The Kongsfjorden Transect: Seasonal and Inter-annual Variability in Hydrography

  • Vigdis TverbergEmail author
  • Ragnheid Skogseth
  • Finlo Cottier
  • Arild Sundfjord
  • Waldemar Walczowski
  • Mark E. Inall
  • Eva Falck
  • Olga Pavlova
  • Frank Nilsen
Part of the Advances in Polar Ecology book series (AVPE, volume 2)


The Kongsfjorden conductivity, temperature and depth (CTD) Transect has been monitored annually since 1994. It covers the full length of the fjord and the shelf, and the upper part of the shelf slope outside Kongsfjorden. In addition to CTD profiles, data from vessel-mounted Acoustic Doppler Current Profiler (ADCP) and moorings have been collected. Previous studies noted that Atlantic Water (AW) from the West Spitsbergen Current was observed in the fjord every summer, but to a varying extent. The prolonged monitoring provided by the Kongsfjorden Transect data set examined here reveals continuous variations in AW content and vertical distribution in the fjord, both on seasonal and inter-annual timescales. Our focus in this paper is on this variable content of AW in Kongsfjorden, the forcing mechanisms that may govern the inflow of this water mass, and its distribution in the fjord. We classify three winter types linked to three characteristic scenarios for winter formation of water masses. During the historically typical winters of type “Winter Deep”, deep convection, often combined with sea ice formation, produces dense winter water that prevents AW from entering Kongsfjorden. Summer inflow of AW starts when density differences between fjord and shelf water allows for it, and occurs at some intermediate depth. During winters of type “Winter Intermediate”, AW advects into the fjord along the bottom via Kongsfjordrenna. Winter convection in Kongsfjorden will then be limited to intermediate depth, usually producing very cold intermediate water. Deep AW inflow continues during the following summer. A winter of type “Winter Open” seems to develop when open water convection produces very dense shelf water, and AW winter advection into Kongsfjorden occurs at the surface. Summer AW inflow is rather shallow after such winters. We find that variations between Winter Deep and Winter Intermediate winters are due to inherent natural variability. However, the Winter Open winters seem to be a consequence of the general trend of atmospheric and oceanic warming, and, more specifically, of the decreasing sea ice cover in the Arctic region. The Winter Open winters have all occurred after an unusual flooding of AW onto the West Spitsbergen shelf in February 2006.


Kongsfjorden Atlantic Water Hydrography Water masses Exchange 



Acoustic Doppler Current Profiler


Arctic Water


Atlantic Water


Conductivity Temperature Depth


East Spitsbergen Current


Gibbs SeaWater


Institute of Oceanology, Polish Academy of Sciences


Intermediate Water


Local Water


Norwegian Polar Institute


Practical Salinity Scale 1978


Scottish Association for Marine Science


Signal to Noise Ratio


Spitsbergen Polar Current


Surface Water


Transformed Atlantic Water


Thermodynamic Equation of SeaWater 2010




University of Bergen


UNIS Hydrographic Database


The University Centre in Svalbard


Winter Cooled Water


West Spitsbergen Current



Ragnheid Skogseth (RS) prepared and shared CTD data from the UNIS Hydrographic database (UNIS HD) with data collected by NPI, UNIS, IOPAN and SAMS or extracted from public databases like The Norwegian Marine Data Centre (NMDC at the, the PANGAEA database (AWI) and ICES. Funding for RS and the construction of the UNIS HD merits REOCIRC (Remote Sensing of Ocean Circulation and Environmental Mass Changes, a Research Council of Norway project no. 222696/F50). The Norwegian Polar Institute provided CTD data from July 2015 and July 2016 through the MOSJ program. The work contributes as well to the project FjoCon 225218/E40, financed by the Norwegian Research Council. We thank Colin Griffiths for overseeing the SAMS mooring programme supported by the UK Natural Environment Research Council (Oceans 2025 and Northern Sea Program) and the Research Council of Norway (projects Cleopatra: 178766, Cleopatra II: 216537, and Circa: 214271/F20). Contribution by FC and MEI was undertaken through the Scottish Alliance for Geoscience Environment and Society (SAGES).


