Kongsfjorden as Harbinger of the Future Arctic: Knowns, Unknowns and Research Priorities

  • Kai BischofEmail author
  • Peter Convey
  • Pedro Duarte
  • Jean-Pierre Gattuso
  • Maria Granberg
  • Haakon Hop
  • Clara Hoppe
  • Carlos Jiménez
  • Leonid Lisitsyn
  • Brezo Martinez
  • Michael Y. Roleda
  • Peter Thor
  • Józef M. Wiktor
  • Geir Wing Gabrielsen
Part of the Advances in Polar Ecology book series (AVPE, volume 2)


Due to its year-round accessibility and excellent on-site infrastructure, Kongsfjorden and the Ny-Ålesund Research and Monitoring Facility have become established as a primary location to study the impact of environmental change on Arctic coastal ecosystems. Due to its location right at the interface of Arctic and Atlantic oceanic regimes, Kongsfjorden already experiences large amplitudes of variability in physico/chemical conditions and might, thus, be considered as an early warning indicator of future changes, which can then be extrapolated in a pan-Arctic perspective. Already now, Kongsfjorden represents one of the best-studied Arctic fjord systems. However, research conducted to date has concentrated largely on small disciplinary projects, prompting the need for a higher level of integration of future research activities. This contribution, thus, aims at identifying gaps in knowledge and research priorities with respect to ecological and adaptive responses to Arctic ecosystem changes. By doing so we aim to provide a stimulus for the initiation of new international and interdisciplinary research initiatives.


Flagship program Monitoring Land-sea-ocean-interaction Indicator species Pan-Arctic 



The authors are grateful to the Svalbard Science Forum for providing funding for the workshop “Adaptation to environmental changes in the Arctic” that took place in Tromsø, 10–12 October 2016, and formed the basis of the present contribution. Authors are also thankful to the Norwegian Polar Institute to be the host and providing additional financial support to the workshop. KB is grateful for the financial and logistical support provided by the Alfred Wegener Institute. PC is supported by NERC core funding to the British Antarctic Survey ‘Biodiversity, Evolution and Adaptation’ Team. JPG is supported by IPEV, the French Polar Institute. CJ is supported by research project CGL2015-67014R of the Ministry of Economy and Competitiveness of Spain.


  1. Aas KS, Dunse T, Collier E, Schuler TV, Berntsen TK, Kohler J, Luks B (2016) The climatic mass balance of Svalbard glaciers: a 10-year simulation with a coupled atmosphere–glacier mass balance model. Cryosphere 10:1089–1104CrossRefGoogle Scholar
  2. AMAP (2013) AMAP assessment 2013: Arctic Ocean acidification. Arctic Monitoring and Assessment Programme (AMAP), OsloGoogle Scholar
  3. Araújo MB, Whittaker RJ, Ladle RJ, Erhard M (2005) Reducing uncertainty in projections of extinction risk from climate change. Glob Ecol Biogeogr 14:529–538CrossRefGoogle Scholar
  4. Ardyna M, Babin M, Gosselin M, Devred E, Rainville L, Tremblay J-É (2014) Recent Arctic Ocean sea ice loss triggers novel fall phytoplankton blooms. Geophys Res Lett 41:6207–6212CrossRefGoogle Scholar
  5. Assmy P, Smetacek V (2009) Algal blooms. In: Schaechter M (ed) Encyclopedia of Microbiology. Elsevier, Oxford, pp 27–41CrossRefGoogle Scholar
  6. Bach L, Forbes VE, Dahllöf I (2009) The amphipod Orchomenella pinguis–a potential bioindicator for contamination in the Arctic. Marine Poll Bull 58:1664–1670CrossRefGoogle Scholar
  7. Bartsch I, Paar M, Fredriksen S, Schwanitz M, Daniel C, Hop H, Wiencke C (2016) Changes in kelp forest biomass and depth distribution in Kongsfjorden, Svalbard, between 1996–1998 and 2012–2014 reflect Arctic warming. Polar Biol 39:2021–2036CrossRefGoogle Scholar
  8. Berge J, Daase M, Renaud Paul E, Ambrose William G Jr, Darnis G, Last Kim S, Leu E, Cohen JH, Johnsen G, Moline MA, Cottier F, Varpe Ø, Shunatova N, Bałazy P, Morata N, Massabuau JC, Falk-Petersen S, Kosobokova K, Hoppe CJM, Węsławski JM, Kukliński P, Legeżyńska J, Nikishina D, Cusa M, Kędra M, Włodarska-Kowalczuk M, Vogedes D, Camus L, Tran D, Michaud E, Gabrielsen TM, Granovitch A, Gonchar A, Krapp R, Callesen TA (2015a) Unexpected levels of biological activity during the polar night offer new perspectives on a warming Arctic. Curr Biol 25:2555–2561CrossRefGoogle Scholar
