Skip to main content

Zooplankton in Kongsfjorden (1996–2016) in Relation to Climate Change

  • Chapter
  • First Online:
The Ecosystem of Kongsfjorden, Svalbard

Abstract

Zooplankton in Kongsfjorden, Svalbard, is shaped by irregular advection of seawater from the West Spitsbergen Current as well as input of freshwater of glacial and riverine origin. The zooplankton community reflects contributions of Arctic vs. Atlantic water masses in the fjord, and is changing with increasing temperature and declining sea ice. Here, we review zooplankton studies from Kongsfjorden, and present new data from a 20-year time series (1996–2016) of zooplankton abundance/biomass in the fjord based on annual surveys during summer. During the last decade, the marine environment of the West Spitsbergen Shelf and adjacent fjords has undergone changes with increasing temperatures and volume of inflowing Atlantic Water and declining sea ice. Annual monitoring of mesozooplankton since 1996 has shown high seasonal, spatial, and inter-annual variation in species abundance and biomass, and in the proportion of Atlantic and Arctic species. Inter-annual variations in species composition and abundance demonstrate fluctuating patterns related to changes in hydrography. “Warm years” in Kongsfjorden were characterized by higher abundances of Atlantic species, such as Calanus finmarchicus, Oithona atlantica, Thysanoessa longicaudata and Themisto abyssorum. Other krill species, particularly Thysanoessa inermis and to a lesser extent T. longicaudata, increased in abundance during the warming period in 2006–2007, mainly in the inner basin. “Cold years”, on the other hand, were characterized by higher abundance of Themisto libellula. There was no clear impact, however, of changes in environmental factors on the abundance or biomass of the Arctic species Calanus glacialis suggesting that the changes in environmental conditions have not reached critical levels for this species. The long-term zooplankton data demonstrate that some Atlantic species have become more abundant in the Kongsfjorden’s pelagic realm, suggesting that they may benefit from increasing temperature, and also that the total biomass of zooplankton has increased in the fjord implying potentially higher secondary production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aarbakke ONS, Fevolden SE, Weydmann A (2017) Relative summer abundances and distribution of Pseudocalanus spp. (Copepoda: Calanoida) adults in relation to environmental variables in the Nordic Seas and Svalbard fjords. Polar Biol 40:51–59

    Article  Google Scholar 

  • Acuna JL, Deibel D, Bochdansky AB, Hatfield E (1999) In situ ingestion rates of appendicularian tunicates in the Northeast Water Polynya (NE Greenland). Mar Ecol Prog Ser 186:149–160

    Article  Google Scholar 

  • Acuna JL, Deibel D, Saunders PA, Booth B, Hatfield E, Klein B, Mei ZP, Rivkin R (2002) Phytoplankton ingestion by appendicularians in the North Water. Deep-Sea Res II 49:5101–5115

    Article  CAS  Google Scholar 

  • Arashkevich E, Wassmann P, Pasternak A, Riser CW (2002) Seasonal and spatial changes in biomass, structure, and development progress of the zooplankton community in the Barents Sea. J Mar Syst 38:125–145

    Article  Google Scholar 

  • Arnkværn G, Daase M, Eiane K (2005) Dynamics of coexisting Calanus finmarchicus, Calanus glacialis and Calanus hyperboreus populations in a high-Arctic fjord. Polar Biol 28:528–538

    Article  Google Scholar 

  • Barber DG, Hop H, Mundy CJ, Else B, Dmitrenko IA, Tremblay J-E, Ehn JK, Assmy P, Daase M, Candlish LM, Rysgaard S (2015) Selected physical, biological and biogeochemical implications of a rapidly changing Arctic Marginal Ice Zone. Prog Oceanogr 139:122–150

    Article  Google Scholar 

  • Basedow SL, Eiane K, Tverberg V, Spindler M (2004) Advection of zooplankton in an Arctic fjord (Kongsfjorden, Svalbard). Estuar Coastal Shelf Sci 60:113–124

    Article  Google Scholar 

  • Bauerfeind E, Nöthig E-M, Pauls B, Kraft A, Beszczynska-Möller A (2014) Variability in pteropod sedimentation and corresponding aragonite flux at the Arctic deep-sea long-term observatory HAUSGARTEN in the eastern Fram Strait from 2000 to 2009. J Mar Syst 132:95–105

    Article  Google Scholar 

  • Bednaršek N, Tarling GA, Bakker DCE, Fielding S, Feely RA (2014) Dissolution dominating calcification process in polar pteropods close to the point of aragonite undersaturation. PLoS One 9(10):e109183

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Berge J, Cottier F, Last KS, Varpe Ø, Leu E, Søreide J, Eiane K, Falk-Petersen S, Willis K, Nygård H, Vogedes D, Griffiths C, Johnsen G, Lorenzen D, Brierley AS (2009) Diel vertical migration of Arctic zooplankton during the polar night. Biol Lett 5:69–72

    Article  PubMed  Google Scholar 

  • Berge J, Daase M, Renaud PE, Ambrose WG Jr, Darnis G, Last KS, Leu E, Cohen JH, Johnsen G, Moline MA, Cottier F, Varpe Ø, Shunatova N, Balazy P, Morata N, Massabuau J-C, Falk-Petersen S, Kosobokova K, Hoppe CJM, Weslawski JM, Kuklinski P, Legezynska J, Nikishina D, Cusa M, Kedra M, Wlodarska-Kowalczuk M, Vogedes D, Camus L, Tran D, Michaud E, Gabrielsen TM, Granovitch A, Gonchar A, Krapp R, Callesen TA (2015a) Unexpected levels of biological activity during the polar night offer new perspectives on a warming Arctic. Curr Biol 25:2555–2561

    Article  CAS  PubMed  Google Scholar 

  • Berge J, Renaud PE, Darnis G, Cottier F, Last K, Gabrielsen TM, Johnsen G, Seuthe L, Søreide JE, Varpe Ø, Lønne OJ, Daase M, Falk-Petersen S (2015b) In the dark: a review of ecosystem processes during the Arctic polar night. Prog Oceanogr 139:258–271

    Article  Google Scholar 

  • Beszczynska-Möller A, Fahrbach E, Schauer U, Hansen E (2012) Variability in Atlantic water temperature and transport at the entrance to the Arctic Ocean, 1997–2010. ICES J Mar Sci 69:852–863

    Article  Google Scholar 

  • Blachowiak-Samolyk K, Zwolicki A, Webster CN, Boehnke R, Wichorowski M, Wold A, Bielecka L (2017) Characterisation of large zooplankton sampled with two different gears during midwinter in Rijpfjorden, Svalbard. Pol Polar Res 38:459–484

