Advertisement

Dopaminergic Transmission and Wake-Promoting Effects of Central Nervous System Stimulants

  • Ritchie E. Brown
Chapter

Abstract

Pharmacological agents which increase dopaminergic neurotransmission by blocking dopamine re-uptake by the dopamine transporter (DAT), such as cocaine, amphetamines and modafinil, are potent wake-promoting substances in mammals and even in invertebrates such as Drosophila Melanogaster. In mammals, the cell bodies of dopamine neurons controlling the sleep-wake cycle are located in the midbrain and brainstem. Midbrain dopamine neurons express high levels of DAT and play a key role in emotional arousal in response to rewarding and aversive stimuli. They are strongly excited by wake-promoting neurotransmitters such as acetylcholine and orexins/hypocretins. However, their mean firing rate does not change across the sleep-wake cycle. In contrast, wake-active brainstem dopamine neurons in the dorsal raphe/periaqueductal gray have low DAT levels and play a tonic role in controlling wakefulness. Dopamine neurons increase arousal by inhibiting the nucleus accumbens, by exciting wake-promoting basal forebrain cholinergic and brainstem serotonin neurons and by inhibiting sleep-promoting neurons in the preoptic hypothalamus. Dopamine acts on D1 type (D1, D5) and D2-type (D2, D3, D4) receptors. Both types are involved in promoting arousal but D2 receptors in the shell of the nucleus accumbens appear to be particularly important. Dopamine D4 receptors modulate the amplitude of cortical gamma band (30–80 Hz) oscillations important for attention and inhibit GABAergic inputs from the globus pallidus to the thalamic reticular nucleus. Dopaminergic agents are widely used in clinical practice to modulate alertness in sleep and other disorders involving disrupted cortical activation. Thus, further work on their mechanism of action is warranted.

Keywords

Nucleus Accumbens Ventral Tegmental Area Sleep Deprivation Excessive Daytime Sleepiness Dopamine Neuron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by the US Veterans Administration (Merit Award I01BX001356) and by the US National Institutes of Health: NIMH R01 MH039683, R21 MH094803, NHLBI HL095491 and NINDS R21 NS093000. The contents of this review do not represent the views of the U.S. Department of Veterans Affairs or the United States Government.

Conflicts of Interest

The author declares no competing financial interests.

References

  1. Alberto CO, Trask RB, Hirasawa M (2011) Dopamine acts as a partial agonist for alpha2A adrenoceptor in melanin-concentrating hormone neurons. J Neurosci 31(29):10671–10676PubMedCrossRefGoogle Scholar
  2. Andersson R, Johnston A, Fisahn A (2012) Dopamine D4 receptor activation increases hippocampal gamma oscillations by enhancing synchronization of fast-spiking interneurons. PLoS One 7(7):e40906PubMedPubMedCentralCrossRefGoogle Scholar
  3. Andretic R, van Swinderen B, Greenspan RJ (2005) Dopaminergic modulation of arousal in Drosophila. Current Biol CB 15(13):1165–1175CrossRefGoogle Scholar
  4. Arrigoni E, Saper CB (2003) Dopamine induces excitation of the basal forebrain cholinergic neurons. Soc Neurosci Abs 930:16Google Scholar
  5. Axelrod J (1971) Noradrenaline: fate and control of its biosynthesis. Science 173(997):598–606PubMedCrossRefGoogle Scholar
  6. Barik S, de Beaurepaire R (2005) Dopamine D3 modulation of locomotor activity and sleep in the nucleus accumbens and in lobules 9 and 10 of the cerebellum in the rat. Prog Neuropsychopharmacol Biol Psychiatry 29(5):718–726Google Scholar
