Dopamine in REM Sleep Regulation

  • Mudasir Ahmad Khanday
  • Raghunandan Kumar Yadav
  • Birendra Nath MallickEmail author


The dopamine (DA)-ergic neurons are primarily localized in the substantia nigra (SN) and ventral tegmental area (VTA) of the brainstem. These neurons are involved in diverse functions including control of movements, reward, sleep-wakefulness and rapid eye movement sleep (REMS). Loss of these DA-ergic neurons is associated with different behavioral disorders, including Parkinson’s disease, depression, REMS behavior disorder (RBD) and notably in all these disorders sleep including REMS is affected. These neurons receive projections from the locus coeruleus (REM-OFF) and laterodorsal/pedunculopontinetegmentum (REM-ON), neurons, and these modulate REMS. However, how these DA-ergic neurons regulate REMS largely remains unknown. Relevant literatures suggest that the DA-ergic neurons may have an indirect modulatory role, which however needs confirmation.


Dopamine Dopamine receptors Parkinson’s disease REMS behavior disorder Substantia nigra Ventral tegmental area 





DA uptake transporter








Locus coeruleus


Latero-dorsal tegementum






Parkinson’s disease




REMS behavior disorder


Rapid eye movement sleep


REMS deprivation


Substantia nigra


SN pars compacta


SN pars reticulata


Ventral tegmental area



MAK and RKY received UGC fellowship. Research funding from Indian funding agencies viz. DBT-BUILDER, PURSE II and UPOE-II under Institutional support and individual support under J.C. Bose fellowship and UGC to BNM are acknowledged.