    Article  Google Scholar 

  • Böer M, Gannefors C, Kattner G, Graeve M, Hop H, Falk-Petersen S (2005) The Arctic pteropod Clione limacina: seasonal lipid dynamics and life strategy. Mar Biol 147:707–717

    Article  CAS  Google Scholar 

  • Buchholz F, Buchholz C, Weslawski JM (2010) Ten years after: krill as indicator of changes in the macro-zooplankton communities of two Arctic fjords. Polar Biol 33:101–113

    Article  Google Scholar 

  • Buchholz F, Werner T, Buchholz C (2012) First observation of krill spawning in the high Arctic at Kongsfjord, West Spitsbergen. Polar Biol 35:1273–1279

    Article  Google Scholar 

  • Canty A, Ripley B (2017) Boot: Bootstrap R (S-Plus) Functions. R package version 1.3–20

    Google Scholar 

  • Castellani C, Irigoien X, Harris RP, Lampitt RS (2005) Feeding and egg production of Oithona similis in the North Atlantic. Mar Ecol Prog Ser 288:173–182

    Article  Google Scholar 

  • Choquet M, Hatlebakk M, Dhanasiri AKS, Kosobokova K, Smolina I, Søreide JE, Svensen C, Melle W, Kwasniewski S, Eiane K, Daase M, Tverberg V, Skreslet S, Bucklin A, Hoarau G (2017) Genetics redraws pelagic biogeography of Calanus. Biol Lett 13:20170588. https://doi.org/10.1098/rsbl.2017.0588

    Article  PubMed  PubMed Central  Google Scholar 

  • Choquet M, Kosobokova K, Kwasniewski S, Hatlebakk M, Dhanasiri AKS, Melle W, Daase M, Svensen C, Søreide JE, Hoarau G (2018) Can morphology reliably distinguish between the copepods Calanus finmarchicus and C. glacialis, or is DNA the only way? Limnol Oceanogr Methods 16:237–252

    Article  Google Scholar 

  • Comeau S, Gorsky G, Jeffree R, Teyssie J-L, Gattuso J-P (2009) Impact of ocean acidification on a key Arctic pelagic mollusc (Limacina helicina). Biogeosciences 6:1877–1882

    Article  CAS  Google Scholar 

  • Conover RJ, Huntley M (1991) Copepods in ice-covered seas – Distribution, adaptations to seasonally limited food, metabolism, growth patterns and life cycle strategies in polar seas. J Mar Res 2:1–41

    Google Scholar 

  • Cottier F, Tverberg V, Inall M, Svendsen H, Nilsen F, Griffiths C (2005) Water mass modification in an Arctic fjord through cross-shelf exchange: the seasonal hydrography of Kongsfjorden, Svalbard. J Geophys Res 110:C12005. https://doi.org/10.1029/2004JC002757

    Article  Google Scholar 

  • Cottier FR, Tarling GA, Wold A, Falk-Petersen S (2006) Unsynchronized and synchronized vertical migration of zooplankton in a high arctic fjord. Limnol Oceanogr 51:2586–2599

    Article  Google Scholar 

  • Cottier FR, Nilsen F, Inall ME, Gerland S, Tverberg V, Svendsen H (2007) Wintertime warming of an Arctic shelf in response to large-scale atmospheric circulation. Geophys Res Lett 34:L10607. https://doi.org/10.1029/2007GL029948

    Article  Google Scholar 

  • Daase M, Falk-Petersen S, Varpe Ø, Darnis G, Søreide JE, Wold A, Leu E, Berge J, Philippe B, Fortier L (2013) Timing of reproductive events in the marine copepod Calanus glacialis: a pan-Arctic perspective. Can J Fish Aquat Sci 70:871–884

    Article  Google Scholar 

  • Daase M, Varpe O, Falk-Petersen S (2014) Non-consumptive mortality in copepods: occurrence of Calanus spp. carcasses in the Arctic Ocean during winter. J Plankton Res 36:129–144

    Article  Google Scholar 

  • Dale K, Falk-Petersen S, Hop H, Fevolden S-E (2006) Population dynamics and body composition of the Arctic hyperiid amphipod Themisto libellula in Svalbard fjords. Polar Biol 29:1063–1070

    Article  Google Scholar 

  • Dalpadado P, Hop H, Rønning J, Pavlov V, Sperfeld E, Buchholz F, Rey A, Wold A (2016) Distribution and abundance of euphausiids and pelagic amphipods in Kongsfjorden, Isfjorden and Rijpfjorden (Svalbard) and changes in their importance as key prey in a warming marine ecosystem. Polar Biol 39:1765–1784

    Article  Google Scholar 

  • Darnis G, Hobbs L, Geoffroy M, Grenvald J, Renaud PE, Berge J, Cottier F, Kristiansen S, Daase M, Søreide JE, Wold A, Morata N, Gabrielsen TM (2017) From polar night to midnight sun: diel vertical migration, metabolism and biogeochemical role of zooplankton in a high Arctic fjord (Kongsfjorden, Svalbard). Limnol Oceanogr 62:1586–1605

    Article  CAS  Google Scholar 

  • Davison AC, Hinkley DV (1997) Bootstrap methods and their applications. Cambridge University Press, Cambridge. ISBN:0-521-57391-2

    Book  Google Scholar 

  • Duarte P, Weslawski JM, Hop H (this volume-a) Chapter 12: Outline of an Arctic fjord ecosystem model for Kongsfjorden-Krossfjorden, Svalbard. In: Hop H, Wiencke C (eds) The ecosystem of Kongsfjorden, Svalbard, Advances in polar ecology 2. Springer, Cham

    Google Scholar 

  • Dunbar MJ (1962) The life cycle of Sagitta elegans in Arctic and Subarctic Seas, and the modifying effects of hydrographic differences in the environment. J Mar Res 20:76–91

    Google Scholar 

  • Dunn OJ (1964) Multiple comparisons using rank sums. Technometrics 6:241–252

    Article  Google Scholar 

  • Eriksen E, Dalpadado P (2011) Long-term changes in krill biomass and distribution in the Barents Sea: are the changes mainly related to capelin stock size and temperature conditions. Polar Biol 34:1399–1409

    Article  Google Scholar 

  • Eriksen E, Skjoldal HR, Gjøsæter H, Primicerio R (2017) Spatial and temporal changes in the Barents Sea pelagic compartment during the recent warming. Prog Oceanogr 151:206–226