  7. Berridge CW, O’Neil J, Wifler K (1999) Amphetamine acts within the medial basal forebrain to initiate and maintain alert waking. Neuroscience 93(3):885–896PubMedCrossRefGoogle Scholar
  8. Blanco-Centurion C, Gerashchenko D, Shiromani PJ (2007) Effects of saporin-induced lesions of three arousal populations on daily levels of sleep and wake. J Neurosci 27(51):14041–14048PubMedPubMedCentralCrossRefGoogle Scholar
  9. Boeve BF, Silber MH, Ferman TJ, Lucas JA, Parisi JE (2001) Association of REM sleep behavior disorder and neurodegenerative disease may reflect an underlying synucleinopathy. Mov Disord 16(4):622–630PubMedCrossRefGoogle Scholar
  10. Boutrel B, Koob GF (2004) What keeps us awake: the neuropharmacology of stimulants and wakefulness-promoting medications. Sleep 27(6):1181–1194PubMedGoogle Scholar
  11. Boutrel B, Kenny PJ, Specio SE, Martin-Fardon R, Markou A, Koob GF et al (2005) Role for hypocretin in mediating stress-induced reinstatement of cocaine-seeking behavior. Proc Natl Acad Sci (USA) 102(52):19168–19173CrossRefGoogle Scholar
  12. Brown EN, Lydic R, Schiff ND (2010) General anesthesia, sleep, and coma. N Engl J Med 363(27):2638–2650PubMedPubMedCentralCrossRefGoogle Scholar
  13. Brown RE, Basheer R, McKenna JT, Strecker RE, McCarley RW (2012) Control of sleep and wakefulness. Physiol Rev 92(3):1087–1187PubMedPubMedCentralCrossRefGoogle Scholar
  14. Burgess CR, Tse G, Gillis L, Peever JH (2010) Dopaminergic regulation of sleep and cataplexy in a murine model of narcolepsy. Sleep 33(10):1295–1304PubMedPubMedCentralGoogle Scholar
  15. Bushey D, Tononi G, Cirelli C (2011) Sleep and synaptic homeostasis: structural evidence in Drosophila. Science 332(6037):1576–1581PubMedPubMedCentralCrossRefGoogle Scholar
  16. Carlsson A, Falck B, Hillarp NA (1962) Cellular localization of brain monoamines. Acta Physiol Scand Suppl 56(196):1–28PubMedGoogle Scholar
  17. Cerruti C, Walther DM, Kuhar MJ, Uhl GR (1993) Dopamine transporter mRNA expression is intense in rat midbrain neurons and modest outside midbrain. Brain Res Mol Brain Res 18(1–2):181–186PubMedCrossRefGoogle Scholar
  18. Chemali JJ, Van Dort CJ, Brown EN, Solt K (2012) Active emergence from propofol general anesthesia is induced by methylphenidate. Anesthesiology 116(5):998–1005PubMedPubMedCentralCrossRefGoogle Scholar
  19. Ciliax BJ, Heilman C, Demchyshyn LL, Pristupa ZB, Ince E, Hersch SM et al (1995) The dopamine transporter: immunochemical characterization and localization in brain. J Neurosci 15(3 Pt 1):1714–17123PubMedGoogle Scholar
  20. Ciliax BJ, Drash GW, Staley JK, Haber S, Mobley CJ, Miller GW et al (1999) Immunocytochemical localization of the dopamine transporter in human brain. J Comp Neurol 409(1):38–56PubMedCrossRefGoogle Scholar
  21. Dahan L, Astier B, Vautrelle N, Urbain N, Kocsis B, Chouvet G (2007) Prominent burst firing of dopaminergic neurons in the ventral tegmental area during paradoxical sleep. Neuropsychopharmacology 32(6):1232–1241PubMedCrossRefGoogle Scholar
  22. Demiralp T, Herrmann CS, Erdal ME, Ergenoglu T, Keskin YH, Ergen M et al (2007) DRD4 and DAT1 polymorphisms modulate human gamma band responses. Cereb Cortex 17(5):1007–1019PubMedCrossRefGoogle Scholar
  23. Donlea JM, Thimgan MS, Suzuki Y, Gottschalk L, Shaw PJ (2011) Inducing sleep by remote control facilitates memory consolidation in Drosophila. Science 332(6037):1571–1576PubMedPubMedCentralCrossRefGoogle Scholar