  1. Aghajanian GK, Bunney BS (1977) Dopamine “autoreceptors”: pharmacological characterization by microiontophoretic single cell recording studies. Naunyn-Schmiedeberg’s Arch Pharmacol 297:1–7CrossRefGoogle Scholar
  2. Aghajanian GK, Cedarbaum JM, Wang RY (1977) Evidence for norepinephrine-mediated collateral inhibition of locus coeruleus neurons. Brain Res 136:570–577PubMedCrossRefGoogle Scholar
  3. Agid Y, Javoy-Agid F, Ruberg M (1987) Biochemistry of neurotransmitters in Parkinson’s disease. Movement Dis 2:166–230Google Scholar
  4. Argyropoulos SV, Wilson SJ (2005) Sleep disturbances in depression and the effects of antidepressants. Int Rev Psychiatr 17:237–245CrossRefGoogle Scholar
  5. Armitage R (2007) Sleep and circadian rhythms in mood disorders. Acta Psychiatr Scand 115:104–115CrossRefGoogle Scholar
  6. Arnaldi D, Latimer A, Leu-Semeneseu S, Vidailhet M, Arnulf I (2016) Loss of REM Sleep features acors snighttime in REM sleep behavior disorder. Sleep Med 17:134–137Google Scholar
  7. Arnulf I, Bonnet AM, Damier P, Bejjani BP, Seilhean D, Derenne JP, Agid Y (2000) Hallucinations, REM sleep, and Parkinson’s disease: a medical hypothesis. Neurology 55:281–288PubMedCrossRefGoogle Scholar
  8. Aserinsky E, Kleitman N (1953) Regularly occurring periods of eye motility, and concomitant phenomena, during sleep. Science 118:273–274PubMedCrossRefGoogle Scholar
  9. Bagetta G, Corasaniti M, Strongoli M, Sakurada S, Nistico G (1987) Behavioural and ECoG spectrum power effects after intraventricular injection of drugs altering dopaminergic transmission in rats. Neuropharmacology 26:1047–1052PubMedCrossRefGoogle Scholar
  10. Bagetta G, Sarro G, Priolo E, Nisticò G (1988) Ventral tegmental area: site through which dopamine D2-receptor agonists evoke behavioural and electrocortical sleep in rats. Br J Pharmacol 95:860–866PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bayer VE, Pickel VM (1990) Ultrastructural localization of tyrosine hydroxylase in the rat ventral tegmental area: relationship between immunolabeling density and neuronal associations. J Neurosci 10:2996–3013PubMedGoogle Scholar
  12. Beckstead RM, Domesick VB, Nauta WJ (1979) Efferent connections of the substantia nigra and ventral tegmental area in the rat. Brain Res 175:191–217PubMedCrossRefGoogle Scholar
  13. Benca RM, Okawa M, Uchiyama M, Ozaki S, Nakajima T, Shibui K, Obermeyer WH (1997) Sleep and mood disorders. Sleep Med Rev 1:45–56PubMedCrossRefGoogle Scholar
  14. Bjorklund A, Lindvall O (1975) Dopamine in dendrites of substantia nigra neurons: suggestions for a role in dendritic terminals. Brain Res 83:531–537PubMedCrossRefGoogle Scholar
  15. Bo P, Ongini E, Giorgetti A, Savoldi F (1988) Synchronization of the EEG and sedation induced by neuroleptics depend upon blockade of both D1 and D2 dopamine receptors. Neuropharmacology 27:799–805PubMedCrossRefGoogle Scholar
  16. Boeve BF, Silber MH, Saper CB, Ferman TJ, Dickson DW, Parisi JE, Benarroch EE, Ahlskog JE, Smith GE, Caselli RC, Tippman-Peikert M, Olson EJ, Lin SC, Young T, Wszolek Z, Schenck CH, Mahowald MW, Castillo PR, Del Tredici K, Braak H (2007) Pathophysiology of REM sleep behaviour disorder and relevance to neurodegenerative disease. Brain J Neurol 130:2770–2788CrossRefGoogle Scholar
  17. Brown A, Gershon S (1993) Dopamine and depression. J Neural Transm/Gen Sect JNT 91:75–109CrossRefGoogle Scholar
  18. Brown EE, Damsma G, Gumming P, Fibiger HC (1991) Interstitial 3-methoxytyramine reflects striatal dopamine release: an in vivo microdialysis study. J Neurochem 57:701–707PubMedCrossRefGoogle Scholar
  19. Carlsson A (1987) Development of new pharmacological approaches in Parkinson’s disease. Adv Neurol 45:513–518PubMedGoogle Scholar
  20. Cheramy A, Leviel V, Glowinski J (1981) Dendritic release of dopamine in the substantia nigra. Nature 289:537–543PubMedCrossRefGoogle Scholar
  21. Chinta SJ, Andersen JK (2005) Dopaminergic neurons. Int J Biochem Cell Biol 37:942–946PubMedCrossRefGoogle Scholar
  22. Chowdhury R, Guitart-Masip M, Bunzeck N, Dolan RJ, Düzel E (2012) Dopamine modulates episodic memory persistence in old age. J Neurosci 32:14193–14204PubMedPubMedCentralCrossRefGoogle Scholar
  23. Cianchetti C, Masala C, Mangoni A, Gessa GL (1980) Suppression of REM and delta sleep by apomorphine in man: a dopamine mimetic effect. Psychopharmacology 67:61–65PubMedCrossRefGoogle Scholar