    Article  Google Scholar 

  • Espinasse M, Halsband C, Varpe Ø, Gislason A, Gudmundsson K, Falk-Petersen S, Eiane K (2017) The role of local and regional environmental factors for Calanus finmarchicus and C. hyperboreus abundances in the Nordic Seas. Polar Biol 40:2363–2380

    Article  Google Scholar 

  • Falk-Petersen S (1985) Growth of the euphausiids Thysanoessa inermis, Thysanoessa raschii, and Meganyctiphanes norvegica in a Subarctic fjord, north Norway. Can J Fish Aquat Sci 42:14–22

    Article  Google Scholar 

  • Falk-Petersen S, Hopkins CCE (1981) Zooplankton sound scattering layers in North Norwegian fjords: Interactions between fish and krill shoals in a winter situation in Ullsfjorden and Øksfjorden. Kiel Meeresforsch Sonderh 5:191–201

    Google Scholar 

  • Falk-Petersen S, Kristensen Å (1985) Acoustic assessment of krill stocks in Ullsfjorden, North-Norway. Sarsia 70:83–90

    Article  Google Scholar 

  • Falk-Petersen S, Pedersen G, Kwasniewski S, Hegseth EN, Hop H (1999) Spatial distribution and life-cycle timing of zooplankton in the marginal ice zone of the Barents Sea during the summer melt season in 1995. J Plankton Res 21:1249–1264

    Article  Google Scholar 

  • Falk-Petersen S, Sargent JR, Kwasniewski S, Gulliksen B, Millar R-M (2001) Lipids and fatty acids in Clione limacina and Limacina helicina in Svalbard waters and the Arctic Ocean: Trophic implications. Polar Biol 24:163–170

    Article  Google Scholar 

  • Falk-Petersen S, Dahl TM, Scott CL, Sargent JR, Gulliksen B, Kwasniewski S, Hop H, Millar R-M (2002) Lipid biomarkers and trophic linkages between ctenophores and copepods in Svalbard waters. Mar Ecol Prog Ser 227:187–194

    Article  CAS  Google Scholar 

  • Falk-Petersen S, Leu E, Berge J, Kwasniewski S, Nygård H, Rostad A, Keskinen E, Thormar J, von Quillfeldt C, Wold A, Gulliksen B (2008) Vertical migration in high Arctic waters during autumn 2004. Deep-Sea Res II 55:2275–2284

    Article  Google Scholar 

  • Falk-Petersen S, Mayzaud P, Kattner G, Sargent JR (2009) Lipids and life strategy of Arctic Calanus. Mar Biol Res 5:18–39

    Article  Google Scholar 

  • Falk-Petersen S, Pavlov V, Cottier F, Berge J, Kovacs KM, Lydersen C (2015) At the rainbow’s end – productivity hotspots due to upwelling along Arctic shelves. Polar Biol 38:5–11

    Article  Google Scholar 

  • Feigenbaum DL, Maris RC (1984) Feeding in the Chaetognatha. Oceanogr Mar Biol 22:343–392

    Google Scholar 

  • Fransson A, Chierici M, Hop H, Findlay HS, Kristiansen S, Wold A (2016) Late winter-to-summer change in ocean acidification state in Kongsfjorden, with implications for calcifying organisms. Polar Biol 39:1841–1857

    Article  Google Scholar 

  • Fransz HG, Gonzalez SR (1995) The production of Oithona similis (Copepoda: Cyclopoida) in the Southern Ocean. ICES J Mar Sci 52:549–555

    Article  Google Scholar 

  • Gabrielsen TM, Merkel B, Søreide JE, Johansson-Karlsson E, Bailey A, Vogedes D, Nygård H, Varpe Ø, Berge J (2012) Potential misidentifications of two climate indicator species of the marine arctic ecosystem: Calanus glacialis and C. finmarchicus. Polar Biol 35:1621–1628

    Article  Google Scholar 

  • Gallienne CP, Robins DB (2001) Is Oithona the most important copepod in the world’s oceans? J Plankton Res 23:1421–1432

    Article  Google Scholar 

  • Gannefors C, Böer M, Kattner G, Graeve M, Eiane K, Gulliksen B, Hop H, Falk-Petersen S (2005) The Arctic butterfly Limacina helicina: lipids and life strategy. Mar Biol 147:169–177

    Article  Google Scholar 

  • Geoffroy M, Berge J, Majaneva S, Johnsen G, Langbehn TJ, Cottier F, Mogstad AA, Zolich A, Last K (2018) Increased occurrence of the jellyfish Periphylla periphylla in the European Arctic. Polar Biol 41:2615–2619

    Article  Google Scholar 

  • Gilmer RW, Harbison GR (1991) Diet of Limacina helicina (Gastropoda: Thecosomata) in Arctic waters in midsummer. Mar Ecol Prog Ser 77:125–134

    Article  Google Scholar 

  • Gluchowska M, Kwasniewski S, Prominska A, Olszewska A, Goszczko I, Falk-Petersen S, Hop H, Weslawski JM (2016) Zooplankton in Svalbard fjords on the Atlantic–Arctic boundary. Polar Biol 39:1785–1802

    Article  Google Scholar 

  • Gluchowska M, Dalpadado P, Beszczynska-Möller A, Olszewska A, Ingvaldsen RB, Kwasniewski S (2017) Interannual zooplankton variability in the main pathways of the Atlantic water flow into the Arctic Ocean (Fram Strait and Barents Sea branches). ICES J Mar Sci 74:1921–1936

    Article  Google Scholar 

  • Graeve M, Lundberg M, Böer M, Kattner G, Hop H, Falk-Petersen S (2008) The fate of dietary lipids in the Arctic ctenophore Mertensia ovum (Fabricius 1780). Mar Biol 153:643–651

    Article  CAS  Google Scholar 

  • Grenvald JC, Callesen TA, Daase M, Hobbs L, Darnis G, Renaud PE, Cottier F, Nielsen TG, Berge J (2016) Plankton community composition and vertical migration during polar night in Kongsfjorden. Polar Biol 39:1879–1895

    Article  Google Scholar 

  • Grigor JJ, Søreide JE, Varpe Ø (2014) Seasonal ecology and life-history strategy of the high-latitude predatory zooplankter Parasagitta elegans. Mar Ecol Prog Ser 499:77–88

    Article  Google Scholar 

  • Grigor JJ, Marais A, Falk-Petersen S, Varpe Ø (2015) Polar night ecology of a pelagic predator, the chaetognath Parasagitta elegans. Polar Biol 38:87–98