  24. Dougalis AG, Matthews GA, Bishop MW, Brischoux F, Kobayashi K, Ungless MA (2012) Functional properties of dopamine neurons and co-expression of vasoactive intestinal polypeptide in the dorsal raphe nucleus and ventro-lateral periaqueductal grey. Eur J Neurosci 36(10):3322–3332PubMedPubMedCentralCrossRefGoogle Scholar
  25. Dzirasa K, Ribeiro S, Costa R, Santos LM, Lin SC, Grosmark A et al (2006) Dopaminergic control of sleep-wake states. J Neurosci 26(41):10577–10589PubMedCrossRefGoogle Scholar
  26. Eban-Rothschild A, Rothschild G, Giardino WJ, Jones JR, De Lecea L (2016) VTA dopaminergic neurons regulate ethologically relevant sleep-wake behaviors. Nat Neurosci. Advance online publication Sept 5th; doi: 10.1038/nn.4377
  27. Fridman EA, Calvar J, Bonetto M, Gamzu E, Krimchansky BZ, Meli F et al (2009) Fast awakening from minimally conscious state with apomorphine. Brain Inj 23(2):172–177 PubMedCrossRefGoogle Scholar
  28. Gallopin T, Luppi PH, Rambert FA, Frydman A, Fort P (2004) Effect of the wake-promoting agent modafinil on sleep-promoting neurons from the ventrolateral preoptic nucleus: an in vitro pharmacologic study. Sleep 27(1):19–25PubMedGoogle Scholar
  29. Ganguly-Fitzgerald I, Donlea J, Shaw PJ (2006) Waking experience affects sleep need in Drosophila. Science 313(5794):1775–1781PubMedCrossRefGoogle Scholar
  30. Gasca-Martinez D, Hernandez A, Sierra A, Valdiosera R, Anaya-Martinez V, Floran B et al (2010) Dopamine inhibits GABA transmission from the globus pallidus to the thalamic reticular nucleus via presynaptic D4 receptors. Neuroscience 169(4):1672–1681PubMedCrossRefGoogle Scholar
  31. Gerashchenko D, Blanco-Centurion C, Greco MA, Shiromani PJ (2003) Effects of lateral hypothalamic lesion with the neurotoxin hypocretin-2-saporin on sleep in Long-Evans rats. Neuroscience 116(1):223–235PubMedCrossRefGoogle Scholar
  32. Giacino JT, Whyte J, Bagiella E, Kalmar K, Childs N, Khademi A et al (2012) Placebo-controlled trial of amantadine for severe traumatic brain injury. N Engl J Med 366(9):819–826PubMedCrossRefGoogle Scholar
  33. Giros B, Jaber M, Jones SR, Wightman RM, Caron MG (1996) Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter. Nature 379(6566):6606–6612CrossRefGoogle Scholar
  34. Govindaiah G, Wang T, Gillette MU, Crandall SR, Cox CL (2010) Regulation of inhibitory synapses by presynaptic D(4) dopamine receptors in thalamus. J Neurophysiol 104(5):2757–2765PubMedPubMedCentralCrossRefGoogle Scholar
  35. Greenspan RJ, Tononi G, Cirelli C, Shaw PJ (2001) Sleep and the fruit fly. Trends Neurosci 24(3):142–145PubMedCrossRefGoogle Scholar
  36. Haj-Dahmane S (2001) D2-like dopamine receptor activation excites rat dorsal raphe 5-HT neurons in vitro. Eur J Neurosci 14(1):125–134PubMedCrossRefGoogle Scholar
  37. Hendricks JC, Finn SM, Panckeri KA, Chavkin J, Williams JA, Sehgal A et al (2000) Rest in Drosophila is a sleep-like state. Neuron 25(1):129–138PubMedCrossRefGoogle Scholar
  38. Herning RI, Jones RT, Hooker WD, Mendelson J, Blackwell L (1985) Cocaine increases EEG beta: a replication and extension of Hans Berger’s historic experiments. Electroencephalogr Clin Neurophysiol 60(6):470–477PubMedCrossRefGoogle Scholar
  39. Holst SC, Bersagliere A, Bachmann V, Berger W, Achermann P, Landolt HP (2014) Dopaminergic role in regulating neurophysiological markers of sleep homeostasis in humans. J Neurosci 34(2):566–573PubMedCrossRefGoogle Scholar