  24. Civelli O, Bunzow JR, Grandy DK (1993) Molecular diversity of the dopamine receptors. Annu Rev Pharmacol Toxicol 33:281–307PubMedCrossRefGoogle Scholar
  25. Cragg SJ, Greenfield SA (1997) Differential autoreceptor control of somatodendritic and axon terminal dopamine release in substantia nigra, ventral tegmental area, and striatum. J Neurosci 17:5738–5746PubMedGoogle Scholar
  26. Cragg S, Rice M, Greenfield S (1997) Heterogeneity of electrically evoked dopamine release and reuptake in substantia nigra, ventral tegmental area, and striatum. J Neurophysiol 77:863–873PubMedGoogle Scholar
  27. Dahan L, Astier B, Vautrelle N, Urbain N, Kocsis B, Chouvet G (2007) Prominent burst firing of dopaminergic neurons in the ventral tegmental area during paradoxical sleep. Neuropsychopharmacology 32:1232–1241PubMedCrossRefGoogle Scholar
  28. Dahlstrom A, Fuxe K (1964) Evidence for the existence of monoamine-containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurons. Acta Physiol Scand Suppl 232:231–255Google Scholar
  29. Datta S, Calvo JM, Quattrochi JJ, Hobson JA (1991) Long-term enhancement of REM sleep following cholinergic stimulation. NeuroReport 2:619–622PubMedCrossRefGoogle Scholar
  30. David Nutt D, Paterson L (2008) Sleep disorders as core symptoms of depression. Dialogues Clin Neurosci 10:329–336Google Scholar
  31. De Montis GM, Devoto P, Gessa GL, Meloni D, Porcella A, Saba P, Serra G, Tagliamonte A (1990) Central dopaminergic transmission is selectively increased in the limbic system of rats chronically exposed to antidepressants. Eur J Pharmacol 180:31–35PubMedCrossRefGoogle Scholar
  32. Dement W, Kleitman N (1957) Cyclic variations in EEG during sleep and their relation to eye movements, body motility, and dreaming. Electroencephalogr Clin Neurophysiol 9:673–690PubMedCrossRefGoogle Scholar
  33. Denenberg VH, Kim DS, Palmiter RD (2004) The role of dopamine in learning, memory, and performance of a water escape task. Behav Brain Res 148:73–78PubMedCrossRefGoogle Scholar
  34. Double KL, Crocker AD (1995) Dopamine receptors in the substantia nigra are involved in the regulation of muscle tone. Proc Natl Acad Sci 92:1669–1673 PubMedPubMedCentralCrossRefGoogle Scholar
  35. Dunlop BW, Nemeroff CB (2007) The role of dopamine in the pathophysiology of depression. Arch Gen Psychiatry 64:327–337Google Scholar
  36. Dzirasa K, Ribeiro S, Costa R, Santos LM, Lin SC, Grosmark A, Sotnikova TD, Gainetdinov RR, Caron MG, Nicolelis MA (2006) Dopaminergic control of sleep-wake states. J Neurosci 26:10577–10589PubMedCrossRefGoogle Scholar
  37. Ehringer H, Hornykiewicz O (1960) Verteilung von Noradrenalin und Dopamin (3-Hydroxytyramin) im Gehirn des Menschen und ihr Verhalten bei Erkrankungen des extrapyramidalen Systems. Klinische Wochenschrift 38:1236–1239PubMedCrossRefGoogle Scholar
  38. Factor SA, McAlarney T, Sanchez-Ramos JR, Weiner WJ (1990) Sleep disorders and sleep effect in Parkinson’s disease. Mov Disord 5:280–285PubMedCrossRefGoogle Scholar
  39. Feenstra MG, Botterblom MH, Mastenbroek S (2000) Dopamine and noradrenaline efflux in the prefrontal cortex in the light and dark period: effects of novelty and handling and comparison to the nucleus accumbens. Neuroscience 100:741–748PubMedCrossRefGoogle Scholar
  40. Frauscher B, Hogl B (2015) Quality control for diagnosis of REM sleep behavior disorder: criteria, questionnaires, video, and polysomnography. In: Videnovic A, Hogl B (eds) Disorders of sleep and circadian rhythms in Parkinson’s disease. Springer, New York, pp 145–158Google Scholar
  41. Freeman AH (2015) Neurochemistry of the sleep-wake cycle in Parkinson’s disease. In: Videnovic A, Hogl B (eds) Disorders of sleep and circadian rhythms in Parkinson’s disease. Springer, New York, pp 19–34Google Scholar
  42. Geffen L, Jessell T, Cuello A, Iversen L (1976) Release of dopamine from dendrites in rat substantia nigra. Nature 260:258–260Google Scholar
  43. Gillin JC (1983) The sleep therapies of depression. Prog Neuro-psychopharmacol Biol Psychiatr 7:351–364CrossRefGoogle Scholar
  44. Gilson M, Deliens G, Leproult R, Bodart A, Nonclercq A, Ercek R, Peigneux P (2015) REM-enriched naps are associated with memory consolidation for sad stories and enhance mood-related reactivity. Brain Sci 6Google Scholar
