ventral tegmental area: a novel circadian output pathway. Eur J Neurosci 29:748–760. doi: 10.1111/j.1460-9568.2008.06606.x PubMedCrossRefGoogle Scholar
  169. Luscher C, Malenka RC (2012) NMDA receptor-dependent long-term potentiation and long-term depression (LTP/LTD). Cold Spring Harb Perspect Biol 4. doi: 10.1101/cshperspect.a005710 (cshperspect.a005710 [pii])
  170. Maia TV, Frank MJ (2011) From reinforcement learning models to psychiatric and neurological disorders. Nat Neurosci 14:154–162. doi: 10.1038/nn.2723 PubMedPubMedCentralCrossRefGoogle Scholar
  171. Marton TF, Sohal VS (2015) Of Mice, Men, and microbial opsins: how optogenetics can help hone mouse models of mental illness. Biol Psychiatry doi: 10.1016/j.biopsych.2015.04.012
  172. Matsumoto M, Hikosaka O (2007) Lateral habenula as a source of negative reward signals in dopamine neurons. Nature 447:1111–1115. doi: 10.1038/nature05860 PubMedCrossRefGoogle Scholar
  173. Mattson MP (2008) Glutamate and neurotrophic factors in neuronal plasticity and disease. Ann NY Acad Sci 1144:97–112. doi: 10.1196/annals.1418.005 PubMedPubMedCentralCrossRefGoogle Scholar
  174. McClung CA (2007) Circadian genes, rhythms and the biology of mood disorders. Pharmacol Ther 114:222–232. doi: 10.1016/j.pharmthera.2007.02.003 PubMedPubMedCentralCrossRefGoogle Scholar
  175. McClung CA (2013) How might circadian rhythms control mood? Let me count the ways. Biol Psychiatry 74:242–249. doi: 10.1016/j.biopsych.2013.02.019 PubMedPubMedCentralCrossRefGoogle Scholar
  176. McClung CA et al (2005) Regulation of dopaminergic transmission and cocaine reward by the Clock gene. Proc Natl Acad Sci USA 102:9377–9381. doi: 10.1073/pnas.0503584102 PubMedPubMedCentralCrossRefGoogle Scholar
  177. McDevitt RA et al (2014) Serotonergic versus nonserotonergic dorsal raphe projection neurons: differential participation in reward circuitry. Cell Rep 8:1857–1869. doi: 10.1016/j.celrep.2014.08.037 PubMedPubMedCentralCrossRefGoogle Scholar
  178. Meaney MJ (2001) Maternal care, gene expression, and the transmission of individual differences in stress reactivity across generations. Annu Rev Neurosci 24:1161–1192. doi: 10.1146/annurev.neuro.24.1.1161 PubMedCrossRefGoogle Scholar
  179. Meerlo P, Turek FW (2001) Effects of social stimuli on sleep in mice: non-rapid-eye-movement (NREM) sleep is promoted by aggressive interaction but not by sexual interaction. Brain Res 907:84–92PubMedCrossRefGoogle Scholar
  180. Meerlo P, Overkamp GJ, Benning MA, Koolhaas JM, Van den Hoofdakker RH (1996) Long-term changes in open field behaviour following a single social defeat in rats can be reversed by sleep deprivation. Physiol Behav 60:115–119. doi:0031938495022716 [pii]Google Scholar
  181. Meerlo P, Sgoifo A, Turek FW (2002) The effects of social defeat and other stressors on the expression of circadian rhythms. Stress 5:15–22. doi: 10.1080/102538902900012323 PubMedCrossRefGoogle Scholar
  182. Mengod G, Pompeiano M, Martinez-Mir MI, Palacios JM (1990) Localization of the mRNA for the 5-HT2 receptor by in situ hybridization histochemistry. Correlation with the distribution of receptor sites. Brain Res 524:139–143PubMedCrossRefGoogle Scholar
  183. Mileykovskiy BY, Kiyashchenko LI, Siegel JM (2005) Behavioral correlates of activity in identified hypocretin/orexin neurons. Neuron 46:787–798. doi: 10.1016/j.neuron.2005.04.035 PubMedCrossRefGoogle Scholar
  184. Mistlberger RE (2005) Circadian regulation of sleep in mammals: role of the suprachiasmatic nucleus. Brain Res Brain Res Rev 49:429–454. doi: 10.1016/j.brainresrev.2005.01.005 PubMedCrossRefGoogle Scholar