  40. Jones BE, Bobillier P, Pin C, Jouvet M (1973) The effect of lesions of catecholamine-containing neurons upon monoamine content of the brain and EEG and behavioral waking in the cat. Brain Res 58(1):157–177PubMedCrossRefGoogle Scholar
  41. Jones BE, Harper ST, Halaris AE (1977) Effects of locus coeruleus lesions upon cerebral monoamine content, sleep-wakefulness states and the response to amphetamine in the cat. Brain Res 124(3):473–496PubMedCrossRefGoogle Scholar
  42. Kocsis B, Lee P, Deth R (2014) Enhancement of gamma activity after selective activation of dopamine D4 receptors in freely moving rats and in a neurodevelopmental model of schizophrenia. Brain Struct Funct 219:2173–2180 Google Scholar
  43. Korotkova TM, Eriksson KS, Haas HL, Brown RE (2002) Selective excitation of GABAergic neurons in the substantia nigra of the rat by orexin/hypocretin in vitro. Regul Pept 104(1–3):83–89PubMedCrossRefGoogle Scholar
  44. Korotkova TM, Sergeeva OA, Eriksson KS, Haas HL, Brown RE (2003) Excitation of ventral tegmental area dopaminergic and nondopaminergic neurons by orexins/hypocretins. J Neurosci 23(1):7–11PubMedGoogle Scholar
  45. Korotkova TM, Brown RE, Sergeeva OA, Ponomarenko AA, Haas HL (2006) Effects of arousal- and feeding-related neuropeptides on dopaminergic and GABAergic neurons in the ventral tegmental area of the rat. Eur J Neurosci 23(10):2677–2685PubMedCrossRefGoogle Scholar
  46. Kume K, Kume S, Park SK, Hirsh J, Jackson FR (2005) Dopamine is a regulator of arousal in the fruit fly. J Neurosci 25(32):7377–7384PubMedCrossRefGoogle Scholar
  47. Lazarus M, Shen HY, Cherasse Y, Qu WM, Huang ZL, Bass CE et al (2011) Arousal effect of caffeine depends on adenosine A2A receptors in the shell of the nucleus accumbens. J Neurosci 31(27):10067–10075PubMedPubMedCentralCrossRefGoogle Scholar
  48. Lebestky T, Chang JS, Dankert H, Zelnik L, Kim YC, Han KA et al (2009) Two different forms of arousal in Drosophila are oppositely regulated by the dopamine D1 receptor ortholog DopR via distinct neural circuits. Neuron 64(4):522–536PubMedPubMedCentralCrossRefGoogle Scholar
  49. Lee G, Kikuno K, Bahn JH, Kim KM, Park JH (2013) Dopamine D2 receptor as a cellular component controlling nocturnal hyperactivities in Drosophila melanogaster. Chronobiol Int 30(4):443–459PubMedCrossRefGoogle Scholar
  50. Leger L, Sapin E, Goutagny R, Peyron C, Salvert D, Fort P et al (2010) Dopaminergic neurons expressing Fos during waking and paradoxical sleep in the rat. J Chem Neuroanat 39(4):262–671PubMedCrossRefGoogle Scholar
  51. Lena I, Parrot S, Deschaux O, Muffat-Joly S, Sauvinet V, Renaud B et al (2005) Variations in extracellular levels of dopamine, noradrenaline, glutamate, and aspartate across the sleep–wake cycle in the medial prefrontal cortex and nucleus accumbens of freely moving rats. J Neurosci Res 81(6):891–899PubMedCrossRefGoogle Scholar
  52. Li Y, van den Pol AN (2005) Direct and indirect inhibition by catecholamines of hypocretin/orexin neurons. J Neurosci 25(1):173–183PubMedCrossRefGoogle Scholar
  53. Lin JS, Hou Y, Jouvet M (1996) Potential brain neuronal targets for amphetamine-, methylphenidate-, and modafinil-induced wakefulness, evidenced by c-fos immunocytochemistry in the cat. Proc Natl Acad Sci (USA) 93(24):14128–14133CrossRefGoogle Scholar
  54. Liu Q, Liu S, Kodama L, Driscoll MR, Wu MN (2012) Two dopaminergic neurons signal to the dorsal fan-shaped body to promote wakefulness in Drosophila. Curr Biol 22(22):2114–2123PubMedPubMedCentralCrossRefGoogle Scholar