  45. Gingrich JA, Caron MG (1993) Recent advances in the molecular biology of dopamine receptors. Annu Rev Neurosci 16:299–321PubMedCrossRefGoogle Scholar
  46. Gottesmann C, Gottesman I (2007) The neurobiological characteristics of rapid eye movement (REM) sleep are candidate endophenotypes of depression, schizophrenia, mental retardation and dementia. Prog Neurobiol 81:237–250PubMedCrossRefGoogle Scholar
  47. Grace A (1991) Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: a hypothesis for the etiology of schizophrenia. Neuroscience 41:1–24PubMedCrossRefGoogle Scholar
  48. Greenwood TA, Schork NJ, Eskin E, Kelsoe JR (2006) Identification of additional variants within the human dopamine transporter gene provides further evidence for an association with bipolar disorder in two independent samples. Mol Psychiatr 11:125–133CrossRefGoogle Scholar
  49. Gröger A, Kolb R, Schäfer R, Klose U (2014) Dopamine reduction in the substantia nigra of Parkinson’s disease patients confirmed by in vivo magnetic resonance spectroscopic imaging. PLoS ONE 9:e84081PubMedPubMedCentralCrossRefGoogle Scholar
  50. Groves PM (1975) Self-inhibition by dopaminergic neurons an alternative to the “neuronal feedback loop” hypothesis for the mode of action of certain psychotropic drugs. In: Philip M. Groves, Charles J. Wilson, Stephen J. Young, George V (eds) Rebec Department of Psychology, University of Colorado, Boulder, CO 80302, USA: Science vol 190, pp 522–528Google Scholar
  51. Hamdi A, Brock J, Ross K, Prasad C (1993) Effects of rapid eye movement sleep deprivation on the properties of striatal dopaminergic system. Pharmacol Biochem Behav 46:863–866PubMedCrossRefGoogle Scholar
  52. Hemsley KM, Crocker AD (1998) The effects of an irreversible dopamine receptor antagonist, N-ethoxycarbonyl-2-ethoxy-1, 2-dihydroquinoline (EEDQ), on the regulation of muscle tone in the rat: the role of the substantia nigra. Neurosci Lett 251:77–80PubMedCrossRefGoogle Scholar
  53. Hilker R, Razai N, Ghaemi M, Weisenbach S, Rudolf J, Szelies B, Heiss W-D (2003) [18 F] fluorodopa uptake in the upper brainstem measured with positron emission tomography correlates with decreased REM sleep duration in early Parkinson’s disease. Clin Neurol Neurosurg 105:262–269PubMedCrossRefGoogle Scholar
  54. Hjorth S, Carlsson A, Wikström H, Lindberg P, Sanchez D, Hacksell U, Arvidsson L-E, Svensson U, Nilsson J (1981) 3-PPP, a new centrally acting DA-receptor agonist with selectivity for autoreceptors. Life Sci 28:1225–1238PubMedCrossRefGoogle Scholar
  55. Hobson JA, McCarley RW, Wyzinski PW (1975) Sleep cycle oscillation: reciprocal discharge by two brainstem neuronal groups. Science 189:55–58PubMedCrossRefGoogle Scholar
  56. Hokfelt T, Martensson, Bjorklund A, Kleiman S, Goldstein M (1984) Handbook of chemical neuroanatomy, vol 2. Elsevier, AmesterdamGoogle Scholar
  57. Hublin C, Launes J, Nikkinen P, Partinen M (1994) Dopamine D2-receptors in human narcolepsy: a SPECT study with 123 I-IBZM. Acta Neurol Scand 90:186–189PubMedCrossRefGoogle Scholar
  58. Ichikawa J, Meltzer HY (1995) Effect of antidepressants on striatal and accumbens extracellular dopamine levels. Eur J Pharmacol 281:255–261PubMedCrossRefGoogle Scholar
  59. Ichinohe N, Teng B, Kitai ST (2000) Morphological study of the tegmental pedunculopontine nucleus, substantia nigra and subthalamic nucleus, and their interconnections in rat organotypic culture. Anat Embryol (Berl) 201:435–453Google Scholar
  60. Isaac SO, Berridge CW (2003) Wake-promoting actions of dopamine D1 and D2 receptor stimulation. J Pharmacol Exp Ther 307:386–394PubMedCrossRefGoogle Scholar
  61. Isaias IU, Marzegan A, Pezzoli G, Marotta G, Canesi M, Biella GE, Volkmann J, Cavallari P (2011) A role for locus coeruleus in Parkinson tremor. Front Hum Neurosci 5:179PubMedGoogle Scholar
  62. Jacobs BL (1986) Single unit activity of locus coeruleus neurons in behaving animals. Prog Neurobiol 27:183–194PubMedCrossRefGoogle Scholar
  63. Jones BE (2004) Paradoxical REM sleep promoting and permitting neuronal networks. Archives italiennes de biologie 142:379–396PubMedGoogle Scholar
  64. Jones BE, Bobillier P, Pin C, Jouvet M (1973) The effect of lesions of catecholamine-containing neurons upon monoamine content of the brain and EEG and behavioral waking in the cat. Brain Res 58:157–177PubMedCrossRefGoogle Scholar