    Article  Google Scholar 

  • Grigor JJ, Schmid MS, Fortier L (2017) Growth and reproduction of the chaetognaths Eukrohnia hamata and Parasagitta elegans in the Canadian Arctic Ocean: capital breeding versus income breeding. J Plankton Res 39:919–929

    Article  Google Scholar 

  • Hedges LV, Gurevitch J, Curtis PS (1999) The meta-analysis of response ratios in experimental ecology. Ecology 80:1150–1156

    Article  Google Scholar 

  • Hegseth EN, Assmy P, Wiktor JM, Wiktor J Jr, Kristiansen S, Leu E, Tverberg V, Gabrielsen TM, Skogseth R, Cottier F (this volume-a) Chapter 6: Phytoplankton seasonal dynamics in Kongsfjorden, Svalbard and the adjacent shelf. In: Hop H, Wiencke C (eds) The ecosystem of Kongsfjorden, Svalbard, Advances in polar ecology 2. Springer, Cham

    Google Scholar 

  • Hirche H-J (1997) Life cycle of the copepod Calanus hyperboreus in the Greenland Sea. Mar Biol 128:607–618

    Article  Google Scholar 

  • Hirche H-J, Kosobokova KN, Gaye-Haake B, Harms I, Meon B, Nöthig E-M (2006) Structure and function of contemporary food webs on Arctic shelves: a panarctic comparison – the pelagic system of the Kara Sea – communities and components of carbon flow. Prog Oceanogr 71:288–313

    Article  Google Scholar 

  • Hirche H-J, Laudien J, Buchholz F (2016) Near-bottom zooplankton aggregations in Kongsfjorden: implications for pelago–benthic coupling. Polar Biol 39:1897–1912

    Article  Google Scholar 

  • Hop H, Gjøsæter H (2013) Polar cod (Boreogadus saida) and capelin (Mallotus villosus) as key species in marine food webs of the Arctic and the Barents Sea. Mar Biol Res 9:878–894

    Article  Google Scholar 

  • Hop H, Pearson T, Hegseth EN, Kovacs KM, Wiencke C, Kwasniewski S, Eiane K, Mehlum F, Gulliksen B, Wlodarska-Kowalczuk M, Lydersen C, Weslawski JM, Cochrane S, Gabrielsen GW, Leakey RJG, Lønne OJ, Zajaczkowski M, Falk-Petersen S, Kendall M, Wängberg S-Å, Bischof K, Voronkov AY, Kovaltchouk NA, Wiktor J, Poltermann M, di Prisco G, Papucci C, Gerland S (2002) The marine ecosystem of Kongsfjorden, Svalbard. Polar Res 21:167–208

    Article  Google Scholar 

  • Hop H, Falk-Petersen S, Svendsen H, Kwasniewski S, Pavlov V, Pavlov O, Søreide JE (2006) Physical and biological characteristics of the pelagic system across Fram Strait to Kongsfjorden. Prog Oceanogr 71:182–231

    Article  Google Scholar 

  • Hop H, Cottier F, Berge J (this volume-b) Chapter 13: Autonomous marine observatories in Kongsfjorden, Svalbard. In: Hop H, Wiencke C (eds) The ecosystem of Kongsfjorden, Svalbard, Advances in polar ecology 2. Springer, Cham

    Google Scholar 

  • Hopcroft RR, Roff JC (1995) Zooplankton growth-rates-extraordinary production by the larvacean Oikopleura dioca in tropical waters. J Plankton Res 17:205–220

    Article  Google Scholar 

  • Hopcroft RR, Clarke C, Nelson RJ, Raskoff KA (2005) Zooplankton communities of the Arctic’s Canada Basin: the contribution by smaller taxa. Polar Biol 28:198–206

    Article  Google Scholar 

  • Hovinen JEH, Welcker J, Rabindranath A, Brown ZW, Hop H, Berge J, Steen H (2014a) At-sea distribution of foraging little auks relative to physical factors and potential food supply. Mar Ecol Prog Ser 503:263–277

    Article  Google Scholar 

  • Hovinen JEH, Wojczulanis-Jakubas K, Jakubas D, Hop H, Berge J, Kidawa D, Karnovsky NJ, Steen H (2014b) Fledging success of a little auks in the high Arctic: do provisioning rates and the quality of foraging grounds matter. Polar Biol 37:665–674

    Article  Google Scholar 

  • Huenerlage K, Buchholz F (2015) Thermal limits of krill species from the high Arctic Kongsfjord (Spitsbergen). Mar Ecol Prog Ser 535:89–98

    Article  CAS  Google Scholar 

  • Huenerlage K, Graeve M, Buchholz C, Buchholz F (2015) The other krill: overwintering physiology of adult Thysanoessa inermis (Ephausiacea) from the high-Arctic Kongsfjord. Aquat Biol 23:225–235

    Article  Google Scholar 

  • Huenerlage K, Graeve M, Buchholz F (2016) Lipid composition and trophic relationships of krill species in a high Arctic fjord. Polar Biol 39:1803–1817

    Article  Google Scholar 

  • Hunt BPV, Pakhomov EA, Hosie GW, Siegel V, Ward P, Bernard K (2008) Pteropods in Southern Ocean ecosystems. Prog Oceanogr 78:193–221

    Article  Google Scholar 

  • Huntley ME, Lopez MD (1992) Temperature-dependent production of marine copepods: a global synthesis. Am Nat 140:201–242

    Article  CAS  PubMed  Google Scholar 

  • Ingvaldsen R, Bø-Reitan M, Svendsen H, Asplin L (2001) The upper layer circulation in Kongsfjorden and Krossfjorden – a complex fjord system on the west coast of Spitsbergen. Mem Natl Inst Polar Res Spec Issue Jpn 54:393–407

    Google Scholar 

  • Jaschnov WA (1970) Distribution of Calanus species in the seas of the Northern Hemisphere. Int Rev Gesamten Hydrobiol 55:197–212

    Article  Google Scholar 

  • Ji R, Ashian CJ, Campbell RG, Chen CS, Gao GP, Davis CS, Cowles GW, Beardsley RC (2012) Life history and biogeography of Calanus copepods in the Arctic Ocean: An individual-based modeling study. Prog Oceanogr 96:40–56

    Article  Google Scholar 

  • Karnovsky N, Kwasniewski S, Weslawski JM, Walkusz W, Beszczyńska-Möller A (2003) The foraging behaviour of little auks in a heterogenous environment. Mar Ecol Prog Ser 253:289–303

    Article  Google Scholar 

  • Kattner G, Albers C, Graeve M, Schnack-Schiel SB (2003) Fatty acid and alcohol composition of the small polar copepods, Oithona and Oncaea: indication on feeding modes. Polar Biol 26:666–671