  9. Berge J, Heggland K, Lønne OJ, Cottier F, Hop H, Gabrielsen GW, Nøttestad L, Misund OA (2015b) First records of Atlantic mackerel (Scomber scombrus) from the Svalbard Archipelago, Norway, with possible explanations for the extension of its distribution. Arctic 68:54–61CrossRefGoogle Scholar
  10. Beuchel F, Gulliksen B, Carrol ML (2006) Long-term patterns of rocky bottom macrobenthic community structure in an Arctic fjord (Kongsfjorden, Svalbard) in relation to climate variability (1980–2003). J Mar Syst 63:35–48Google Scholar
  11. Blaszczyk M, Jania JA, Hagen JO (2009) Tidewater glaciers of Svalbard: recent changes and estimates of calving fluxes. Pol Polar Res 30:85–142Google Scholar
  12. Blévin P, Tartu S, Ellis HI, Chastel O, Bustamante P, Parenteau C, Herzke D, Angelier F, Gabrielsen GW (2017) Contaminants and energy expenditure in an Arctic seabird: Organochlorine pesticides and perfluoroalkyl substances are associated with metabolic rate in a contrasted manner. Environmental Research 157:118–126PubMedCrossRefGoogle Scholar
  13. Borgå K, Gabrielsen GW, Skaare JU (2001) Biomagnification of organochlorines along a Barents Sea food chain. Environ Pollut 113:187–198PubMedCrossRefPubMedCentralGoogle Scholar
  14. Brand M, Fischer P (2016) Species composition and abundance of the shallow water fish community of Kongsfjorden, Svalbard. Polar Biol 39:2155–2167CrossRefGoogle Scholar
  15. Buckley LB, Urban MC, Angilletta MJ, Crozier LG, Rissler LJ, Sears MW (2010) Can mechanism inform species’ distribution models? Ecol Lett 13:1041–1054PubMedCrossRefPubMedCentralGoogle Scholar
  16. Bustnes JO, Bårdsen BJ, Moe B, Herzke D, Hanssen SA, Sagerup K, Bech C, Nordstad T, Chastel O, Tartu S, Gabrielsen GW (2017) Temporal variation in circulating concentrations of organochlorine pollutants in a pelagic seabird breeding in the high Arctic. Environ Toxicol Chem 36:442–448PubMedCrossRefGoogle Scholar
  17. Comeau S, Gorsky G, Jeffree R, Teyssié JL, Gattuso JP (2009) Impact of ocean acidification on a key Arctic pelagic mollusc (Limacina helicina). Biogeosciences 6:1877–1882CrossRefGoogle Scholar
  18. Comeau S, Jeffree R, Teyssié JL, Gattuso JP (2010) Response of the Arctic pteropod Limacina helicina to projected future environmental conditions. PLoS One 5(6):e11362PubMedPubMedCentralCrossRefGoogle Scholar
  19. Cottier F, Nilsen F, Inall ME, Gerland S, Tverberg V, Svendsen H (2007) Wintertime warming of an Arctic shelf in response to large-scale atmospheric circulation. Geophys Res Lett 34.
  20. Dalpadado P, Hop H, Rønning J, Pavlov V, Sperfeld E, Buchholz F, Rey A, Wold A (2016) Distribution and abundance of euphausiids and pelagic amphipods in Kongsfjorden, Isfjorden and Rijpfjorden (Svalbard) and changes in their relative importance as key prey in a warming marine ecosystem. Polar Biol 39:1765–1784CrossRefGoogle Scholar
  21. Davison IR, Pearson GA (1996) Stress tolerance in intertidal seaweeds. J Phycol 32:197–222CrossRefGoogle Scholar
  22. De Wit P, Dupont S, Thor P (2016) Selection on oxidative phosphorylation and ribosomal structure as a multigenerational response to ocean acidification in the common copepod Pseudocalanus acuspes. Evol Appl 9:1112–1123PubMedCrossRefPubMedCentralGoogle Scholar
  23. Duarte P, Weslawski JM, Hop H (this volume-c) Chapter 12: Outline of an Arctic fjord ecosystem model for Kongsfjorden-Krossfjorden, Svalbard. In: Hop H, Wiencke C (eds) The ecosystem of Kongsfjorden, Svalbard, Advances in polar ecology 2. Springer, ChamGoogle Scholar
  24. Dunton KH, Weingartner T, Carmack EC (2006) The nearshore western Beaufort Sea ecosystem: circulation and importance of terrestrial carbon in arctic coastal food webs. Prog Oceanogr 71:362–378CrossRefGoogle Scholar
  25. Elith J, Kearney M, Phillips S (2010) The art of modelling range-shifting species. Methods Ecol Evol 1:330–342CrossRefGoogle Scholar