  65. Jouvet M (1999) Sleep and serotonin: an unfinished story. Neuropsychopharmacology 21:24S–27SPubMedGoogle Scholar
  66. Kataoka H, Ueno S (2014) Auditory musical hallucinations associated with extended-release pramipexole in an elderly patient with Parkinson’s disease. Medicine 93:e251PubMedPubMedCentralCrossRefGoogle Scholar
  67. Kiferle L, Ceravolo R, Giuntini M, Linsalata G, Puccini G, Volterrani D, Bonuccelli U (2014) Caudate dopaminergic denervation and visual hallucinations: evidence from a 123 I-FP-CIT SPECT study. Parkinsonism Relat Disord 20:761–765PubMedCrossRefGoogle Scholar
  68. Knable MB, Weinberger DR (1997) Dopamine, the prefrontal cortex and schizophrenia. J Psychopharmacol 11:123–131PubMedCrossRefGoogle Scholar
  69. Kumar R, Bose A, Mallick BN (2012) A mathematical model towards understanding the mechanism of neuronal regulation of wake-NREMS-REMS states. PLoS One 7:e42059PubMedPubMedCentralCrossRefGoogle Scholar
  70. Kupfer DJ (1976) REM latency: a psychobiologic marker for primary depressive disease. Biol Psychiatry 11:159–174PubMedGoogle Scholar
  71. Kushida CA, Bergmann BM, Rechtschaffen A (1989) Sleep deprivation in the rat: IV. Paradoxical sleep deprivation. Sleep 12:22–30PubMedGoogle Scholar
  72. Lachowicz JE, Sibley DR (1997) Molecular characteristics of mammalian dopamine receptors. Pharmacol Toxicol 81:105–113PubMedCrossRefGoogle Scholar
  73. Lai YY, Siegel JM (1990) Muscle tone suppression and stepping produced by stimulation of midbrain and rostral pontine reticular formation. J Neurosci 10:2727–2734Google Scholar
  74. Lee A (1996) Dopamine (D2) receptor regulation of intracellular calcium and membrane capacitance changes in rat melanotrophs. J Physiol 495:627PubMedPubMedCentralCrossRefGoogle Scholar
  75. Lena I, Parrot S, Deschaux O, Muffat-Joly S, Sauvinet V, Renaud B, Suaud-Chagny MF, Gottesmann C (2005) Variations in extracellular levels of dopamine, noradrenaline, glutamate, and aspartate across the sleep–wake cycle in the medial prefrontal cortex and nucleus accumbens of freely moving rats. J Neurosci Res 81:891–899PubMedCrossRefGoogle Scholar
  76. Lima MM (2013) Sleep disturbances in Parkinson’s disease: the contribution of dopamine in REM sleep regulation. Sleep Med Rev 17:367–375PubMedCrossRefGoogle Scholar
  77. Lima MM, Andersen ML, Reksidler AB, Silva A, Zager A, Zanata SM, Vital MA, Tufik S (2008) Blockage of dopaminergic D(2) receptors produces decrease of REM but not of slow wave sleep in rats after REM sleep deprivation. Behav Brain Res 188:406–411PubMedCrossRefGoogle Scholar
  78. Lu J, Jhou TC, Saper CB (2006a) Identification of wake-active dopaminergic neurons in the ventral periaqueducal grey matter. J Neurosci 26:193–202PubMedCrossRefGoogle Scholar
  79. Lu J, Sherman D, Devor M, Saper CB (2006b) A putative flip-flop switch for control of REM sleep. Nature 441:589–594PubMedCrossRefGoogle Scholar
  80. Luppi PH, Clemento Valencia-Garcias et al (2013) New aspects in the pathophysiology of rapid eye movement sleep behavior disorder: the potential role of glutamate, gamma-aminobutyric acid, and glycine. Sleep Med 14:714–718PubMedCrossRefGoogle Scholar
  81. MacFarlane J, List S, Moldofsky H, Firnau G, Chen J, Szechtman H, Garnett S, Nahmias C (1997) Dopamine D2 receptors quantified in vivo in human narcolepsy. Biol Psychiatry 41:305–310PubMedCrossRefGoogle Scholar
  82. Mahowald MW, Schenck CH (2000) Diagnosis and management of parasomnias. Clin Cornerstone 2:48–54Google Scholar
  83. Mahowald MW, Schenck CH (2011) REM sleep parasomnias. In: Kryger MH, Roth T, Dement WC (eds) Principles and practice of sleep medicine, edn 5. Elsevier/Saunders, Philadelphia, pp 1083–1097Google Scholar
  84. Maj J, Przegalinski E, Mogilnicka E (1984) Hypotheses concerning the mechanism of action of antidepressant drugs. Rev Physiol Biochem Pharmacol, vol 100, Springer, Berlin, pp 1–74Google Scholar
  85. Mallick BN, Singh A (2011) REM sleep loss increases brain excitability: role of noradrenaline and its mechanism of action. Sleep Med Rev 15:165–178PubMedCrossRefGoogle Scholar
  86. Mallick BN, Singh A, Khanday MA (2012) Activation of inactivation process initiates rapid eye movement sleep. Prog Neurobiol 97:259–276PubMedCrossRefGoogle Scholar