  55. Lu J, Jhou TC, Saper CB (2006) Identification of wake-active dopaminergic neurons in the ventral periaqueductal gray matter. J Neurosci 26(1):193–202PubMedCrossRefGoogle Scholar
  56. Matsuda W, Komatsu Y, Yanaka K, Matsumura A (2005) Levodopa treatment for patients in persistent vegetative or minimally conscious states. Neuropsychological Rehabil 15(3–4):414–427CrossRefGoogle Scholar
  57. McCoy JG, Strecker RE (2011) The cognitive cost of sleep lost. Neurobiol Learn Mem 96(4):564–582PubMedPubMedCentralCrossRefGoogle Scholar
  58. Meyers N, Fromm S, Luckenbaugh DA, Drevets WC, Hasler G (2011) Neural correlates of sleepiness induced by catecholamine depletion. Psychiatry Res 194(1):73–78PubMedPubMedCentralCrossRefGoogle Scholar
  59. Miller JD, Farber J, Gatz P, Roffwarg H, German DC (1983) Activity of mesencephalic dopamine and non-dopamine neurons across stages of sleep and walking in the rat. Brain Res 273(1):133–141PubMedCrossRefGoogle Scholar
  60. Monti JM, Jantos H (2008) The roles of dopamine and serotonin, and of their receptors, in regulating sleep and waking. Prog Brain Res 172:625–646PubMedCrossRefGoogle Scholar
  61. Monti JM, Monti D (2007) The involvement of dopamine in the modulation of sleep and waking. Sleep Med Rev 11(2):113–133PubMedCrossRefGoogle Scholar
  62. Mrzljak L, Bergson C, Pappy M, Huff R, Levenson R, Goldman-Rakic PS (1996) Localization of dopamine D4 receptors in GABAergic neurons of the primate brain. Nature 381(6579):245–248PubMedCrossRefGoogle Scholar
  63. Nishino S, Mignot E (1997) Pharmacological aspects of human and canine narcolepsy. Prog Neurobiol 52(1):27–78PubMedCrossRefGoogle Scholar
  64. Nishino S, Mao J, Sampathkumaran R, Shelton J (1998a) Increased dopaminergic transmission mediates the wake-promoting effects of CNS stimulants. Sleep Res Online 1(1):49–61PubMedGoogle Scholar
  65. Nishino S, Mao J, Sampathkumaran R, Shelton J, Mignot E (1998b) Increased dopaminergic transmission mediates the wake-promoting effects of CNS stimulants. Sleep Res Online 1(1):49–61PubMedGoogle Scholar
  66. Parmentier R, Anaclet C, Guhennec C, Brousseau E, Bricout D, Giboulot T et al (2007) The brain H3-receptor as a novel therapeutic target for vigilance and sleep-wake disorders. Biochem Pharmacol 73(8):1157–1171PubMedCrossRefGoogle Scholar
  67. Passler MA, Riggs RV (2001) Positive outcomes in traumatic brain injury-vegetative state: patients treated with bromocriptine. Arch Phys Med Rehabil 82(3):311–315PubMedCrossRefGoogle Scholar
  68. Peyron C, Tighe DK, van den Pol AN, de Lecea L, Heller HC, Sutcliffe JG et al (1998) Neurons containing hypocretin (orexin) project to multiple neuronal systems. J Neurosci 18(23):9996–10015PubMedGoogle Scholar
  69. Pidoplichko VI, DeBiasi M, Williams JT, Dani JA (1997) Nicotine activates and desensitizes midbrain dopamine neurons. Nature 390(6658):401–404PubMedCrossRefGoogle Scholar
  70. Pigeau R, Naitoh P, Buguet A, McCann C, Baranski J, Taylor M et al (1995) Modafinil, d-amphetamine and placebo during 64 hours of sustained mental work. I. Effects on mood, fatigue, cognitive performance and body temperature. J Sleep Res 4(4):212–228PubMedCrossRefGoogle Scholar
  71. Pimentel D, Donlea JM, Talbot CB, Song SM, Thurston AJF, Miesenbock G (2016) Operation of a homeostatic sleep switch. Nat 536:333–337Google Scholar
  72.  Qiu MH, Vetrivelan R, Fuller PM, Lu J (2010) Basal ganglia control of sleep-wake behavior and cortical activation. Eur J Neurosci 31(3):499–507PubMedPubMedCentralCrossRefGoogle Scholar