  26. Falk-Petersen S, Dahl TM, Scott CL, Sargent JR, Gulliksen B, Kwasniewski S, Hop H, Millar R-M (2002) Lipid biomarkers and trophic linkages between the Arctic ctenophores and calanoid copepods in Svalbard waters. Mar Ecol Prog Ser 227:187–194Google Scholar
  27. Fischer P, Schwanitz M, Loth R, Posner U, Brand M, Schröder F (2016) First year of the new Arctic AWIPEV-COSYNA cabled underwater observatory in Kongsfjorden, Spitsbergen. Ocean Sci Discuss:1–34Google Scholar
  28. Fransson A, Chierici M, Hop H, Findlay HS, Kristiansen S, Wold A (2016) Late winter-to-summer change in ocean acidification state in Kongsfjorden, with implications for calcifying organisms. Polar Biol 39:1841–1857CrossRefGoogle Scholar
  29. Fredersdorf J, Müller R, Becker S, Wiencke C, Bischof K (2009) Interactive effects of radiation, temperature and salinity on different life history stages of the Arctic kelp Alaria esculenta (Phaeophyceae). Oecologia 160:483–492PubMedPubMedCentralGoogle Scholar
  30. Fulton EA (2010) Approaches to end-to-end ecosystem models. J Mar Syst 81:171–183CrossRefGoogle Scholar
  31. Gabrielsen GW (2007) Levels and effects of persistent organic pollutants in arctic animals. In: Ørbæk JB, Kallenborn R, Tombre I, Hegseth EN, Falk-Petersen S, Hoel AH (eds) Arctic-Alpine ecosystems and people in a changing environment. Springer, Berlin, pp 377–412Google Scholar
  32. Gannefors C, Böer M, Kattner G, Graeve M, Eiane K, Gulliksen B, Hop H, Falk-Petersen S (2005) The Arctic sea butterfly Limacina helicina; lipids and life strategy. Mar Biol 147:169–177CrossRefGoogle Scholar
  33. Gibbons MJ, Richardson AJ (2013) Beyond the jellyfish joyride and global oscillations: advancing jellyfish research. J Plankton Res 35:929–938CrossRefGoogle Scholar
  34. Gordillo FJL, Aguilera J, Jiménez C (2004) Enzymatic activities related to nutrient assimilation in common seaweeds of the Arctic. In: Wiencke C (ed) The coastal ecosystem of Kongsfjorden, Svalbard. Synopsis of biological research performed at the Koldewey Station. Ber Polarforsch Meeresforsch 492, pp 123–135Google Scholar
  35. Gordillo FJL, Aguilera J, Jiménez C (2006) The response of nutrient assimilation and biochemical composition of Arctic seaweeds to a nutrient input in summer. J Exp Bot 57:2661–2671PubMedCrossRefGoogle Scholar
  36. Goutte A, Angelier F, Bech C, Clement-Chastel C, Dell’Omo G, Gabrielsen GW, Lendvai A, Moe B, Noreen E, Pinaud D, Tartu S, Chastel O (2014) Annual variation in the timing of breeding, pre-breeding foraging areas and associated hormones levels in an Arctic population of black legged kittiwakes. Mar Ecol Prog Ser 496:233–247CrossRefGoogle Scholar
  37. Goutte A, Barbraud C, Herzke D, Bustamante P, Angelier F, Tartu S, Clement-Chastel C, Moe B, Bech C, Gabrielsen GW, Bustnes JO, Chastel O (2015) Survival rate and breeding outputs in a high Arctic seabird exposed to legacy persistent organic pollutants and mercury. Environ Pollut 200:1–9PubMedCrossRefGoogle Scholar
  38. Granberg ME, Ask A, Gabrielsen GW (2017) Local contamination on Svalbard- overview and suggestions for remediation actions. Norwegian Polar Institute, Tromsø, p 65Google Scholar
  39. Grime JP (1989) The stress debate: symptom of impending synthesis? Biol J Linn Soc 37:3–17CrossRefGoogle Scholar
  40. Guzzo MM, Eckbo NH, Gabrielsen GW, Fisk AT, Hylland K, Borgå K (2014) Persistent organic pollutant concentrations in fledglings of two arctic seabird species. Environ Pollut 184:414–418PubMedCrossRefGoogle Scholar
  41. Hallanger IG, Ruus A, Herzke D, Warner NA, Evenset A, Gabrielsen GW, Borgå K (2011) Differences between Arctic and Atlantic fjord systems on bioaccumulation of persistent organic pollutants in zooplankton from Svalbard. Sci Total Environ 409:2783–2795PubMedCrossRefGoogle Scholar
  42. Hanelt D, Tüg H, Bischof K, Gross C, Lippert H, Sawall T, Wiencke C (2001) Light regime in an Arctic fjord: a study related to stratospheric ozone depletion as a basis for determination of UV effects on algal growth. Mar Biol 138:649–658CrossRefGoogle Scholar
  43. Hansen BB, Aanes R (2012) Kelp and seaweed feeding by High-Arctic wild reindeer under extreme winter conditions. Polar Res 31. CrossRefGoogle Scholar