  185. Mohawk JA, Takahashi JS (2011) Cell autonomy and synchrony of suprachiasmatic nucleus circadian oscillators. Trends Neurosci 34:349–358. doi: 10.1016/j.tins.2011.05.003 PubMedPubMedCentralCrossRefGoogle Scholar
  186. Mongrain V, La Spada F, Curie T, Franken P (2011) Sleep loss reduces the DNA-binding of BMAL1, CLOCK, and NPAS2 to specific clock genes in the mouse cerebral cortex. PLoS ONE 6:e26622. doi: 10.1371/journal.pone.0026622 PubMedPubMedCentralCrossRefGoogle Scholar
  187. Monti JM, Monti D (2007) The involvement of dopamine in the modulation of sleep and waking. Sleep Med Rev 11:113–133. doi: 10.1016/j.smrv.2006.08.003 PubMedCrossRefGoogle Scholar
  188. Monti JM, Hawkins M, Jantos H, D’Angelo L, Fernandez M (1988) Biphasic effects of dopamine D-2 receptor agonists on sleep and wakefulness in the rat. Psychopharmacology 95:395–400PubMedCrossRefGoogle Scholar
  189. Monti JM, Jantos H, Fernandez M (1989) Effects of the selective dopamine D-2 receptor agonist, quinpirole on sleep and wakefulness in the rat. Eur J Pharmacol 169:61–66PubMedCrossRefGoogle Scholar
  190. Monti JM, Fernandez M, Jantos H (1990) Sleep during acute dopamine D1 agonist SKF 38393 or D1 antagonist SCH 23390 administration in rats. Neuropsychopharmacol Off Pub Am Coll Neuropsychopharmacol 3:153–162Google Scholar
  191. Moore RY (2007) Suprachiasmatic nucleus in sleep-wake regulation. Sleep Med 8(Suppl 3):27–33. doi: 10.1016/j.sleep.2007.10.003 PubMedCrossRefGoogle Scholar
  192. Mukherjee S et al (2010) Knockdown of clock in the ventral tegmental area through RNA interference results in a mixed state of mania and depression-like behavior. Biol Psychiatry 68:503–511. doi: 10.1016/j.biopsych.2010.04.031 (S0006-3223(10)00425-7 [pii])
  193. Mutti A et al (2016) The ketamine-like compound methoxetamine substitutes for ketamine in the self-administration paradigm and enhances mesolimbic dopaminergic transmission. Psychopharmacology 233:2241–2251. doi: 10.1007/s00213-016-4275-0 PubMedCrossRefGoogle Scholar
  194. Napier TC, Maslowski-Cobuzzi RJ (1994) Electrophysiological verification of the presence of D1 and D2 dopamine receptors within the ventral pallidum. Synapse 17:160–166. doi: 10.1002/syn.890170304
  195. Naylor E et al (2000) The circadian clock mutation alters sleep homeostasis in the mouse. J Neurosci 20:8138–8143PubMedGoogle Scholar
  196. Nestler EJ et al (2002) Neurobiology of depression. Neuron 34:13–25. doi: 10.1016/S0896-6273(02)00653-0
  197. Neuhoff H, Neu A, Liss B, Roeper J (2002) I(h) channels contribute to the different functional properties of identified dopaminergic subpopulations in the midbrain. J Neurosci Off J Soc Neurosci 22:1290–1302Google Scholar
  198. Nicola SM (2007) The nucleus accumbens as part of a basal ganglia action selection circuit. Psychopharmacology 191:521–550. doi: 10.1007/s00213-006-0510-4 PubMedCrossRefGoogle Scholar
  199. Nieh EH et al (2016) Inhibitory input from the lateral hypothalamus to the ventral tegmental area disinhibits dopamine neurons and promotes behavioral activation. Neuron. doi: 10.1016/j.neuron.2016.04.035 PubMedGoogle Scholar
  200. Non AL, Binder AM, Kubzansky LD, Michels KB (2014) Genome-wide DNA methylation in neonates exposed to maternal depression, anxiety, or SSRI medication during pregnancy. Epigenetics 9:964–972. doi: 10.4161/epi.28853 PubMedPubMedCentralCrossRefGoogle Scholar