    Article  Google Scholar 

  • Kerswill CJ (1940) The distribution of pteropods in the waters of eastern Canada and Newfoundland. J Fish Res Board Can 5:23–31

    Article  Google Scholar 

  • Kosobokova KN (1999) The reproductive cycle and life history of the Arctic copepod Calanus glacialis in the White Sea. Polar Biol 22:254–263

    Article  Google Scholar 

  • Kosobokova KN, Hirche H-J (2000) Zooplankton distribution across the Lomonosov Ridge, Arctic Ocean: species inventory, biomass and vertical structure. Deep-Sea Res I 47:2029–2060

    Article  Google Scholar 

  • Kosobokova KN, Hanssen H, Hirche H-J, Knickmeier K (1998) Composition and distribution of zooplankton in the Laptev Sea and adjacent Nansen Basin during summer, 1993. Polar Biol 19:63–76

    Article  Google Scholar 

  • Kosobokova KN, Hopcroft RR, Hirche H-J (2011) Patterns of zooplankton diversity through the depths of the Arctic’s central basins. Mar Biodivers 41:29–50

    Article  Google Scholar 

  • Koszteyn J, Timofeev S, Weslawski JM, Malinga B (1995) Size structure of Themisto abyssorum (Boeck) and Themisto libellula (Mandt) populations in European Arctic Seas. Polar Biol 15:85–92

    Article  Google Scholar 

  • Kraft A, Bauerfeind E, Nöthig E-M, Bathmann UV (2012) Size structure and life cycle patterns of dominant pelagic amphipods collected as swimmers in sediment traps in the eastern Fram Strait. J Mar Syst 95:1–15

    Article  Google Scholar 

  • Kruse S, Hagen W, Bathmann U (2010) Feeding ecology and energetics of the Antarctic chaetognaths Eukrohnia hamata, E. bathypelagica and E. bathyantarctica. Mar Biol 157:2289–2302

    Article  CAS  Google Scholar 

  • Kuklinski P, Berge J, McFadden L, Dmoch K, Zajaczkowski M, Nygård H, Piwosz K, Tatarek A (2013) Seasonality of occurrence and recruitment of Arctic marine benthic invertebrate larvae in relation to environmental variables. Polar Biol 36:549–560

    Article  Google Scholar 

  • Kwasniewski S, Hop H, Falk-Petersen S, Pedersen G (2003) Distribution of Calanus species in Kongsfjorden, a glacial fjord in Svalbard. J Plankton Res 25:1–20

    Article  CAS  Google Scholar 

  • Kwasniewski S, Gluchowska M, Jakubas D, Wojczulanis-Jakubas K, Walkusz W, Karnovsky N, Blachowiak-Samolyk K, Cisek M, Stempniewicz L (2010) The impact of different hydrographic conditions and zooplankton communities on provisioning Little Auks along the West coast of Spitsbergen. Prog Oceanogr 87:72–82

    Article  Google Scholar 

  • Kwasniewski S, Walkusz W, Cottier FR, Leu E (2013) Mesozooplankton dynamics in relation to food availability during spring and early summer in a high latitude glaciated fjord (Kongsfjorden), with focus on Calanus. J Mar Syst 111:83–96

    Article  Google Scholar 

  • Larsen L-H (2017) Navigare necesse est. Bio-Environmental implication of shipping in the European Arctic. PhD-thesis UiT – the Arctic University of Norway

    Google Scholar 

  • Larson RJ, Harbison GR (1989) Source and fate of lipids in polar gelatinous zooplankton. Arctic 42:339–346

    Article  Google Scholar 

  • Legeżyńska J, Włodarska-Kowalczuk M, Gluchowska M, Ormańczyk M, Kędra M, Węsławski JM (2017) The malacostracan fauna of two Arctic fjords (west Spitsbergen): the diversity and distribution patterns of its pelagic and benthic components. Oceanologia 59:541–564

    Article  Google Scholar 

  • Leinaas HP, Jalal M, Gabrielsen TM, Hessen DO (2016) Inter- and intraspecific variation in body- and genome size in calanoid copepods from temperate and arctic waters. Ecol Evol 6:5585–5595

    Article  PubMed  PubMed Central  Google Scholar 

  • Leu E, Søreide JE, Hessen DO, Falk-Petersen S, Berge J (2011) Consequences of changing sea-ice cover for primary and secondary producers in the European Arctic shelf seas: Timing, quantity, and quality. Prog Oceanogr 90:18–32

    Article  Google Scholar 

  • Leu E, Mundy CJ, Assmy P, Campbell K, Gabrielsen TM, Gosselin M, Juul-Pedersen T, Gradinger R (2015) Arctic spring awakening-Steering principles behind the phenology of vernal ice algal blooms. Prog Oceanogr 139:151–170

    Article  Google Scholar 

  • Lischka S, Hagen W (2005) Life histories of the copepods Pseudocalanus minutus, P. acuspes (Calanoida) and Oithona similis (Cyclopoida) in the Arctic Kongsfjorden (Svalbard). Polar Biol 28:910–921

    Article  Google Scholar 

  • Lischka S, Hagen W (2007) Seasonal lipid dynamics of the copepods Pseudocalanus minutus (Calanoida) and Oithona similis (Cyclopoida) in the Arctic Kongsfjorden (Svalbard). Mar Biol 150:443–454

    Article  Google Scholar 

  • Lischka S, Hagen W (2016) Seasonal dynamics of mesozooplankton in the Arctic Kongsfjord (Svalbard) during year-round observations from August 1998 to July 1999. Polar Biol 39:1859–1878

    Article  Google Scholar 

  • Lischka S, Riebesell U (2012) Synergistic effects of ocean acidification and warming on overwintering pteropods in the Arctic. Glob Chang Biol 18:3517–3528

    Article  Google Scholar 

  • Lischka S, Riebesell U (2017) Metabolic response of Arctic pteropods to ocean acidification and warming during the polar night/twilight phase in Kongsfjord (Spitsbergen). Polar Biol 40:1211–1227

    Article  Google Scholar 

  • Lischka S, Giménez L, Hagen W, Ueberschär B (2007) Seasonal changes in digestive enzyme (trypsin) activity of the copepods Pseudocalanus minutus (Calanoida) and Oithona similis (Cyclopoida) in the Arctic Kongsfjorden (Svalbard). Polar Biol 30:1331–1341

    Article  Google Scholar 

  • Lischka S, Büdenbender J, Boxhammer T, Riebesell U (2011) Impact of ocean acidification and elevated temperatures on early juveniles of the polar shelled pteropod Limacina helicina: mortality, shell degradation, and shell growth. Biogeosciences 8:919–932