  44. Hanssen SA, Gabrielsen GW, Bustnes JO, Bråthen VS, Skottene E, Fenstad A, Strøm H, Bakken V, Phillips R, Moe B (2016) Migration strategies of Common eiders from Svalbard: Implications for bilateral conservation management. Polar Biol 39:2179–2188CrossRefGoogle Scholar
  45. Hegseth EN, Sundfjord A (2008) Intrusion and blooming of Atlantic phytoplankton species in the high Arctic. J Mar Syst 74:108–119CrossRefGoogle Scholar
  46. Hegseth EN, Tverberg V (2013) Effect of Atlantic water inflow on timing of the phytoplankton spring bloom in a high Arctic fjord (Kongsfjorden, Svalbard). J Mar Syst 113–114:94–105CrossRefGoogle Scholar
  47. Hegseth EN, Assmy P, Wiktor JM, Wiktor J Jr, Kristiansen S, Leu E, Tverberg V, Gabrielsen TM, Skogseth R, Cottier F (this volume-c) Chapter 6: Phytoplankton seasonal dynamics in Kongsfjorden, Svalbad and the adjacent shelf. In: Hop H, Wiencke C (eds) The ecosystem of Kongsfjorden, Svalbard, Advances in polar ecology 2. Springer, ChamGoogle Scholar
  48. Hop H, Gjøsæter H (2013) Polar cod (Boreogadus saida) and capelin (Mallotus villosus) as key species in marine food webs of the Arctic and the Barents Sea. Mar Biol Res 9:878–894CrossRefGoogle Scholar
  49. Hop H, Pearson T, Hegseth EN, Kovacs KM, Wiencke C, Kwasniewski S, Eiane K, Mehlum F, Gulliksen B, Wlodarska-Kowalczuk M, Lydersen C, Weslawski JM, Cochrane S, Gabrielsen GW, Leakey RJG, Lønne OJ, Zajaczkowski M, Falk-Petersen S, Kendall M, Wängberg S-Å, Bischof K, Voronkov AY, Kovaltchouk NA, Wiktor J, Poltermann M, di Prisco G, Papucci C, Gerland S (2002a) The marine ecosystem of Kongsfjorden, Svalbard. Polar Res 21:167–208CrossRefGoogle Scholar
  50. Hop H, Borga K, Gabrielsen GW, Kleivane L, Skaare JU (2002b) Food web magnification of persistent organic pollutants in poikilotherms and homeotherms from the Barents Sea. Environ Sci Technol 36:2589–2597PubMedCrossRefGoogle Scholar
  51. Hop H, Falk-Petersen S, Svendsen H, Kwasniewski S, Pavlov V, Pavlov O, Søreide JE (2006) Physical and biological characteristics of the pelagic system across Fram Strait to Kongsfjorden. Prog Oceanogr 71:182–231CrossRefGoogle Scholar
  52. Hop H, Kovaltchouk NA, Wiencke C (2016) Distribution of macroalgae in Kongsfjorden, Svalbard. Polar Biol 39:2037–2051CrossRefGoogle Scholar
  53. Hunt JRGL, Drinkwater KF, Arrigo K, Berge J, Daly KL, Danielson S, Daase M, Hop H, Isla E, Karnovsky N, Laidre K, Mueter FJ, Murphy EJ, Renaud PE, Smith WO Jr, Trathan P, Turner J, Wolf-Gladrow D (2016) Advection in polar and sub-polar environments: impacts on high latitude marine ecosystems. Prog Oceanogr 149:40–81CrossRefGoogle Scholar
  54. Ingvaldsen R, Reitan MB, Svendsen H, Asplin L (2001) The upper layer circulation in the Kongsfjorden and Krossfjorden—a complex fjord system on the west coast of Spitsbergen. Mem Natl Inst Polar Res Spec 54:393–407Google Scholar
  55. Jæger I, Hop H, Gabrielsen GW (2009) Biomagnification of mercury in selected species from an Arctic marine food web in Svalbard. Sci Total Environ 407:4744–4751PubMedCrossRefGoogle Scholar
  56. Kahru M, Brotas V, Manzano-Sarabia M, Mitchell BG (2011) Are phytoplankton blooms occurring earlier in the Arctic? Glob Chang Biol 17:1733–1739CrossRefGoogle Scholar
  57. Karsten U (2007) Salinity tolerance of Arctic kelps from Spitsbergen. Phycol Res 55:257–262CrossRefGoogle Scholar
  58. Karsten U, Schaub I, Woelfel J, Sevilgen DS, Schlie C, Becker B, Wulff A, Graeve M, Wagner H (this volume-b) Chapter 8: Living on cold substrata: new insight approaches to study of microphytobenthos ecophysiology and ecology in Kongsfjorden. In: Hop H, Wiencke C (eds) The ecosystem of Kongsfjorden, Svalbard, Advances in polar ecology 2. Springer, ChamGoogle Scholar
  59. Kearney M, Phillips BL, Tracy CR, Christian KA, Betts G, Porter WP (2008) Modelling species distributions without using species distributions: the cane toad in Australia under current and future climates. Ecography 3:423–434CrossRefGoogle Scholar
  60. Kohler J, James TD, Murray T, Nuth C, Brandt O, Barrand NE, Aas HF, Luckman A (2007) Acceleration in thinning rate on western Svalbard glaciers. Geophys Res Lett 34.