  73. Qiu MH, Liu W, Qu WM, Urade Y, Lu J, Huang ZL (2012) The role of nucleus accumbens core/shell in sleep-wake regulation and their involvement in modafinil-induced arousal. PLoS ONE 7(9):e45471PubMedPubMedCentralCrossRefGoogle Scholar
  74. Qu WM, Huang ZL, Xu XH, Matsumoto N, Urade Y (2008) Dopaminergic D1 and D2 receptors are essential for the arousal effect of modafinil. J Neurosci 28(34):8462–8469PubMedCrossRefGoogle Scholar
  75. Qu WM, Xu XH, Yan MM, Wang YQ, Urade Y, Huang ZL (2010) Essential role of dopamine D2 receptor in the maintenance of wakefulness, but not in homeostatic regulation of sleep, in mice. J Neurosci 30(12):4382–4389PubMedCrossRefGoogle Scholar
  76. Riemensperger T, Isabel G, Coulom H, Neuser K, Seugnet L, Kume K et al (2011) Behavioral consequences of dopamine deficiency in the Drosophila central nervous system. Proc. Natl Acad. Sci. (USA) 108(2):834–839CrossRefGoogle Scholar
  77. Ritz MC, Lamb RJ, Goldberg SR, Kuhar MJ (1987) Cocaine receptors on dopamine transporters are related to self-administration of cocaine. Science 237(4819):1219–1223PubMedCrossRefGoogle Scholar
  78. Rushby K (1999) Eating the flowers of paradise: one man’s journey through Ethiopia and Yemen. St Martin’s Press, New YorkGoogle Scholar
  79. Rye DB (2004a) Parkinson’s disease and RLS: the dopaminergic bridge. Sleep Med 5(3):317–328PubMedCrossRefGoogle Scholar
  80. Rye DB (2004b) The two faces of Eve: dopamine’s modulation of wakefulness and sleep. Neurology 63(8 Suppl 3):S2–S7PubMedCrossRefGoogle Scholar
  81. Salmi P, Chergui K, Fredholm BB (2005) Adenosine-dopamine interactions revealed in knockout mice. J Mol Neurosci 26(2–3):239–244PubMedCrossRefGoogle Scholar
  82. Sanchez-Gonzalez MA, Garcia-Cabezas MA, Rico B, Cavada C (2005) The primate thalamus is a key target for brain dopamine. J Neurosci 25(26):6076–6083PubMedCrossRefGoogle Scholar
  83. Scammell TE, Estabrooke IV, McCarthy MT, Chemelli RM, Yanagisawa M, Miller MS et al (2000) Hypothalamic arousal regions are activated during modafinil-induced wakefulness. J Neurosci 20(22):8620–8628PubMedGoogle Scholar
  84. Schultz W (1998) Predictive reward signal of dopamine neurons. J Neurophysiol 80(1):1–27PubMedGoogle Scholar
  85. Seugnet L, Suzuki Y, Vine L, Gottschalk L, Shaw PJ (2008) D1 receptor activation in the mushroom bodies rescues sleep-loss-induced learning impairments in Drosophila. Curr Biol 18(15):1110–1117PubMedPubMedCentralCrossRefGoogle Scholar
  86. Shaw PJ, Cirelli C, Greenspan RJ, Tononi G (2000) Correlates of sleep and waking in Drosophila melanogaster. Science 287(5459):1834–1837PubMedCrossRefGoogle Scholar
  87. Sohal VS, Zhang F, Yizhar O, Deisseroth K (2009) Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature 459(7247):698–702PubMedPubMedCentralCrossRefGoogle Scholar
  88. Solt K, Cotten JF, Cimenser A, Wong KF, Chemali JJ, Brown EN (2011) Methylphenidate actively induces emergence from general anesthesia. Anesthesiology 115(4):791–803PubMedPubMedCentralCrossRefGoogle Scholar
  89. Solt K, Van Dort CJ, Chemali JJ, Taylor NE, Kenny JD, Brown EN (2014) Electrical stimulation of the ventral tegmental area induces reanimation from general anesthesia. Anesthesiology 121:311–319Google Scholar
  90. Steinfels GF, Heym J, Strecker RE, Jacobs BL (1983) Behavioral correlates of dopaminergic unit activity in freely moving cats. Brain Res 258(2):217–228PubMedCrossRefGoogle Scholar
  91. Streatfeild D (2001) Cocaine: an unauthorized biography. Picador, New YorkGoogle Scholar