    Article  CAS  Google Scholar 

  • Lundberg M, Hop H, Eiane K, Gulliksen B, Falk-Petersen S (2006) Population structure and accumulation of lipids in the ctenophore Mertensia ovum. Mar Biol 149:1345–1353

    Article  CAS  Google Scholar 

  • Lydersen C, Assmy P, Falk-Petersen S, Kohler J, Kovacs KM, Reigstad M, Steen H, Strøm H, Sundfjord A, Varpe Ø, Walczowski W, Weslawski JM, Zajaczkowski M (2014) The importance of tidewater glaciers for marine mammals and seabirds in Svalbard, Norway. J Mar Syst 129:452–471

    Article  Google Scholar 

  • Majaneva S, Berge J, Renaud PE, Vader A, Stübner E, Rao AM, Sparre Ø, Lehtiniemi M (2013) Aggregations of predators and prey affect predation impact of the Arctic ctenophore Mertensia ovum. Mar Ecol Prog Ser 476:87–100

    Article  Google Scholar 

  • Møller EF, Maar M, Jonasdottir SH, Nielsen TG, Tønnesson K (2012) The effect of changes in temperature and food on the development of Calanus finmarchicus and Calanus helgolandicus populations. Limnol Oceanogr 57:211–220

    Article  Google Scholar 

  • Nahrgang J, Varpe Ø, Korshunova E, Murzina S, Hallanger IG, Vieweg I, Berge J (2014) Gender specific reproductive strategies of an Arctic key species (Boreogadus saida) and implications of climate change. PLoS One 9(5):e98452

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Narcy F, Gasparini S, Falk-Petersen S, Mayzaud P (2009) Seasonal and individual variability of lipid reserves in Oithona similis (Cyclopoida) in an Arctic fjord. Polar Biol 32:233–242

    Article  Google Scholar 

  • Norwegian Polar Institute (2018) MarineDatabase: Export data to Norwegian Polar Institute’s marine database. R package version 0.2.15. URL: https://github.com/MikkoVihtakari/MarineDatabase

  • Ogle DH (2018) FSA: Fisheries Stock Analysis. R package version 0.8.19

    Google Scholar 

  • Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2018) Vegan: Community Ecology Package. R package version 2.4-4. https://CRAN.R-project.org/package=vegan

  • Ormanczyk MR, Gluchowska M, Oszewska A, Kwasniewski S (2017) Zooplankton structure in high latitude fjords with contrasting oceanography (Hornsund and Kongsfjorden, Spitsbergen). Oceanologia 59:508–534

    Article  Google Scholar 

  • Pavlov A, Leu E, Hanelt D, Bartsch I, Karsten U, Hudson SR, Gallet J-C, Cottier F, Cohen JH, Berge J, Johnsen G, Maturilli M, Kowalczuk P, Sagan S, Meler J, Granskog MA (this volume-b) Chapter 5: Underwater light regime in Kongsfjorden and its ecological implications. In: Hop H, Wiencke C (eds) The ecosystem of Kongsfjorden, Svalbard, Advances in polar ecology 2. Springer, Cham

    Google Scholar 

  • Pavlova O, Gerland S, Hop H (this volume-b) Chapter 4: Changes in sea-ice extent and thickness in Kongsfjorden, Svalbard (2003–2016). In: Hop H, Wiencke C (eds) The ecosystem of Kongsfjorden, Svalbard, Advances in polar ecology 2. Springer, Cham

    Google Scholar 

  • Pearcy WG, Greenlaw CF, Pommeranz T (1983) Assessment of euphausiids with five nets and a 120-kHz echosounder in fjords of Northern Norway. Biol Oceanogr 2(2–4):151–177

    Google Scholar 

  • Piwosz K, Walkusz W, Hapter R, Wieczorek P, Hop H, Wiktor J (2009) Comparison of productivity and phytoplankton in a warm (Kongsfjorden) and a cold (Hornsund) Spitsbergen fjord in mid-summer 2002. Polar Biol 32:549–559

    Article  Google Scholar 

  • Postel L, Fock H, Hagen W (2000) Biomass and abundance. In: Harris R, Wiebe P, Lens J, Skjoldal HR, Huntley M (eds) ICES zooplankton methodology manual. Academic, San Diego, pp 83–192

    Chapter  Google Scholar 

  • Prominska A, Cisek M, Walczowski W (2017) Kongsfjorden and Hornsund hydrography – comparative study based on a multiyear survey in fjords of west Spitsbergen. Oceanologia 59:397–412

    Article  Google Scholar 

  • Purcell JE (1991) A review of cnidarians and ctenophores feeding on competitors in the plankton. Hydrobiologia 216:335–342

    Article  Google Scholar 

  • Purcell JE, Hopcroft RR, Kosobokova KN, Whitledge TE (2010) Distribution, abundance, and predation effects of epipelagic ctenophores and jellyfish in the western Arctic Ocean. Deep-Sea Res II 57:127–135

    Article  Google Scholar 

  • Questel JM, Clarke C, Hopcroft RR (2013) Seasonal and interannual variation in the planktonic communities of the northeastern Chukchi Sea during the summer and early fall. Cont Shelf Res 67:23–41

    Article  Google Scholar 

  • R Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL: https://www.R-project.org/

  • Raskoff KA, Purcell JE, Hopcroft RR (2005) Gelatinous zooplankton of the Arctic Ocean: in situ observations under the ice. Polar Biol 28:207–217

    Article  Google Scholar 

  • Raskoff KA, Hopcroft RR, Kosobokova KN, Purcell JE, Youngbluth M (2010) Jellies under ice: ROV observations from the Arctic 2005 hidden ocean expedition. Deep-Sea Res II 57:111–126

    Article  Google Scholar 

  • Renaud PE, Berge J, Varpe Ø, Lønne OJ, Nahrgang J, Ottesen C, Hallanger I (2012) Is the poleward expansion by Atlantic cod and haddock threatening native polar cod, Boreogadus saida? Polar Biol 35:401–412

    Article  Google Scholar 

  • Renaud PE, Daase M, Banas NS, Gabrielsen TM, Søreide JE, Varpe Ø, Cottier F, Falk-Petersen S, Halsband C, Vogedes D, Heggland K, Berge J (2018) Pelagic food-webs in a changing Arctic: A trait-based perspective suggests a mode of resilience. ICES J Mar Sci. https://doi.org/10.1093/icesjms/fsy063