  61. Krause-Jensen D, Duarte CM (2014) Expansion of vegetated coastal ecosystems in the future Arctic. Front Mar Sci 1:1–10CrossRefGoogle Scholar
  62. Kwasniewski S, Hop H, Falk-Petersen S, Pedersen G (2003) Distribution of Calanus species in Kongsfjorden, a glacial fjord in Svalbard. J Plankton Res 25:1–20CrossRefGoogle Scholar
  63. Kwasniewski S, Walkusz W, Cottier FR, Leu E (2013) Mesozooplankton dynamics in relation to food availability during spring and early summer in a high latitude glaciated fjord (Kongsfjorden), with focus on Calanus. J Mar Syst 111:83–96CrossRefGoogle Scholar
  64. Larsen JN, Anisimov OA, Constable A, Hollowed AB, Maynard N, Prestrud P et al. (2014) Polar regions. In: Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE et al (eds) Climate change 2014: impacts, adaptation, and vulnerability. Part B: regional aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge/New York, pp 1567–1612Google Scholar
  65. Li WKW, McLaughlin FA, Lovejoy C, Carmack EC (2009) Smallest algae thrive as the Arctic Ocean freshens. Science 326:539. CrossRefPubMedGoogle Scholar
  66. Lischka S, Riebesell U (2012) Synergistic effects of ocean acidification and warming on overwintering pteropods in the Arctic. Glob Chang Biol 18:3517–3528CrossRefGoogle Scholar
  67. Lundberg M, Hop H, Eiane E, Gulliksen B, Falk-Petersen S (2006) Population structure and accumulation of lipids in the ctenophore Mertensia ovum. Mar Biol 149:1345–1353CrossRefGoogle Scholar
  68. Luo Y, Boudreau BP, Mucci A (2016) Disparate acidification and calcium carbonate desaturation of deep and shallow waters of the Arctic Ocean. Nat Commun 7:12821PubMedPubMedCentralCrossRefGoogle Scholar
  69. Lydersen C, Assmy P, Falk-Petersen S, Kohler J, Kovacs KM, Reigstad M, Steen H, Strøm H, Sundfjord A, Varpe Ø, Walczowski W, Weslawski JM, Zajaczkowski M (2014) The importance of tidewater glaciers for marine mammals and seabirds in Svalbard, Norway. J Mar Syst 129:452–471CrossRefGoogle Scholar
  70. Lydersen C, Fish AT, Kovacs KM (2016) A review of Greenland shark (Somniosus microcephalus) studies in the Kongsfjorden area, Svalbard Norway. Polar Biol 39:2169–2178CrossRefGoogle Scholar
  71. Maat DS, Brussard CPD (2016) Both phosphorus- and nitrogen limitation constrain viral proliferation in marine phytoplankton. Aquat Microb Ecol 77:87–97CrossRefGoogle Scholar
  72. Mackay D, Fraser A (2000) Bioaccumulation of persistent organic chemicals: mechanisms and models. Environ Pollut 110:375–391PubMedCrossRefGoogle Scholar
  73. Martínez B, Arenas F, Carreño F, Trilla A, Viejo RM (2015) Combining physiological threshold knowledge to species distribution models is key to improving forecasts of the future niche for macroalgae. Glob Chang Biol 21:1422–1433PubMedCrossRefGoogle Scholar
  74. Maturilli M, Herber A, König-Langlo G (2013) Climatology and time series of surface meteorology in Ny-Ålesund, Svalbard. Earth Syst Sci Data 5:155–163CrossRefGoogle Scholar
  75. Neitsch SL, Arnold JP, Kiniry JR, Srinivasan R, Williams JR (2002) Soil and water assessment tool. User’s manual. Grassland, Soil and water research laboratory, Agricultural Research Service, USA
  76. Nöthig E-M, Bracher A, Engel A, Metfies K, Niehoff B, Peeken I, Bauerfeind E, Cherkasheva A, Gäbler-Schwarz S, Hardge K, Kilias E, Kraft A, Kidane YM, Lalande C, Piontek J, Thomisch K, Wurst M (2015) Summertime plankton ecology in Fram Strait – a compilation of long- and short-term observations. Polar Res 34. CrossRefGoogle Scholar