  1. Adcock ST, Marshall DP (2000) Interactions between geostrophic eddies and the mean circulation over large-scale bottom topography. J Phys Oceanogr 30:3223–3238CrossRefGoogle Scholar
  2. Boyd TJ, D’Asaro EA (1994) Cooling of the West Spitsbergen current: wintertime observations west of Svalbard. J Geophys Res 99:22597–22618CrossRefGoogle Scholar
  3. Cokelet ED, Tervalon N, Bellingham JG (2008) Hydrography of the West Spitsbergen current, Svalbard Branch: Autumn 2001. J Geophys Res 113.
  4. Collings IL, Grimshaw R (1980) The effect of topography on the stability of a barotropic coastal current. Dyn Atmos Oceans 10:83–106CrossRefGoogle Scholar
  5. Cottier F, Tverberg V, Svendsen H, Griffiths C, Inall M (2003) Water mass modification and exchange in an arctic fjord (poster). In: EGS-AGU-EUG Joint assembly, Nice, FranceGoogle Scholar
  6. Cottier F, Tverberg V, Inall M, Svendsen H, Nilsen F, Griffiths C (2005) Water mass modification in an Arctic fjord through cross-shelf exchange: the seasonal hydrography of Kongsfjorden, Svalbard. J Geophys Res 110.
  7. Cottier FR, Nilsen F, Inall ME, Gerland S, Tverberg V, Svendsen H (2007) Wintertime warming of an Arctic shelf in response to large-scale atmospheric circulation. Geophys Res Lett 34.
  8. Cottier F, Nilsen F, Skogseth R, Tverberg V, Skarðhamar J, Svendsen H (2010) Arctic fjords: a review of the oceanographic environment and dominant physical processes. In: Fjord systems and archives, Geological society special publication 344. Geological Society, London, pp 35–50Google Scholar
  9. Emery WJ, Thomson RE (2014) Data analysis methods in physical oceanography, 3rd edn. Elsevier Science, Amsterdam, 728 pp. isbn:978-0-123-87782-6Google Scholar
  10. Furevik T (2001) Annual and interannual variability of Atlantic Water temperatures in the Norwegian and Barents Seas: 1980–1996. Deep-Sea Res I Oceanogr Res Pap 48:383–404. CrossRefGoogle Scholar
  11. Gerland S, Renner AHH (2007) Sea-ice mass-balance monitoring in an Arctic fjord. Ann Glaciol 46:435–442CrossRefGoogle Scholar
  12. Gjevik B, Straume T (1989) Model simulations of the M2 and the K1 tide in the Nordic Seas and the Arctic Ocean. Tellus 41A:73–96CrossRefGoogle Scholar
  13. Hegseth EN, Assmy P, Wiktor J, Kristiansen S, Leu E, Piquet AMT, Tverberg V, Cottier F (this volume-b) Chapter 6: Phytoplankton seasonal dynamics in Kongsfjorden, Svalbard and the adjacent shelf. In: Hop H, Wiencke C (eds) The ecosystem of Kongsfjorden, Svalbard, Advances in polar ecology 2. Springer, ChamGoogle Scholar
  14. Helland-Hansen B, Nansen F (1909) The Norwegian Sea. Its physical oceanography based upon the Norwegian researches 1900–1904. vol 2. Report on Norwegian Fishery and Marine-Investigations. Det Mallinske Bogtrykkeri, KristianiaGoogle Scholar
  15. Hop H, Pearson T, Hegseth EN, Kovacs KM, Wiencke C, Kwasniewski S, Eiane K, Mehlum F, Gulliksen B, Wlodarska-Kowalczuk M, Lydersen C, Weslawski JM, Cochrane S, Gabrielsen GW, Leakey RJG, Lønne OJ, Zajaczkowski M, Falk-Petersen S, Kendall M, Wängberg S-Å, Bischof K, Voronkov AY, Kovaltchouk NA, Wiktor J, Poltermann M, di Prisco G, Papucci C, Gerland S (2002) The marine ecosystem of Kongsfjorden, Svalbard. Polar Res 21:167–208CrossRefGoogle Scholar