  87. Maloney KJ, Mainville L, Jones BE (2002) c-Fos expression in dopaminergic and GABAergic neurons of the ventral mesencephalic tegmentum after paradoxical sleep deprivation and recovery. Eur J Neurosci 15:774–778PubMedCrossRefGoogle Scholar
  88. Mansour A, Watson S (1995) Dopamine receptor expression in the central nervous system. In: Bloom FE, Kupfer DJ (eds) Psychopharmacology: The Fourth Generation of Progress. Raven Press Ltd, New York, pp 207–219Google Scholar
  89. Matheson JK, Saper CB (2003) REM sleep behavior disorder A dopaminergic deficiency disorder? Neurology 61:1328–1329PubMedCrossRefGoogle Scholar
  90. McCarley RW, Hobson JA (1975) Neuronal excitability modulation over the sleep cycle: a structural and mathematical model. Science 189:58–60PubMedCrossRefGoogle Scholar
  91. Meador-Woodruff JH (1995) Neuroanatomy of dopamine receptor gene expression: potential substrates for neuropsychiatric illness. Clin Neuropharmacol 18:S14–S24CrossRefGoogle Scholar
  92. Mena-Segovia J, Cintra L, Prospero-Garcia O, Giordano M (2002) Changes in sleep-waking cycle after striatal excitotoxic lesions. Behav Brain Res 136:475–481PubMedCrossRefGoogle Scholar
  93. Missale C, Nash SR, Robinson SW, Jaber M, Caron MG (1998) Dopamine receptors: from structure to function. Physiol Rev 78:189–225PubMedGoogle Scholar
  94. Molloy A, Waddington J (1987) Assessment of grooming and other behavioural responses to the D-1 dopamine receptor agonist SK & F 38393 and its R-and S-enantiomers in the intact adult rat. Psychopharmacology 92:164–168PubMedCrossRefGoogle Scholar
  95. Monti J (1979) The effects of neuroleptics with central dopamine and noradrenaline receptor blocking properties in the l‐dopa and (+)‐amphetamine‐induced waking EEG in the rat: Br J Pharmacol 67:87–91Google Scholar
  96. Monti JM (1983) Catecholamines and the sleep-wake cycle II. REM sleep. Life Sci 32:1401–1415Google Scholar
  97. Monti JM, Monti D (2007) The involvement of dopamine in the modulation of sleep and waking. Sleep Med Rev 11:113–133PubMedCrossRefGoogle Scholar
  98. Monti JM, Hawkins M, Jantos H, D’Angelo L, Fernández M (1988) Biphasic effects of dopamine D-2 receptor agonists on sleep and wakefulness in the rat. Psychopharmacology 95:395–400PubMedCrossRefGoogle Scholar
  99. Monti JM, Jantos H, Fernandez M (1989) Effects of the selective dopamine D-2 receptor agonist, quinpirole on sleep and wakefulness in the rat. Eur J Pharmacol 169:61–66PubMedCrossRefGoogle Scholar
  100. Morgane PJ, Stern WC (1974) Chemical anatomy of brain circuits in relation to sleep and wakefulness. In: Weitzman ED (ed) Advances in sleep research, vol I. Spectrum, New York, pp 1–131Google Scholar
  101. Neill DB, Fenton H, Justice JB (2002) Increase in accumbal dopaminergic transmission correlates with response cost not reward of hypothalamic stimulation. Behav Brain Res 137:129–138PubMedCrossRefGoogle Scholar
  102. Nieoullon A, Cheramy A, Glowinski J (1977) Release of dopamine in vivo from cat substantia nigra. Nature 266:375–377Google Scholar
  103. Nirenberg MJ, Chan J, Liu Y, Edwards RH, Pickel VM (1996) Ultrastructural localization of the vesicular monoamine transporter-2 in midbrain dopaminergic neurons: potential sites for somatodendritic storage and release of dopamine. J Neurosci 16:4135–4145PubMedGoogle Scholar
  104. Nomikos GG, Damsma G, Wenkstem D, Fibiger HC (1991) Chronic desipramine enhances aniphetamine-induced increases in interstitial concentrations of dopamine in the nucleus accumbens. Eur J Pharmacol 195:63–73PubMedCrossRefGoogle Scholar
  105. Olson EJ, Boeve BF, Silber MH (2000) Rapid eye movement sleep behaviour disorder: demographic, clinical and laboratory findings in 93 cases. Brain J Neurol 123:331–339CrossRefGoogle Scholar
  106. Ongini E, Longo VG (1989) Dopamine receptor subtypes and arousal. Int Rev Neurobiol 31:239–255PubMedCrossRefGoogle Scholar
  107. Ongini E, Caporali M, Massotti M (1985) Stimulation of dopamine D-1 receptors by SKF 38393 induces EEG desynchronization and behavioral arousal. Life Sci 37:2327–2333PubMedCrossRefGoogle Scholar
  108. Pal D, Mallick BN (2009) GABA in pedunculopontine tegmentum increases rapid eye movement sleep in freely moving rats: possible role of GABA-ergic inputs from substantia nigra pars reticulata. Neuroscience 164:404–414PubMedCrossRefGoogle Scholar
  109. Palagini L, Baglioni C, Ciapparelli A, Gemignani A, Riemann D (2013) REM sleep dysregulation in depression: state of the art. Sleep Med Rev 17:377–390PubMedCrossRefGoogle Scholar