  201. O’Donnell P, Grace AA (1994) Tonic D2-mediated attenuation of cortical excitation in nucleus accumbens neurons recorded in vitro. Brain Res 634:105–112. doi: 10.1016/0006-8993(94)90263-1 [pii]
  202. Ozburn AR, Larson EB, Self DW, McClung CA (2012) Cocaine self-administration behaviors in ClockDelta19 mice. Psychopharmacology 223:169–177. doi: 10.1007/s00213-012-2704-2 PubMedPubMedCentralCrossRefGoogle Scholar
  203. Ozburn AR et al (2013) The role of clock in ethanol-related behaviors. Neuropsychopharmacol Off Pub Am Coll Neuropsychopharmacol 38:2393–2400. doi: 10.1038/npp.2013.138 CrossRefGoogle Scholar
  204. Pandey GN et al (2008) Brain-derived neurotrophic factor and tyrosine kinase B receptor signalling in post-mortem brain of teenage suicide victims. Int J Neuropsychopharmacol 11:1047–1061. doi: 10.1017/S1461145708009000 PubMedCrossRefGoogle Scholar
  205. Paquet M, Tremblay M, Soghomonian JJ, Smith Y (1997) AMPA and NMDA glutamate receptor subunits in midbrain dopaminergic neurons in the squirrel monkey: an immunohistochemical and in situ hybridization study. J Neurosci Off J Soc Neurosci 17:1377–1396Google Scholar
  206. Partch CL, Green CB, Takahashi JS (2014) Molecular architecture of the mammalian circadian clock. Trends Cell Biol 24:90–99. doi: 10.1016/j.tcb.2013.07.002 PubMedCrossRefGoogle Scholar
  207. Pellaprat J et al (2014) Deep brain stimulation of the subthalamic nucleus improves pain in Parkinson’s disease. Parkinsonism Relat Disord 20:662–664. doi: 10.1016/j.parkreldis.2014.03.011 PubMedCrossRefGoogle Scholar
  208. Pencea V, Bingaman KD, Wiegand SJ, Luskin MB (2001) Infusion of brain-derived neurotrophic factor into the lateral ventricle of the adult rat leads to new neurons in the parenchyma of the striatum, septum, thalamus, and hypothalamus. J Neurosci Off J Soc Neurosci 21:6706–6717Google Scholar
  209. Perona MT et al (2008) Animal models of depression in dopamine, serotonin, and norepinephrine transporter knockout mice: prominent effects of dopamine transporter deletions. Behav Pharmacol 19:566–574. doi: 10.1097/FBP.0b013e32830cd80f PubMedPubMedCentralCrossRefGoogle Scholar
  210. Pessia M, Jiang ZG, North RA, Johnson SW (1994) Actions of 5-hydroxytryptamine on ventral tegmental area neurons of the rat in vitro. Brain Res 654:324–330PubMedCrossRefGoogle Scholar
  211. Polter AM, Kauer JA (2014) Stress and VTA synapses: implications for addiction and depression. Eur J Neurosci 39:1179–1188. doi: 10.1111/ejn.12490 PubMedPubMedCentralCrossRefGoogle Scholar
  212. Porkka-Heiskanen T (2003) Gene expression during sleep, wakefulness and sleep deprivation. Front Biosci 8:s421–s437PubMedCrossRefGoogle Scholar
  213. Radley JJ et al (2006) Repeated stress induces dendritic spine loss in the rat medial prefrontal cortex. Cereb Cortex 16:313–320. doi: 10.1093/cercor/bhi104 PubMedCrossRefGoogle Scholar
  214. Ralph MR, Block GD (1990) Circadian and light-induced conductance changes in putative pacemaker cells of Bulla gouldiana. J Comp Physiol A 166:589–595PubMedCrossRefGoogle Scholar
  215. Rapaport MH, Schneider LS, Dunner DL, Davies JT, Pitts CD (2003) Efficacy of controlled-release paroxetine in the treatment of late-life depression. J Clin Psychiatry 64:1065–1074PubMedCrossRefGoogle Scholar
  216. Razzoli M, Andreoli M, Michielin F, Quarta D, Sokal DM (2011) Increased phasic activity of VTA dopamine neurons in mice 3 weeks after repeated social defeat. Behav Brain Res 218:253–257. doi: 10.1016/j.bbr.2010.11.050 PubMedCrossRefGoogle Scholar