    Article  Google Scholar 

  • Saloranta TM, Svendsen H (2001) Across the Arctic front west of Spitsbergen: high-resolution CTD sections from 1998–2000. Polar Res 20:177–184

    Google Scholar 

  • Sargent JR, Falk-Petersen S (1981) Ecological investigations on the zooplankton community in Balsfjorden, Northern Norway: Lipids and fatty acids in Meganyctiphanes norvegica, Thysanoessa raschii and T. inermis during mid-winter. Mar Biol 62:131–137

    Article  CAS  Google Scholar 

  • Scott CT, Kwasniewski S, Falk-Petersen S, Sargent JR (2000) Lipids and life strategies of Calanus finmarchicus, Calanus glacialis and Calanus hyperboreus in late autumn, Kongsfjorden, Svalbard. Polar Biol 23:510–516

    Article  Google Scholar 

  • Siferd TD, Conover RF (1992) Natural history of ctenophores in the Resolute Passage area of the Canadian High Arctic with special reference to Mertensia ovum. Mar Ecol Prog Ser 86:133–144

    Article  Google Scholar 

  • Smedsrud LH, Esau I, Ingvaldsen R, Eldevik T, Haugan PM, Li C, Lien VS, Olsen A, Omar AM, Otterå OH, Risebrobakken B, Sandø AB, Semenov VA, Sorokina SA (2013) The role of the Barents Sea in the Arctic climate system. Rev Geophys 51:415–449

    Article  Google Scholar 

  • Solov’ev KA, Kosobokova KN (2003) Feeding of the chaetognaths Parasagitta elegans Verrill (Chaetognatha) in the White Sea. Oceanology 43:524–531

    Google Scholar 

  • Soltwedel T, Bauerfeind E, Bergmann M, Bracher A, Budaeva N, Busch K, Cherkasheva A, Fahl K, Grzelak K, Hasemann C, Jacob M, Kraft A, Lalande C, Metfies K, Nöthig E-M, Meyer K, Quéric N-V, Schewe I, Włodarska-Kowalczuk M, Klages M (2016) Natural variability or anthropogenically-induced variation? Insights from 15 years of multidisciplinary observations at the arctic marine LTER site HAUSGARTEN. Ecol Indic 65:89–102

    Article  Google Scholar 

  • Søreide JE, Hop H, Falk-Petersen S, Gulliksen B, Hansen E (2003) Macrozooplankton communities and environmental variables in the Barents Sea marginal ice zone in late winter and spring. Mar Ecol Prog Ser 263:43–64

    Article  Google Scholar 

  • Søreide JE, Leu E, Berge J, Graeve M, Falk-Petersen S (2010) Timing in blooms, algal food quality and Calanus glacialis reproduction and growth in a changing Arctic. Glob Chang Biol 16:3154–3163

    Google Scholar 

  • Stübner EI, Søreide JE, Reigstad M, Marquardt M, Blachowiak-Samolyk K (2016) Year-round meroplankton dynamics in high-Arctic Svalbard. J Plankton Res 38:522–536

    Article  Google Scholar 

  • Sundfjord A, Albretsen J, Kasajima Y, Skogseth R, Kohler J, Nuth C, Skarðhamar J, Cottier F, Nilsen F, Asplin L, Gerland S, Torsvik T (2017) Effects of glacier runoff and wind on surface layer dynamics and Atlantic Water exchange in Kongsfjorden, Svalbard; a model study. Estuar Coast Shelf Sci 187:260–272

    Article  Google Scholar 

  • Svendsen H, Beszczynska-Møller A, Hagen JO, Lefauconnier B, Tverberg V, Gerland S, Ørbæk JB, Bischof K, Papucci C, Zajaczkowski M, Azzolini R, Bruland O, Wiencke C, Winther J-G, Dallmann W (2002) The physical environment of Kongsfjorden–Krossfjorden an Arctic fjord system in Svalbard. Polar Res 21:133–166

    Google Scholar 

  • Svensen C, Seuthe L, Vasilyeva Y, Pasternak A, Hansen E (2011) Zooplankton distribution across Fram Strait in autumn: Are small copepods and protozooplankton important? Prog Oceanogr 91:534–544

    Article  Google Scholar 

  • Swanberg N (1974) The feeding behavior of Beroe ovata. Mar Biol 68:69–76

    Article  Google Scholar 

  • Swanberg N, Båmstedt U (1991) Ctenophora in the Arctic: the abundance, distribution and predatory impact of the cydippid ctenophore Mertensia ovum (Fabricius) in the Barents Sea. Polar Res 10:507–524

    Article  Google Scholar 

  • Szczucka J, Hoppe L, Schmidt B, Fey DP (2017) Acoustical estimation of fish distribution and abundance in two Spitsbergen fjords. Oceanologia 59:585–591

    Article  Google Scholar 

  • Tamm SL, Tamm S (1991) How Beroë keeps its mouth shut, or its lips are sealed. Biol Bull 181:354–354

    Article  CAS  PubMed  Google Scholar 

  • Tande KS, Båmstedt U (1985) Grazing rates of the copepods Calanus glacialis and Calanus finmarchicus in Arctic waters of the Barents Sea. Mar Biol 87:251–258

    Article  Google Scholar 

  • Terazaki M (2004) Life history strategy of the chaetognath Sagitta elegans in the World Oceans. Coastal Mar Sci 29:1–12

    Google Scholar 

  • Tverberg V, Skogseth R, Cottier F, Sundfjord A, Walczowski W, Inall ME, Flack E, Pavlova O, Nilsen F (this volume-b) Chapter 3: The Kongsfjorden Transect: seasonal and inter-annual variability in hydrography. In: Hop H, Wiencke C (eds) The ecosystem of Kongsfjorden, Svalbard, Advances in polar ecology 2. Springer, Cham

    Google Scholar 

  • Urbanski JA, Stempniewicz L, Weslawski JM, Draganska-Deja K, Wochna A, Goc M, Illiszko L (2017) Subglacial discharges create fluctuating foraging hotspots for sea birds in tidewater glacier bays. Sci Rep 7:43999. https://doi.org/10.1038/srep43999

    Article  PubMed  PubMed Central  Google Scholar 

  • Varpe Ø (2012) Fitness and phenology: annual routines and zooplankton adaptations to seasonal cycles. J Plankton Res 34:267–276

    Article  Google Scholar 

  • Varpe Ø, Jørgensen C, Tarling GA, Fiksen Ø (2009) The adaptive value of energy storage and capital breeding in seasonal environments. Oikos 118:363–370