  16. Hopkins TS (1991) The GIN Sea – a synthesis of its physical oceanography and literature review 1972–1985. Earth Sci Rev 30:175–318CrossRefGoogle Scholar
  17. Inall ME, Nilsen F, Cottier FR, Daae R (2015) Shelf/fjord exchange driven by coastal-trapped waves in the Arctic. J Geophys Res 120:8283–8303CrossRefGoogle Scholar
  18. Ingvaldsen R, Bø-Reitan M, Svendsen H, Asplin L (2001) The upper layer circulation in Kongsfjorden and Krossfjorden – a complex fjord system on the west coast of Spitsbergen. Mem Natl Inst Polar Res Spec Issue 54:393–407Google Scholar
  19. Kimura S, Holland PR, Jenkins A, Piggott M (2014) The effect of meltwater plumes on the melting of a vertical glacier face. J Phys Oceanogr 44:3099–3117. CrossRefGoogle Scholar
  20. Klinck JM, O’Brien J, Svendsen H (1981) A simple model of fjord and coastal circulation interaction. J Phys Oceanogr 11:1612–1626CrossRefGoogle Scholar
  21. Ledang AB (2009) Coupled physical and biological processes related to mesoscale eddy field in Kongsfjorden and Isfjorden. Master thesis. University of Bergen, Bergen, 89 ppGoogle Scholar
  22. Loeng H (1991) Features of the physical oceanographic conditions of the Barents Sea. Polar Res 10:5–18CrossRefGoogle Scholar
  23. Luckman A, Benn DI, Cottier F, Bevan S, Nilsen F, Inall M (2015) Calving rates at tidewater glaciers vary strongly with ocean temperature. Nat Commun 6:1–7. CrossRefGoogle Scholar
  24. Lydersen C, Assmy P, Falk-Petersen S, Kohler J, Kovacs KM, Reigstad M, Steen H, Strøm H, Sundfjord A, Varpe Ø, Walczowski W, Weslawski JM, Zajaczkowski M (2014) The importance of tidewater glaciers for marine mammals and seabirds in Svalbard, Norway. J Mar Syst 129:452–471CrossRefGoogle Scholar
  25. MacLachlan SE, Cottier FR, Austin WEN, Howe JA (2007) The salinity:δ O water relationship in Kongsfjorden, western Spitsbergen. Polar Res 26:160–167CrossRefGoogle Scholar
  26. Marshall J, Radko T (2003) Residual-mean solutions for the Antarctic Circumpolar Current and its associated overturning circulation. J Phys Oceanogr 33:2341–2354CrossRefGoogle Scholar
  27. Marshall J, Shuckburgh E, Jones H, Hill C (2006) Estimates and implications of surface eddy diffusivity in the southern ocean derived from tracer transport. J Phys Oceanogr 36:1806–1821CrossRefGoogle Scholar
  28. McDougall TJ, Barker PM (2011) Getting started with TEOS-10 and the Gibbs Seawater (GSW) Oceanographic Toolbox, 28 pp., SCOR/IAPSO WG127, ISBN 978-0-646-55621-5Google Scholar
  29. Millero FJ, Feistel R, Wright DG, McDougall TJ (2008) The composition of Standard Seawater and the definition of the Reference-Composition Salinity Scale. Deep-Sea Res I Oceanogr Res Pap 55:50–72. CrossRefGoogle Scholar
  30. Moffat C (2014) Wind-driven modulation of warm water supply to a proglacial fjord, Jorge Montt Glacier, Patagonia. Geophys Res Lett 41:3943–3950. CrossRefGoogle Scholar
  31. Mysak LA, Schott F (1977) Evidence for baroclinic instability of the Norwegian Current. J Geophys Res 82:2087–2095CrossRefGoogle Scholar
  32. Nilsen F, Gjevik B, Schauer U (2006) Cooling of the West Spitsbergen Current: Isopycnal diffusion by topographic vorticity waves. J Geophys Res 111:1–16. CrossRefGoogle Scholar
  33. Nilsen F, Cottier F, Skogseth R, Mattsson S (2008) Fjord-shelf exchanges controlled by ice and brine production: the interannual variation of Atlantic Water in Isfjorden, Svalbard. Cont Shelf Res 28:1838–1853CrossRefGoogle Scholar