  77. Noyes PD, McElwee MK, Miller HD, Clark BW, Van Tiem LA, Walcott KC, Erwin KN, Levin ED (2009) The toxicology of climate change: environmental contaminants in a warming world. Environ Int 35:971–986PubMedCrossRefGoogle Scholar
  78. Paar M, Voronkov A, Hop H, Brey T, Bartsch I, Schwanitz M, Wiencke C, Lebreton B, Asmus R, Asmus H (2016) Temporal shift in biomass and production of macrozoobenthos in the macroalgal belt at Hansneset, Kongsfjorden, after 15 years. Polar Biol 39:2065–2076CrossRefGoogle Scholar
  79. Pearson RG, Dawson TP (2003) Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Glob Ecol Biogeogr 12:361–371CrossRefGoogle Scholar
  80. Peck LS, Convey P, Barnes DK (2006) Environmental constraints on life histories in Antarctic ecosystems: tempos, timings and predictability. Biol Rev 81:75–109PubMedCrossRefPubMedCentralGoogle Scholar
  81. Peijnenburg KTCA, Goetze E (2013) High evolutionary potential of marine zooplankton. Ecol Evol 3:2765–2781PubMedPubMedCentralCrossRefGoogle Scholar
  82. Piquet AMT, Maat DS, Confurius-Guns V, Sintes E, Herndl GJ, van de Poll WH, Wiencke C, Buma AGJ, Bolhuis H (2016) Springtime dynamics, productivity and activity of prokaryotes in two Arctic fjords. Polar Biol 39:1749–1763CrossRefGoogle Scholar
  83. Piwosz K, Walkusz W, Hapter R, Wieczorek P, Hop H, Wiktor J (2009) Comparison of productivity and phytoplankton in a warm (Kongsfjorden) and a cold (Hornsund) Spitsbergen fjord in mid-summer 2002. Polar Biol 32:549–559CrossRefGoogle Scholar
  84. Pörtner HO (2008) Ecosystem effects of ocean acidification in times of ocean warming: a physiologist’s view. Mar Ecol Prog Ser 373:203–217CrossRefGoogle Scholar
  85. Pörtner HO, Karl D, Boyd P, Cheung W, Lluch-Cota SE, Nojiri Y, Schmidt D, Zavialov P (2014) Ocean systems. In: Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds) Climate change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge/New York, pp 411–484Google Scholar
  86. Rasmussen JB, Rowan DJ, Lean DRS, Carey JH (1990) Food chain structure in Ontario Lakes determines PCB levels in Lake Trout (Salvelinus namaycush) and other pelagic fish. Can J Fish Aquat Sci 47:2030–2038CrossRefGoogle Scholar
  87. Riebesell U, Gattuso JP (2015) Lessons learned from ocean acidification research. Nat Clim Chang 5:12–14CrossRefGoogle Scholar
  88. Riebesell U, Gattuso JP, Thingstad TF, Middelburg JJ (2013) Arctic ocean acidification: pelagic ecosystem and biogeochemical responses during a mesocosm study. Biogeosciences 10:5619–5626CrossRefGoogle Scholar
  89. Rokkan Iversen K, Seuthe L (2011) Seasonal microbial processes in a high-latitude fjord (Kongsfjorden, Svalbard): I. Heterotrophic bacteria, picoplankton and nanoflagellates. Polar Biol 34:731–749CrossRefGoogle Scholar
  90. Roleda MY, Dethleff D (2011) Storm-generated sediment deposition on rocky shores: Simulating burial effects on the physiology and morphology of Saccharina latissima sporophytes. Mar Biol Res 7:213–223CrossRefGoogle Scholar
  91. Roleda MY, Dethleff D, Wiencke C (2008) Transient sediment load on blades of Arctic Saccharina latissima can mitigate UV radiation effect on photosynthesis. Polar Biol 31:765–769CrossRefGoogle Scholar
  92. Rose KA, Allen JI, Artioli Y, Barange M, Blackford J, Carlotti F, Cropp R, Daewel U, Edwards K, Flynn K, Hill SL, HilleRisLambers R, Huse G, Mackinson S, Megrey B, Moll A, Rivkin R, Salihoglu B, Schrum C, Shannon L, Shin Y-J, Smith SL, Smith C, Solidoro C, John MS, Zhou M (2010) End-to-end models for the analysis of marine ecosystems: challenges, issues, and next steps. Mar Coast Fish Dynam Manag Ecosys Sci 2:115–130CrossRefGoogle Scholar