  217. Rebec GV, Christensen JR, Guerra C, Bardo MT (1997) Regional and temporal differences in real-time dopamine efflux in the nucleus accumbens during free-choice novelty. Brain Res 776:61–67PubMedCrossRefGoogle Scholar
  218. Ren ZY et al (2009) Diurnal variation in cue-induced responses among protracted abstinent heroin users. Pharmacol Biochem Behav 91:468–472. doi: 10.1016/j.pbb.2008.08.023 PubMedCrossRefGoogle Scholar
  219. Renthal W et al (2007) Histone deacetylase 5 epigenetically controls behavioral adaptations to chronic emotional stimuli. Neuron 56:517–529. doi: 10.1016/j.neuron.2007.09.032 PubMedCrossRefGoogle Scholar
  220. Robinson DL, Wightman RM (2007) In: Michael AC, Borland LM (eds) Electrochemical Methods for Neuroscience. CRC Press, Taylor & Francis, Boca RatonGoogle Scholar
  221. Robinson DL et al (2001) Sub-second changes in accumbal dopamine during sexual behavior in male rats. Neuro Rep 12:2549–2552Google Scholar
  222. Robinson DL, Heien ML, Wightman RM (2002) Frequency of dopamine concentration transients increases in dorsal and ventral striatum of male rats during introduction of conspecifics. J Neurosci Off J Soc Neurosci 22:10477–10486Google Scholar
  223. Robinson DL, Zitzman DL, Smith KJ, Spear LP (2011) Fast dopamine release events in the nucleus accumbens of early adolescent rats. Neuroscience 176:296–307. doi: 10.1016/j.neuroscience.2010.12.016 PubMedCrossRefGoogle Scholar
  224. Roitman MF, Wheeler RA, Wightman RM, Carelli RM (2008) Real-time chemical responses in the nucleus accumbens differentiate rewarding and aversive stimuli. Nat Neurosci 11:1376–1377. doi: 10.1038/nn.2219 PubMedPubMedCentralCrossRefGoogle Scholar
  225. Roux PP, Barker PA (2002) Neurotrophin signaling through the p75 neurotrophin receptor. Prog Neurobiol 67:203–233PubMedCrossRefGoogle Scholar
  226. Roybal K et al (2007) Mania-like behavior induced by disruption of CLOCK. Proc Natl Acad Sci USA 104:6406–6411. doi: 10.1073/pnas.0609625104 (0609625104 [pii])
  227. Rush AJ (2007) Limitations in efficacy of antidepressant monotherapy. J Clin Psychiatry 68(Suppl 10):8–10PubMedGoogle Scholar
  228. Russo SJ, Nestler EJ (2013) The brain reward circuitry in mood disorders. Nat Rev Neurosci 14:609–625. doi: 10.1038/nrn3381 PubMedCrossRefGoogle Scholar
  229. Russo SJ et al (2009) Nuclear factor kappa B signaling regulates neuronal morphology and cocaine reward. J Neurosci Off J Soc Neurosci 29:3529–3537. doi: 10.1523/JNEUROSCI.6173-08.2009 CrossRefGoogle Scholar
  230. Russo SJ et al (2010) The addicted synapse: mechanisms of synaptic and structural plasticity in nucleus accumbens. Trends Neurosci 33:267–276. doi: 10.1016/j.tins.2010.02.002 PubMedPubMedCentralCrossRefGoogle Scholar
  231. Saini C, Morf J, Stratmann M, Gos P, Schibler U (2012) Simulated body temperature rhythms reveal the phase-shifting behavior and plasticity of mammalian circadian oscillators. Genes Dev 26:567–580. doi: 10.1101/gad.183251.111 PubMedPubMedCentralCrossRefGoogle Scholar
  232. Saper CB (1985) Organization of cerebral cortical afferent systems in the rat.II. Hypothalamocortical projections. J Comp Neurol 237:21–46. doi: 10.1002/cne.902370103 PubMedCrossRefGoogle Scholar
  233. Saper CB, Chou TC, Scammell TE (2001) The sleep switch: hypothalamic control of sleep and wakefulness. Trends Neurosci 24:726–731PubMedCrossRefGoogle Scholar
  234. Saper CB, Lu J, Chou TC, Gooley J (2005) The hypothalamic integrator for circadian rhythms. Trends Neurosci 28:152–157. doi: 10.1016/j.tins.2004.12.009 PubMedCrossRefGoogle Scholar