  110. Perugi G, Toni C, Ruffolo G, Frare F, Akiskal H (2001) Adjunctive dopamine agonists in treatment-resistant bipolar II depression: an open case series. Pharmacopsychiatry 34:137–141PubMedCrossRefGoogle Scholar
  111. Pillai V, Kalmbach DA, Ciesla JA (2011) A meta-analysis of electroencephalographic sleep in depression: evidence for genetic biomarkers. Biol Psychiatr 70:912–919PubMedCrossRefGoogle Scholar
  112. Politis M, Oertel WH, Wu K, Quinn NP, Pogarell O, Brooks DJ, Bjorklund A, Lindvall O, Piccini P (2011) Graft-induced dyskinesias in Parkinson’s disease: high striatal serotonin/dopamine transporter ratio. Mov Disord 26:1997–2003PubMedCrossRefGoogle Scholar
  113. Post RM, Gerner RH, Carman JS, Gillin JC, Jimerson DC, Goodwin FK, Bunney WE Jr (1978) Effects of a dopamine agonist piribedil in depressed patients: relationship of pretreatment homovanillic acid to antidepressant response. Arch Gen Psychiatr 35:609PubMedCrossRefGoogle Scholar
  114. Qu WM, Xu XH, Yan MM, Wang YQ, Urade Y, Huang ZL (2010) Essential role of dopamine D2 receptor in the maintenance of wakefulness, but not in homeostatic regulation of sleep, in mice. J Neurosci 30:4382–4389PubMedCrossRefGoogle Scholar
  115. Randrup A, Braestrup C (1977) Uptake inhibition of biogenic amines by newer antidepressant drugs: relevance to the dopamine hypothesis of depression. Psychopharmacology 53:309–314PubMedCrossRefGoogle Scholar
  116. Ranjan A, Biswas S, Mallick BN (2010) Cytomorphometric changes in the dorsal raphe neurons after rapid eye movement sleep deprivation are mediated by noradrenalin in rats. Behav Brain Funct 6:62PubMedCrossRefGoogle Scholar
  117. Rice M, Cragg S, Greenfield S (1997) Characteristics of electrically evoked somatodendritic dopamine release in substantia nigra and ventral tegmental area in vitro. J Neurophysiol 77:853–862PubMedGoogle Scholar
  118. Rinne J, Hublin C, Partinen M, Ruottinen H, Någren K, Lehikoinen P, Ruotsalainen U, Laihinen A (1996) Striatal dopamine D1 receptors in narcolepsy: a PET study with [11C] NNC 756. J Sleep Res 5:262–264PubMedCrossRefGoogle Scholar
  119. Rye DB (2004) The two faces of Eve: dopamine’s modulation of wakefulness and sleep. Neurology 63:S2–S7PubMedCrossRefGoogle Scholar
  120. Saitoh K, Hattori S, Song WJ, Isa T, Takakusaki K (2003) Nigral GABAergic inhibition upon cholinergic neurons in the rat pedunculopontine tegmental nucleus. Eur J Neurosci 18:879–886PubMedCrossRefGoogle Scholar
  121. Sakai K, Sastre JP, Kanamori N, Jouvet M (1981) State-specific neurons in pontomedullary reticular formation with special reference to the postural atonia during paradoxical slep in the cat. In: Pompeiano O, Marsan CA (eds) Brain mechanism and perceptual awareness. Raven Press, New York, pp 405–429Google Scholar
  122. Salamone J, Aberman J, Sokolowski J, Cousins M (1999) Nucleus accumbens dopamine and rate of responding: neurochemical and behavioral studies. Psychobiology 27:236–247Google Scholar
  123. Salamone JD, Correa M, Mingote S, Weber SM (2003) Nucleus accumbens dopamine and the regulation of effort in food-seeking behavior: implications for studies of natural motivation, psychiatry, and drug abuse. J Pharmacol Exp Ther 305:1–8PubMedCrossRefGoogle Scholar
  124. Salimpoor VN, Benovoy M, Larcher K, Dagher A, Zatorre RJ (2011) Anatomically distinct dopamine release during anticipation and experience of peak emotion to music. Nat Neurosci 14:257–262PubMedCrossRefGoogle Scholar
  125. Sandor P, Shapiro CM (1994) Sleep patterns in depression and anxiety: theory and pharmacological effects. J Psychosom Res 38:125–139PubMedCrossRefGoogle Scholar
  126. Schenck CH, Mahowald MW (1990) A polysomnographic, neurologic, psychiatric and clinical outcome report on 70 consecutive cases with REM sleep behavior disorder (RBD): sustained clonazepam efficacy in 89.5 % of 57 treated patients: Clev Clin J Med 57:10–24Google Scholar
  127. Schenck CH, Bundlie SR, Ettinger MG, Mohowald M (2002) Chronic behavioral disorders of human REM sleep: a new category of parasomnia. SLEEP-NEW YORK- 25:119Google Scholar
  128. Semba K, Fibiger HC (1992) Afferent connections of the laterodorsal and the pedunculopontine tegmental nuclei in the rat: a retro- and antero-grade transport and immunohistochemical study. J Comp Neurol 323:387–410PubMedCrossRefGoogle Scholar