  93. Russell BD, Harley CDG, Wernberg T, Mieszkowska N, Widdicombe S, Hall-Spencer JM, Connell SD (2012) Predicting ecosystem shifts requires new approaches that integrate the effects of climate change across entire systems. Biol Lett 8:164–166PubMedPubMedCentralCrossRefGoogle Scholar
  94. Seuthe L, Iversen KR, Narcy F (2011) Microbial processes in a high-latitude fjord (Kongsfjorden, Svalbard): II. Ciliates and dinoflagellates. Polar Biol 34:751–766Google Scholar
  95. Skei J (1994) Miljøjkemiske undersøkelser i Kongsfjorden 1991 og 1992. O-90112. NIVA, OsloGoogle Scholar
  96. Søreide JE, Leu E, Berge J, Graeve M, Falk-Petersen S (2010) Timing in blooms, algal food quality and Calanus glacialis reproduction and growth in a changing Arctic. Glob Chang Biol 16:3154–3163Google Scholar
  97. Stempniewicz L, Blachowiak-Samolyk K, Weslawski JM (2007) Impact of climate change on zooplankton communities, seabird populations and arctic terrestrial ecosystem – a scenario. Deep-Sea Res II 54:2934–2945CrossRefGoogle Scholar
  98. Sundelin B, Eriksson AK (1998) Malformations in embryos of the deposit-feeding amphipod Monoporeia affinis in the Baltic Sea. Mar Ecol Prog Ser 171:165–180CrossRefGoogle Scholar
  99. Svendsen H, Beszczynska-Møller A, Hagen JO, Lefauconnier B, Tverberg V, Gerland S, Ørbæk JB, Bischof K, Papucci C, Zajaczkowski M, Azzolini R, Bruland O, Wiencke C, Winther J-G, Dallmann W (2002) The physical environment of Kongsfjorden-Krossfjorden – an Arctic fjord system in Svalbard. Polar Res 21:133–166Google Scholar
  100. Szczybelski AS, van den Heuvel-Greve MJ, Kampen T, Wang C, van den Brink NW, Koelmans AA (2016) Bioaccumulation of polycyclic aromatic hydrocarbons, polychlorinated biphenyls and hexachlorobenzene by three Arctic benthic species from Kongsfjorden (Svalbard, Norway). Mar Pollut Bull 112:65–74PubMedCrossRefPubMedCentralGoogle Scholar
  101. Tartu S, Lendvai AZ, Blévin P, Herzke D, Bustamante P, Børge M, Gabrielsen GW, Bustnes JO, Chastel O (2015) Increased adrenal responsiveness and delayed hatching date in relation to polychlorinated biphenyl exposure in Arctic-breeding black-legged kittiwakes (Rissa tridactyla). Gen Comp Endocrinol 219:165–172PubMedCrossRefGoogle Scholar
  102. Thor P, Dupont S (2015) Transgenerational effects alleviate severe fecundity loss during ocean acidification in a ubiquitous planktonic copepod. Glob Chang Biol 21:2261–2271PubMedCrossRefPubMedCentralGoogle Scholar
  103. Thor P, Oliva EO (2015) Ocean acidification elicits different energetic responses in an Arctic and a boreal population of the copepod Pseudocalanus acuspes. Mar Biol 162:799–807CrossRefGoogle Scholar
  104. Thor P, Bailey A, Halsband C, Guscelli E, Gorokhova E, Fransson A (2016) Seawater pH predicted for the year 2100 affects the metabolic response to feeding in copepodites of the Arctic copepod Calanus glacialis. PLoS One 11:e0168735PubMedPubMedCentralCrossRefGoogle Scholar
  105. Tremblay J-É, Anderson LG, Matrai P, Coupel P, Bélanger S, Michel C, Reigstad M (2015) Global and regional drivers of nutrient supply, primary production and CO2 drawdown in the changing Arctic Ocean. Prog Oceanogr 139:171–196CrossRefGoogle Scholar
  106. Tverberg V, Nøst OA (2009) Eddy overturning across a shelf edge front: Kongsfjorden, west Spitsbergen. J Geophys Res 114.
  107. van De Poll WH, Maat DS, Fischer P, Rozema PD, Daly OB, Koppelle S, Visser RJW, Buma AGJ (2016) Atlantic advection driven changes in glacial meltwater: effects on phytoplankton chlorophyll-a and taxonomic composition in Kongsfjorden, Spitsbergen. Front Mar Sci 3.