  235. Saper CB et al (2010) Sleep state switching. Neuron 60:1023–1042. doi: 10.1016/j.neuron.2010.11.032
  236. Schmidt TM, Chen SK, Hattar S (2011) Intrinsically photosensitive retinal ganglion cells: many subtypes, diverse functions. Trends Neurosci 34:572–580. doi: 10.1016/j.tins.2011.07.001 PubMedPubMedCentralCrossRefGoogle Scholar
  237. Schultz W (2007) Multiple dopamine functions at different time courses. Annu Rev Neurosci 30:259–288. doi: 10.1146/annurev.neuro.28.061604.135722 PubMedCrossRefGoogle Scholar
  238. Schultz W (2013) Updating dopamine reward signals. Curr Opin Neurobiol 23:229–238. doi: 10.1016/j.conb.2012.11.012 PubMedPubMedCentralCrossRefGoogle Scholar
  239. Schumann G et al (2001) Antidepressive response to sleep deprivation in unipolar depression is not associated with dopamine D3 receptor genotype. Neuropsychobiology 43:127–130. doi:54879 [pii]Google Scholar
  240. Schwartz JR, Roth T (2008) Neurophysiology of sleep and wakefulness: basic science and clinical implications. Curr Neuropharmacol 6:367–378. doi: 10.2174/157015908787386050 PubMedPubMedCentralCrossRefGoogle Scholar
  241. Seamans JK, Gorelova N, Durstewitz D, Yang CR (2001) Bidirectional dopamine modulation of GABAergic inhibition in prefrontal cortical pyramidal neurons. J Neurosci Off J Soc Neurosci 21:3628–3638Google Scholar
  242. Seeman P, Van Tol HH (1994) Dopamine receptor pharmacology. Trends Pharmacol Sci 15:264–270PubMedCrossRefGoogle Scholar
  243. Sequeira A et al (2012) Gene expression changes in the prefrontal cortex, anterior cingulate cortex and nucleus accumbens of mood disorders subjects that committed suicide. PLoS ONE 7:e35367. doi: 10.1371/journal.pone.0035367 PubMedPubMedCentralCrossRefGoogle Scholar
  244. Sesack SR, Grace AA (2010) Cortico-Basal Ganglia reward network: microcircuitry. Neuropsychopharmacology 35:27–47. doi: 10.1038/npp.2009.93
  245. Shansky RM, Hamo C, Hof PR, McEwen BS, Morrison JH (2009) Stress-induced dendritic remodeling in the prefrontal cortex is circuit specific. Cereb Cortex 19:2479–2484. doi: 10.1093/cercor/bhp003 PubMedPubMedCentralCrossRefGoogle Scholar
  246. Shen W, Flajolet M, Greengard P, Surmeier DJ (2008) Dichotomous dopaminergic control of striatal synaptic plasticity. Science 321(5890):848–851. doi:  10.1126/science.1160575
  247. Shinohara F, Kihara Y, Ide S, Minami M, Kaneda K (2014) Critical role of cholinergic transmission from the laterodorsal tegmental nucleus to the ventral tegmental area in cocaine-induced place preference. Neuropharmacology 79:573–579. doi: 10.1016/j.neuropharm.2014.01.019 PubMedCrossRefGoogle Scholar
  248. Sidor MM, McClung CA (2014) Timing matters: using optogenetics to chronically manipulate neural circuitry and rhythms. Front Behav Neurosci 8:41. doi: 10.3389/fnbeh.2014.00041 PubMedPubMedCentralCrossRefGoogle Scholar
  249. Sidor MM et al (2015) Daytime spikes in dopaminergic activity drive rapid mood-cycling in mice. Mol Psychiatry 5. doi: 10.1038/mp.2014.167
  250. Slater IH, Jones GT, Moore RA (1978) Inhibition of REM sleep by fluoxetine, a specific inhibitor of serotonin uptake. Neuropharmacology 17:383–389PubMedCrossRefGoogle Scholar
  251. Slattery DA et al (2012) Behavioural consequences of two chronic psychosocial stress paradigms: anxiety without depression. Psychoneuroendocrinology 37:702–714. doi: 10.1016/j.psyneuen.2011.09.002 PubMedCrossRefGoogle Scholar
  252. Smith DR et al (1998) Behavioural assessment of mice lacking D1A dopamine receptors. Neuroscience 86:135–146PubMedCrossRefGoogle Scholar