  129. Sesack SR, Aoki C, Pickel VM (1994) Ultrastructural localization of D2 receptor-like immunoreactivity in midbrain dopamine neurons and their striatal targets. J Neurosci 14:88–106PubMedGoogle Scholar
  130. Siegel J (1989) Brainstem mechanisms generating REM sleep. In: Kryger M, Roth T, Dement W (eds) Principles and practice of sleep medicine. Saunders, Philadelphia, pp 104–120Google Scholar
  131. Silberman EK, Reus VI, Jimerson DC, Lynott AM, Post RM (1981). Heterogeneity of amphetamine response in depressed patients. Am J Psychiatr 138:1302–1307Google Scholar
  132. Steiger A (2007) Neurochemical regulation of sleep. J Psychiatr Res 41:537–552PubMedCrossRefGoogle Scholar
  133. Steiger A, Kimura M (2010) Wake and sleep EEG provide biomarkers in depression. J Psychiatr Res 44:242–252PubMedCrossRefGoogle Scholar
  134. Steinfels GF, Heym J, Strecker RE, Jacobs BL (1983) Behavioral correlates of dopaminergic unit activity in freely moving cats. Brain Res 258:217–228PubMedCrossRefGoogle Scholar
  135. Steininger TL, Rye DB, Wainer BH (1992) Afferent projections to the cholinergic pedunculopontine tegmental nucleus and adjacent midbrain extrapyramidal area in the albino rat. I. Retrograde tracing studies. J Comp Neurol 321:515–543PubMedCrossRefGoogle Scholar
  136. Stern WC, Morgane PJ (1974) Theoretical view of REM sleep function: maintenance of catecholamine systems in the central nervous system. Behav Biol 11:1–32PubMedCrossRefGoogle Scholar
  137. Takakusaki K, Habaguchi T, Ohtinata-Sugimoto J, Saitoh K, Sakamoto T (2003) Basal ganglia efferents to the brainstem centers controlling postural muscle tone and locomotion: a new concept for understanding motor disorders in basal ganglia dysfunction. Neuroscience 119:293–308Google Scholar
  138. Tepper JM, Sun BC, Martin LP, Creese I (1997) Functional roles of dopamine D2 and D3 autoreceptors on nigrostriatal neurons analyzed by antisense knockdown in vivo. J Neurosci 17:2519–2530PubMedGoogle Scholar
  139. Theohar C, Fischer-Cornelssen K, Brosch H, Fischer E, Petrovic D (1981) A comparative, multicenter trial between bromocriptine and amitriptyline in the treatment of endogenous depression. Arzneimittel-Forschung 32:783–787Google Scholar
  140. Trampus M, Ongini E (1990) The D1 dopamine receptor antagonist SCH 23390 enhances REM sleep in the rat. Neuropharmacology 29:889–893PubMedCrossRefGoogle Scholar
  141. Trampus M, Ferri N, Monopoli A, Ongini E (1991) The dopamine D 1 receptor is involved in the regulation of REM sleep in the rat. Eur J Pharmacol 194:189–194PubMedCrossRefGoogle Scholar
  142. Tsuno N, Besset A, Ritchie K (2005) Sleep and depression. J Clin Psychiatr 66:1254–1269PubMedCrossRefGoogle Scholar
  143. Ungerstedt U (1971) Stereotaxic mapping of the monoamine pathways in the rat brain. Acta Physiol Scand Suppl 367:1–48PubMedCrossRefGoogle Scholar
  144. Usiello A, Baik J-H, Rougé-Pont F, Picetti R, Dierich A, LeMeur M, Piazza PV, Borrelli E (2000) Distinct functions of the two isoforms of dopamine D2 receptors. Nature 408:199–203PubMedCrossRefGoogle Scholar
  145. Wang S, Liao C, Meng W, Huang Q, Li D (2015) Activation of D1-like dopamine receptors increases the NMDA-induced gain modulation through a PKA-dependent pathway in the premotor nucleus of adult zebra finches. Neurosci Lett 589:37–41PubMedCrossRefGoogle Scholar
  146. Wauquier A (1985) Dopamine: its active and permissive roles in sleep-wakefulness: Sleep 84:14–16Google Scholar
  147. Willner P (1983) Dopamine and depression: a review of recent evidence. I. Empirical studies. Brain Res Rev 6:211–224CrossRefGoogle Scholar
  148. Wilson S, Argyropoulos S (2005) Antidepressants and sleep. Drugs 65:927–947PubMedCrossRefGoogle Scholar
  149. Wise RA (2004) Dopamine, learning and motivation. Nat Rev Neurosci 5:483–494Google Scholar
  150. Yim CY, Mogenson GJ (1980) Effect of picrotoxin and nipecotic acid on inhibitory response of dopaminergic neurons in the ventral tegmental area to stimulation of the nucleus accumbens. Brain Res 199:466–472PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Mudasir Ahmad Khanday
    • 1
  • Raghunandan Kumar Yadav
    • 1
  • Birendra Nath Mallick
    • 1
    Email author
  1. 1.School of Life SciencesJawaharlal Nehru UniversityNew DelhiIndia

Personalised recommendations