  92. Taheri S, Zeitzer JM, Mignot E (2002) The role of hypocretins (orexins) in sleep regulation and narcolepsy. Annu Rev Neurosci 25:283–313PubMedCrossRefGoogle Scholar
  93. Taylor NE, Chemali JJ, Brown EN, Solt K (2013) Activation of D1 dopamine receptors induces emergence from isoflurane general anesthesia. Anesthesiology 118(1):30–39PubMedPubMedCentralCrossRefGoogle Scholar
  94. Tononi G, Cirelli C (2003) Sleep and synaptic homeostasis: a hypothesis. Brain ResBull 62(2):143–150Google Scholar
  95. Ueno T, Tomita J, Tanimoto H, Endo K, Ito K, Kume S et al (2012) Identification of a dopamine pathway that regulates sleep and arousal in Drosophila. Nature Neurosci. 15(11):1516–1523PubMedCrossRefGoogle Scholar
  96. Uhlhaas PJ, Singer W (2010) Abnormal neural oscillations and synchrony in schizophrenia. Nat Rev Neurosci 11(2):100–113PubMedCrossRefGoogle Scholar
  97. Van Tol HH, Bunzow JR, Guan HC, Sunahara RK, Seeman P, Niznik HB et al (1991) Cloning of the gene for a human dopamine D4 receptor with high affinity for the antipsychotic clozapine. Nature 350(6319):610–614PubMedCrossRefGoogle Scholar
  98. Wisor J (2013) Modafinil as a catecholaminergic agent: empirical evidence and unanswered questions. Frontiers in Neurology. 4:139PubMedPubMedCentralCrossRefGoogle Scholar
  99. Wisor JP, Nishino S, Sora I, Uhl GH, Mignot E, Edgar DM (2001) Dopaminergic role in stimulant-induced wakefulness. J Neurosci 21(5):1787–1794PubMedGoogle Scholar
  100. Woo TU, Spencer K, McCarley RW (2010) Gamma oscillation deficits and the onset and early progression of schizophrenia. Harv. Rev. Psychiatry. 18(3):173–189PubMedPubMedCentralCrossRefGoogle Scholar
  101. Yamanaka A, Muraki Y, Ichiki K, Tsujino N, Kilduff TS, Goto K et al (2006) Orexin neurons are directly and indirectly regulated by catecholamines in a complex manner. J Neurophysiol 96(1):284–298PubMedCrossRefGoogle Scholar
  102. Yang N, Zhang KY, Wang FF, Hu ZA, Zhang J (2014) Dopamine inhibits neurons from the rat dorsal subcoeruleus nucleus through the activation of alpha2-adrenergic receptors. Neurosci Lett 559:61–66PubMedCrossRefGoogle Scholar
  103. Yeomans J, Baptista M (1997) Both nicotinic and muscarinic receptors in ventral tegmental area contribute to brain-stimulation reward. Pharmacol Biochem Behav 57(4):915–921PubMedCrossRefGoogle Scholar
  104. Yeomans J, Forster G, Blaha C (2001) M5 muscarinic receptors are needed for slow activation of dopamine neurons and for rewarding brain stimulation. Life Sci 68(22–23):2449–2456PubMedCrossRefGoogle Scholar
  105. Zafonte RD, Watanabe T, Mann NR (1998) Amantadine: a potential treatment for the minimally conscious state. Brain Inj 12(7):617–621PubMedCrossRefGoogle Scholar
  106. Zant JC, Leenaars CH, Kostin A, Van Someren EJ, Porkka-Heiskanen T (2011) Increases in extracellular serotonin and dopamine metabolite levels in the basal forebrain during sleep deprivation. Brain Res 1399:40–48PubMedCrossRefGoogle Scholar
  107. Zhang JP, Xu Q, Yuan XS, Cherasse Y, Schiffmann SN, de Kerchove d’Exaerde A et al (2013) Projections of nucleus accumbens adenosine A2A receptor neurons in the mouse brain and their implications in mediating sleep-wake regulation. Front Neuroanat 7:43PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.In Vitro Neurophysiology Section, Laboratory of Neuroscience, Department of PsychiatryVA Boston Healthcare System and Harvard Medical School, VA Medical Center BrocktonBrocktonUSA

Personalised recommendations