  253. Smith RJ, Lobo MK, Spencer S, Kalivas PW (2013) Cocaine-induced adaptations in D1 and D2 accumbens projection neurons (a dichotomy not necessarily synonymous with direct and indirect pathways). Curr Opin Neurobiol 23:546–552. doi: 10.1016/j.conb.2013.01.026 PubMedPubMedCentralCrossRefGoogle Scholar
  254. Souetre E et al (1988) Twenty-four-hour profiles of body temperature and plasma TSH in bipolar patients during depression and during remission and in normal control subjects. Am J Psychiatry 145:1133–1137. doi: 10.1176/ajp.145.9.1133 PubMedCrossRefGoogle Scholar
  255. Stamatakis AM, Stuber GD (2012) Activation of lateral habenula inputs to the ventral midbrain promotes behavioral avoidance. Nat Neurosci 15:1105–1107. doi: 10.1038/nn.3145[pii] (nn.3145)
  256. Stamatakis AM et al (2013) A unique population of ventral tegmental area neurons inhibits the lateral habenula to promote reward. Neuron 80:1039–1053. doi: 10.1016/j.neuron.2013.08.023 PubMedCrossRefGoogle Scholar
  257. Steininger TL, Alam MN, Gong H, Szymusiak R, McGinty D (1999) Sleep-waking discharge of neurons in the posterior lateral hypothalamus of the albino rat. Brain Res 840:138–147PubMedCrossRefGoogle Scholar
  258. Stratmann M, Schibler U (2006) Properties, entrainment, and physiological functions of mammalian peripheral oscillators. J Biol Rhythms 21:494–506. doi: 10.1177/0748730406293889 PubMedCrossRefGoogle Scholar
  259. Sylvester CM, Krout KE, Loewy AD (2002) Suprachiasmatic nucleus projection to the medial prefrontal cortex: a viral transneuronal tracing study. Neuroscience 114:1071–1080. doi: 10.1016/S0306-4522(02)00361-5 [pii]
  260. Taishi P et al (2001) Conditions that affect sleep alter the expression of molecules associated with synaptic plasticity. Am J Physiol Regul Integr Comp Physiol 281:R839–R845PubMedGoogle Scholar
  261. Tebartz van Elst L, Woermann F, Lemieux L, Trimble MR (2000) Increased amygdala volumes in female and depressed humans. A quantitative magnetic resonance imaging study. Neuroscience letters 281:103–106Google Scholar
  262. Tononi G, Cirelli C (2001) Modulation of brain gene expression during sleep and wakefulness: a review of recent findings. Neuropsychopharmacol Off Pub Am Coll Neuropsychopharmacol 25:S28–S35. doi: 10.1016/S0893-133X(01)00322-0 CrossRefGoogle Scholar
  263. Trachsel L, Edgar DM, Seidel WF, Heller HC, Dement WC (1992) Sleep homeostasis in suprachiasmatic nuclei-lesioned rats: effects of sleep deprivation and triazolam administration. Brain Res 589:253–261PubMedCrossRefGoogle Scholar
  264. Trivedi RB, Nieuwsma JA, Williams JW Jr (2011) Examination of the utility of psychotherapy for patients with treatment resistant depression: a systematic review. J Gen Intern Med 26:643–650. doi: 10.1007/s11606-010-1608-2 PubMedCrossRefGoogle Scholar
  265. Tsai HC et al (2009) Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning. Science 324:1080–1084. doi:1168878 [pii]Google Scholar
  266. Tye KM et al (2011) Amygdala circuitry mediating reversible and bidirectional control of anxiety. Nature 471:358–362. doi: 10.1038/nature09820 PubMedPubMedCentralCrossRefGoogle Scholar
  267. Tye KM et al (2013) Dopamine neurons modulate neural encoding and expression of depression-related behaviour. Nature 493:537–541. doi: 10.1038/nature11740 PubMedCrossRefGoogle Scholar
  268. Uchida S et al (2011) Epigenetic status of Gdnf in the ventral striatum determines susceptibility and adaptation to daily stressful events. Neuron 69:359–372. doi: 10.1016/j.neuron.2010.12.023 PubMedCrossRefGoogle Scholar