    Article  Google Scholar 

  • Vihtakari M (2018) PlotSvalbard – Plot research data from Svalbard on maps. R package version 0.6.0

    Google Scholar 

  • Vihtakari M, Welcker J, Moe B, Chastel O, Tartu S, Hop H, Bech C, Descamps S, Gabrielsen GW (2018) Black-legged kittiwakes as messengers of Atlantification in the Arctic. Sci Rep 8:1178. https://doi.org/10.1038/s41598-017-19118-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walczowski W, Piechura J, Goszczko I, Wieczorek P (2012) Changes in Atlantic water properties: an important factor in the European Arctic marine climate. ICES J Mar Syst 69:864–869

    Article  Google Scholar 

  • Walczowski W, Beszczynska-Möller A, Wieczorek P, Merchel M, Grynczel A (2017) Oceanographic observations in the Nordic Sea and Fram Strait in 2016 under the IO PAN long-term monitoring program AREX. Oceanologia 59:187–194

    Article  Google Scholar 

  • Walkusz W, Storemark K, Skau T, Gannefors C, Lundberg M (2003) Zooplankton community structure: a comparison of fjords, open water and ice stations in the Svalbard area. Pol Polar Res 24:149–165

    Google Scholar 

  • Walkusz W, Kwasniewski S, Falk-Petersen S, Hop H, Tverberg V, Wieczorek P, Weslawski JM (2009) Seasonal and spatial changes in the zooplankton community of Kongsfjorden, Svalbard. Polar Res 28:254–281

    Article  Google Scholar 

  • Wallace MI, Cottier FR, Berge J, Tarling GA, Griffiths C, Brierley AS (2010) Comparison of zooplankton vertical migration in an ice-free and a seasonally icecovered Arctic fjord: an insight into the influence of sea ice cover on zooplankton behavior. Limnol Oceanogr 55:831–845

    Article  Google Scholar 

  • Ward P, Hirst AG (2007) Oithona similis in a high latitude ecosystem: abundance, distribution and temperature limitation of fecundity rates in a sac spawning copepod. Mar Biol 151:1099–1110

    Article  Google Scholar 

  • Wassmann P, Peinert R, Smetacek V (1991) Patterns of production and sedimentation in the boreal and polar Northeast Atlantic. Polar Res 10:209–228

    Article  Google Scholar 

  • Wassmann P, Andersen I, Reigstad M, Slagstad D (1996) Pelagic–benthic coupling in the Nordic Seas: the role of episodic events. Mar Ecol 17:447–471

    Article  CAS  Google Scholar 

  • Welch HE, Siferd TD, Bruecker P (1996) Population densities, growth, and respiration of the chaetognath Parasagitta elegans in the Canadian high Arctic. Can J Fish Aquat Sci 53:520–527

    Article  Google Scholar 

  • Weslawski JM, Zajaczkowski M, Kwasniewski S, Jezierski J, Moskal W (1988) Seasonality in an Arctic fjord ecosystem: Hornsund, Spitsbergen. Polar Res 6:185–189

    Article  Google Scholar 

  • Weslawski JM, Pedersen G, Falk-Petersen S, Porazinski K (2000) Entrapment of macroplankton in an Arctic fjord basin, Kongsfjorden, Svalbard. Oceanologia 42:57–69

    Google Scholar 

  • Weslawski JM, Buchholz F, Gluchowska M, Weydmann A (2017) Ecosystem maturation follows the warming of the Arctic fjords. Oceanologia 59:592–602

    Article  Google Scholar 

  • Weydmann A, Søreide JE, Kwasniewski S, Leu E, Falk-Petersen S, Berge J (2013) Ice-related seasonality in zooplankton community composition in a high Arctic fjord. J Plankton Res 35:831–842

    Article  Google Scholar 

  • Weydmann A, Walczowski W, Carstensen J, Kwaśniewski S (2018) Warming of Subarctic waters accelerates development of a key marine zooplankton Calanus finmarchicus. Glob Change Biol 24:172–183

    Article  Google Scholar 

  • Willis KJ, Cottier FR, Kwasniewski S, Wold A, Falk-Petersen S (2006) The influence of advection on zooplankton community composition in an Arctic fjord (Kongsfjorden, Svalbard). J Mar Syst 61:39–54

    Article  Google Scholar 

  • Willis KJ, Cottier FR, Kwasniewski S (2008) Impact of warm water advection on the winter zooplankton community in an Arctic fjord. Polar Biol 31:475–481

    Article  Google Scholar 

  • Zajaczkowski MJ, Legezynska J (2001) Estimation of zooplankton mortality caused by an Arctic glacier outflow. Oceanologia 43:341–351

    Google Scholar 

Download references

Data availability

Zooplankton data and updated list of conversion factors are available in the MarineDatabase (Norwegian Polar Institute 2018) package for R (R Core Team 2018). The zooplankton data set in this paper is available at: https://doi.org/10.21334/npolar.2019.94b29b16.

Acknowledgements

We thank the different researchers and technicians that have been involved in zooplankton collections at our sampling stations in Kongsfjorden during the 20-year time series. Olga Pavlova, Norwegian Polar Institute, is thanked for making CTD files from stations in Kongsfjorden available, and making transect plots of temperature and salinity. Padmini Dalpadado, Institute of Marine Research, is thanked for data on krill and amphipods sampled by MIK (Method Isaacs Kidd) in Kongsfjorden. MG participation was funded by the Polish Scientific Council projects: KongHau4 (W84/KongHau4/2016) and KongHau5 (W88/KongHau5/2017).

Monitoring of water masses and zooplankton in Kongsfjorden is conducted as part of Environmental monitoring of Svalbard and Jan Mayen (www.mosj.npolar.no), which currently funds the annual survey by the Norwegian Polar Institute, and as a part of Long-term studies on the Arctic marine ecosystems funded by the Institute of Oceanology Polish Academy of Sciences (IOPAN). Our sampling along the Kongsfjorden transect extends to HAUSGARTEN stations in Fram Strait when time and weather permit.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haakon Hop .

Editor information

Editors and Affiliations

Appendix

Appendix

Table 7.8 Abundance to dry mass conversion factors used in the study
Table 7.9 Total abundance (ind. m−3 or ind. m−2) and biomass in different studies sampling zooplankton in Kongsfjorden, Svalbard

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hop, H. et al. (2019). Zooplankton in Kongsfjorden (1996–2016) in Relation to Climate Change. In: Hop, H., Wiencke, C. (eds) The Ecosystem of Kongsfjorden, Svalbard. Advances in Polar Ecology, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-319-46425-1_7

Download citation

Publish with us

Policies and ethics