  34. Nilsen F, Skogseth R, Vaardal-Lunde J, Inall M (2016) A simple shelf circulation model: intrusion of Atlantic Water on the West Spitsbergen Shelf. J Phys Oceanogr 46:1209–1230. CrossRefGoogle Scholar
  35. Notz D, Worster MG (2008) In situ measurements of the evolution of young sea ice. J Geophys Res 113:1–7.
  36. Onarheim I, Smedsrud LH, Ingvaldsen R, Nilsen F (2014) Loss of sea ice during winter north of Svalbard. Tellus A 66:1–9CrossRefGoogle Scholar
  37. Pavlova O, Gerland S, Hop H (this volume-b) Chapter 4: Changes in sea-ice extent and thickness in Kongsfjorden, Svalbard, and related ecological implications. In: Hop H, Wiencke C (eds) The ecosystem of Kongsfjorden, Svalbard, Advances in polar ecology 2. Springer, ChamGoogle Scholar
  38. Polyakov IV, Beszczynska A, Carmack EC, Dmitrenko IA, Fahrbach E, Frolov IE, Gerdes R, Hansen E, Holfort J, Ivanov VV, Johnson MA, Karcher M, Kauker F, Morison J, Orvik KA, Schauer U, Simmons HL, Skagseth Ø, Sokolov VT, Steele M, Timokhov LA, Walsh JE (2005) One more step towards a warmer Arctic. Geophys Res Lett 32:1–4. CrossRefGoogle Scholar
  39. Rudels B, Anderson LG, Jones EP (1996) Formation and evolution of the surface mixed layer and halocline of the Arctic ocean. J Geophys Res 101:8807–8821CrossRefGoogle Scholar
  40. Rudels B, Meyer R, Fahrbach E, Ivanov VV, Østerhus S, Quadfasel D, Schauer U, Tverberg V, Woodgate R (2000) Water mass distribution in Fram Strait and over the Yermak Plateau in summer 1997. Ann Geophys 18:687–705CrossRefGoogle Scholar
  41. Salcedo-Castro J, Bourgault D, Bentley SJ, deYoung B (2013) Non-hydrostatic modeling of cohesive sediment transport associated with a subglacial buoyant jet in glacial fjords: a process-oriented approach. Ocean Mod 63:30–39. CrossRefGoogle Scholar
  42. Saloranta TM, Haugan PM (2004) Northward cooling and freshening of the warm core of the West Spitsbergen Current. Polar Res 23:79–88CrossRefGoogle Scholar
  43. Saloranta TM, Svendsen H (2001) Across the Arctic front west of Spitsbergen: high-resolution CTD sections from 1998–2000. Polar Res 20:177–184Google Scholar
  44. Skarðhamar J, Svendsen H (2010) Short-term hydrographic variability in a stratified Arctic fjord. In: Fjord systems and archives, Geological society special publication 344. Geological Society, London, pp 51–60Google Scholar
  45. Steele M, Morison J, Curtin TB (1995) Halocline water formation in the Barents Sea. J Geophys Res 100:881–894CrossRefGoogle Scholar
  46. Stroeve JC, Serreze MC, Holland MM, Kay JE, Malanik J, Barrett AP (2012) The Arctic’s rapidly shrinking sea ice cover: a research synthesis. Clim Chang 110:1005–1027. CrossRefGoogle Scholar
  47. Sundfjord A, Albretsen J, Kasajima Y, Skogseth R, Kohler J, Nuth C, Skarðhamar J, Cottier F, Nilsen F, Asplin L, Gerland S, Torsvik T (2017a) Effects of glacier runoff and wind on surface layer dynamics and Atlantic water exchange in Kongsfjorden, Svalbard; a model study. Estuar Coast Shelf Sci 187:260–272. CrossRefGoogle Scholar
  48. Svendsen H, Beszczynska-Möller A, Hagen JO, Lefauconnier B, Tverberg V, Gerland S, Ørbæk JB, Bischof K, Papucci C, Zajaczkowski M, Azzolini R, Bruland O, Wiencke C, Winther J-G, Dallmann W (2002) The physical environment of Kongsfjorden-Krossfjorden, and Arctic fjord system in Svalbard. Polar Res 21:133–166Google Scholar