  269. Ulery PG, Rudenko G, Nestler EJ (2006) Regulation of DeltaFosB stability by phosphorylation. J Neurosci Off J Soc Neurosci 26:5131–5142. doi: 10.1523/JNEUROSCI.4970-05.2006 (26/19/5131 [pii])
  270. Ungless MA, Grace AA (2012) Are you or aren’t you? Challenges associated with physiologically identifying dopamine neurons. Trends Neurosci 35:422–430. doi: 10.1016/j.tins.2012.02.003 PubMedPubMedCentralCrossRefGoogle Scholar
  271. Valenti O, Gill KM, Grace AA (2012) Different stressors produce excitation or inhibition of mesolimbic dopamine neuron activity: response alteration by stress pre-exposure. Eur J Neurosci 35:1312–1321. doi: 10.1111/j.1460-9568.2012.08038.x PubMedPubMedCentralCrossRefGoogle Scholar
  272. Vallone D et al (2002) Activity, non-selective attention and emotionality in dopamine D2/D3 receptor knock-out mice. Behav Brain Res 130:141–148PubMedCrossRefGoogle Scholar
  273. Vasudeva RK, Lin RC, Simpson KL, Waterhouse BD (2011) Functional organization of the dorsal raphe efferent system with special consideration of nitrergic cell groups. J Chem Neuroanat 41:281–293. doi: 10.1016/j.jchemneu.2011.05.008 PubMedCrossRefGoogle Scholar
  274. Vialou V et al (2010) DeltaFosB in brain reward circuits mediates resilience to stress and antidepressant responses. Nature Neurosci 13:745–752. doi: 10.1038/nn.2551
  275. Vogel GW (1975) A review of REM sleep deprivation. Arch Gen Psychiatry 32:749–761PubMedCrossRefGoogle Scholar
  276. Walsh JJ et al (2014a) Stress and CRF gate neural activation of BDNF in the mesolimbic reward pathway. Nat Neurosci 17:27–29. doi: 10.1038/nn.3591 PubMedCrossRefGoogle Scholar
  277. Walsh JJ, Han MH (2014b) The heterogeneity of ventral tegmental area neurons: projection functions in a mood-related context. Neuroscience 282C:101–108. doi: 10.1016/j.neuroscience.2014.06.006
  278. Wanat MJ, Hopf FW, Stuber GD, Phillips PE, Bonci A (2008) Corticotropin-releasing factor increases mouse ventral tegmental area dopamine neuron firing through a protein kinase C-dependent enhancement of Ih. J Physiol 586:2157–2170. doi: 10.1113/jphysiol.2007.150078 PubMedPubMedCentralCrossRefGoogle Scholar
  279. Wang RY, Aghajanian GK (1977) Inhibiton of neurons in the amygdala by dorsal raphe stimulation: mediation through a direct serotonergic pathway. Brain Res 120:85–102PubMedCrossRefGoogle Scholar
  280. Wang JB, Mantsch JR (2012) l-tetrahydropalamatine: a potential new medication for the treatment of cocaine addiction. Future Med Chem 4:177–186. doi: 10.4155/fmc.11.166 PubMedCrossRefGoogle Scholar
  281. Waterhouse EG, Xu B (2009) New insights into the role of brain-derived neurotrophic factor in synaptic plasticity. Mol Cell Neurosci 42:81–89. doi: 10.1016/j.mcn.2009.06.009 PubMedPubMedCentralCrossRefGoogle Scholar
  282. Webb IC et al (2009) Diurnal variations in natural and drug reward, mesolimbic tyrosine hydroxylase, and clock gene expression in the male rat. J Biol Rhythms 24:465–476. doi: 10.1177/0748730409346657 PubMedCrossRefGoogle Scholar
  283. Weil ZM, Nelson RJ (2014) Introduction to the special issue on circadian rhythms in behavioral neuroscience. Behav Neurosci 128:237–239. doi: 10.1037/a0036740 PubMedCrossRefGoogle Scholar
  284. Wenzel JM, Rauscher NA, Cheer JF, Oleson EB (2015) A role for phasic dopamine release within the nucleus accumbens in encoding aversion: a review of the neurochemical literature. ACS Chem Neurosci 6:16–26. doi: 10.1021/cn500255p PubMedCrossRefGoogle Scholar
  285. West AR, Grace AA (2002) Opposite influences of endogenous dopamine D1 and D2 receptor activation on activity states and electrophysiological properties of striatal neurons: studies combining in vivo intracellular recordings and reverse microdialysis. J Neurosci Off J Soc Neurosci 22:294–304 (22/1/294 [pii])Google Scholar
  286. Whalley K (2013) Synaptic plasticity: balancing firing rates in vivo. Nat Rev Neurosci 14:820–821. doi: 10.1038/nrn3637 PubMedCrossRefGoogle Scholar
  287. Wilkinson MB et al (2011) A novel role of the WNT-dishevelled-GSK3beta signaling cascade in the mouse nucleus accumbens in a social defeat model of depression. J Neurosci Off J Soc Neurosci 31:9084–9092. doi: 10.1523/JNEUROSCI.0039-11.2011 CrossRefGoogle Scholar
  288. Wirz-Justice A (2006) Biological rhythm disturbances in mood disorders. Int Clin Psychopharmacol 21(Suppl 1):S11–S15. doi: 10.1097/01.yic.0000195660.37267.cf PubMedCrossRefGoogle Scholar
  289. Wirz-Justice A, Van den Hoofdakker RH (1999) Sleep deprivation in depression: what do we know, where do we go? Biol Psychiatry 46:445–453. doi: 10.1016/S0006-3223(99)00125-0 [pii]
  290. Wisor JP et al (2001) Dopaminergic role in stimulant-induced wakefulness. J Neurosci Off J Soc Neurosci 21:1787–1794Google Scholar
  291. Wisor JP et al (2002) A role for cryptochromes in sleep regulation. BMC Neurosci 3:20PubMedPubMedCentralCrossRefGoogle Scholar
  292. Wisor JP et al (2008) Sleep deprivation effects on circadian clock gene expression in the cerebral cortex parallel electroencephalographic differences among mouse strains. J Neurosci Off J Soc Neurosci 28:7193–7201. doi: 10.1523/JNEUROSCI.1150-08.2008 CrossRefGoogle Scholar
  293. Wu JC, Bunney WE (1990) The biological basis of an antidepressant response to sleep deprivation and relapse: review and hypothesis. Am J Psychiatry 147:14–21. doi: 10.1176/ajp.147.1.14 PubMedCrossRefGoogle Scholar
  294. Xie L, Korkmaz KS, Braun K, Bock J (2013) Early life stress-induced histone acetylations correlate with activation of the synaptic plasticity genes Arc and Egr1 in the mouse hippocampus. J Neurochem 125:457–464. doi: 10.1111/jnc.12210 PubMedCrossRefGoogle Scholar
  295. Yamazaki et al (2000) Resetting central and peripheral circadian oscillators in transgenic rats. Science 288:682–685. doi: 10.1126/science.288.5466.682
  296. Yang X, Lamia KA, Evans RM (2007) Nuclear receptors, metabolism, and the circadian clock. Cold Spring Harb Symp Quant Biol 72:387–394. doi: 10.1101/sqb.2007.72.058 PubMedCrossRefGoogle Scholar
  297. Yeim S, Boudebesse C, Etain B, Belliviera F (2015) Circadian markers and genes in bipolar disorder. Encephale 41:S38–S44. doi: 10.1016/s0013-7006(15)30005-1 PubMedCrossRefGoogle Scholar
  298. Yoshii A, Constantine-Paton M (2010) Postsynaptic BDNF-TrkB signaling in synapse maturation, plasticity, and disease. Dev Neurobiol 70:304–322. doi: 10.1002/dneu.20765 PubMedPubMedCentralGoogle Scholar
  299. Yue K et al (2012) The dopamine receptor antagonist levo-tetrahydropalmatine attenuates heroin self-administration and heroin-induced reinstatement in rats. Pharmacol Biochem Behav 102:1–5PubMedCrossRefGoogle Scholar
  300. Zhang J, Shapiro MS (2012) Activity-dependent transcriptional regulation of M-Type (Kv7) K(+) channels by AKAP79/150-mediated NFAT actions. Neuron 76:1133–1146. doi: 10.1016/j.neuron.2012.10.019 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Division of ScienceNew York University Abu Dhabi (NYUAD)Abu DhabiUnited Arab Emirates

Personalised recommendations