  49. Swift JH (1986) The Arctic waters. In: The Nordic seas. Springer, New York, pp 124–153Google Scholar
  50. Teigen SH, Nilsen F, Gjevik B (2010) Barotropic instability in the West Spitsbergen Current. J Geophys Res 115:1–18. CrossRefGoogle Scholar
  51. Teigen SH, Nilsen F, Skogseth R, Gjevik B, Beszczynska-Möller A (2011) Baroclinic instability in the West Spitsbergen current. J Geophys Res 116:1–20. CrossRefGoogle Scholar
  52. Tverberg V, Nøst OA (2009) Eddy overturning across a shelf edge front: Kongsfjorden, west Spitsbergen. J Geophys Res 114:1–15. CrossRefGoogle Scholar
  53. Tverberg V, Nilsen F, Goszczko I, Cottier F, Svendsen H, Gerland S (2008) The warm winter temperatures of 2006 and 2007 in the Kongsfjorden water masses compared to historical data. In: Proceedings 8th Ny-Ålesund seminar, Cambridge. Polarnet Technical Report – 1/2008, pp 40–43Google Scholar
  54. Tverberg V, Nøst OA, Lydersen C, Kovacs KM (2014) Winter Sea ice melting in the Atlantic water subduction area, Svalbard Norway. J Geophys Res 119:5945–5967. CrossRefGoogle Scholar
  55. Urbanski JA, Stempniewicz L, Węsławski JM, Dragańska-Deja K, Wochna A, Goc M, Iliszko L (2017) Subglacial discharges create fluctuating foraging hotspots for sea birds in tidewater glacier bays. Sci Rep 7:43999. CrossRefPubMedPubMedCentralGoogle Scholar
  56. Walczowski W (2014) Atlantic water in the Nordic seas. Properties, variability, climatic importance. GeoPlanet: Earth Planet Sci, 174 pp. CrossRefGoogle Scholar
  57. Walczowski W, Piechura J (2007) Pathways of the Greenland Sea warming. Geophys Res Lett 34:1–5. CrossRefGoogle Scholar
  58. Wallace MI, Cottier FR, Berge J, Tarling GA, Griffiths C, Brierley AS (2010) Comparison of zooplankton vertical migration in an ice-free and a seasonally ice-covered Arctic fjord: an insight into the influence of sea ice cover on zooplankton behavior. Limnol Oceanogr 55:831–845CrossRefGoogle Scholar
  59. Weslawski JM, Adamski P (1987) Warm and cold years in south Spitsbergen coastal marine ecosystem. Pol Polar Res 8:95–106Google Scholar
  60. Xia W, Xie H, Ke C (2014) Assessing trend and variation of Arctic sea-ice extent during 1979–2012 from latitude perspective of ice edge. Polar Res 33:1–13. CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Vigdis Tverberg
    • 1
    Email author
  • Ragnheid Skogseth
    • 2
  • Finlo Cottier
    • 3
    • 4
  • Arild Sundfjord
    • 5
  • Waldemar Walczowski
    • 6
  • Mark E. Inall
    • 3
    • 7
  • Eva Falck
    • 2
    • 8
  • Olga Pavlova
    • 5
  • Frank Nilsen
    • 2
    • 8
  1. 1.Faculty of Biosciences and AquacultureNord UniversityBodøNorway
  2. 2.The University Centre in SvalbardLongyearbyenNorway
  3. 3.Scottish Association for Marine Science, Scottish Oceans InstituteObanUK
  4. 4.Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and EconomicsUiT The Arctic University of NorwayTromsøNorway
  5. 5.Norwegian Polar Institute, Fram CentreTromsøNorway
  6. 6.Institute of Oceanology, Polish Academy of ScienceSopotPoland
  7. 7.Department of GeosciencesUniversity of EdinburghEdinburghUK
  8. 8.Geophysical InstituteUniversity of BergenBergenNorway

Personalised recommendations