  108. Vázquez Alonso M (2016) Bioaccumulation and effects of parent and alkylated PAHs in an arctic marine amphipod (Gammarus setosus) originating from pristine and historically contaminated sites in Svalbard: implications for sensitivity and adaptation. UiT-The Arctic University of Norway, TromsøGoogle Scholar
  109. Vihtakari M, Welcker J, Moe B, Chastel O, Tartu S, Hop H, Bech C, Descamps S, Gabrielsen GW (2018) Blacklegged kittiwakes as messengers of Atlantification in the Arctic. Scientific Reports 8:1178Google Scholar
  110. Venkatesan R, Krishnan KP, Arul Muthiah M, Kesavakumar B, Divya DT, Atmanand MA, Rajan S, Ravichandran M (2016) Indian moored observatory in the Arctic for long-term in situ data collection. Int J Ocean Climate Sys 7:55–61CrossRefGoogle Scholar
  111. Vidal DE, Horne AJ (2003) Inheritance of mercury tolerance in the aquatic oligochaete Tubifex tubifex. Environ Toxicol Chem 22:2130–2135PubMedCrossRefGoogle Scholar
  112. Vinebrooke RD, Cottingham KL, Norberg J, Scheffer M, Dodson SI, Maberly SC, Sommer U (2004) Impacts of multiple stressors on biodiversity and ecosystem functioning: the role of species co-tolerance. Oikos 104:451–457CrossRefGoogle Scholar
  113. Walkusz W, Kwasniewski S, Falk-Petersen S, Hop H, Tverberg V, Wieczorek P, Weslawski JM (2009) Seasonal and spatial changes in the zooplankton community in Kongsfjorden, Svalbard. Polar Res 28:254–281CrossRefGoogle Scholar
  114. Wassmann P, Lenton TM (2012) Arctic tipping points in an Earth system perspective. Ambio 41:1–9PubMedPubMedCentralCrossRefGoogle Scholar
  115. Wassmann P, Reigstad M, Haug T, Rudels B, Carroll ML, Hop H, Gabrielsen GW, Falk-Petersen S, Denisenko SG, Arashkevich E, Slagstad D, Pavlova O (2006) Food webs and carbon flux in the Barents Sea. Prog Oceanogr 71:232–287CrossRefGoogle Scholar
  116. Węsławski JM, Legeżyńska J (2002) Life cycles of some Arctic amphipods. Pol Polar Res 23:253–264Google Scholar
  117. Whitehead A, Pilcher W, Champlin D, Nacci D (2012) Common mechanism underlies repeated evolution of extreme pollution tolerance. Proc Royal Soc B-Biol Sci 279:427–433CrossRefGoogle Scholar
  118. Wiencke C, Amsler C (2012) Seaweeds and their communities in Polar Regions. In: Wiencke C, Bischof K (eds) Seaweed Biology. Ecological studies, vol 219. Springer, Berlin, pp 265–291CrossRefGoogle Scholar
  119. Wiencke C, Roleda M, Gruber A, Clayton M, Bischof K (2006) Susceptibility of zoospores to UV radiation determines upper depth distribution limit of Arctic kelps: evidence through field experiments. J Ecol 94:455–463CrossRefGoogle Scholar
  120. Willis K, Cottier F, Kwasniewski S, Wold A, Falk-Petersen S (2006) The influence of advection on zooplankton community composition in an Arctic fjord (Kongsfjorden, Svalbard). J Mar Syst 61:39–54CrossRefGoogle Scholar
  121. Willis KJ, Cottier FR, Kwasniewski S (2008) Impact of warm water advection on the winter zooplankton. Polar Biol 31:475–481. CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Kai Bischof
    • 1
    Email author
  • Peter Convey
    • 2
  • Pedro Duarte
    • 3
  • Jean-Pierre Gattuso
    • 4
    • 5
  • Maria Granberg
    • 6
  • Haakon Hop
    • 3
    • 7
  • Clara Hoppe
    • 8
  • Carlos Jiménez
    • 9
  • Leonid Lisitsyn
    • 10
  • Brezo Martinez
    • 11
  • Michael Y. Roleda
    • 12
  • Peter Thor
    • 3
  • Józef M. Wiktor
    • 13
  • Geir Wing Gabrielsen
    • 3
    • 14
  1. 1.Marine Botany, Faculty Biology/ChemistryUniversity of BremenBremenGermany
  2. 2.British Antarctic Survey, NERCCambridgeUK
  3. 3.Norwegian Polar Institute, Fram CentreTromsøNorway
  4. 4.Laboratoire d’Océanographie de VillefrancheSorbonne Université, CNRSVillefranche-sur-merFrance
  5. 5.Institute for Sustainable Development and International RelationsSciences PoParisFrance
  6. 6.Department of Natural Resources & Environmental Effects, IVL-Swedish Environmental Research InstituteSven Lovén Centre for Marine InfrastructureKristinebergSweden
  7. 7.Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and EconomicsUiT The Arctic University of NorwayTromsøNorway
  8. 8.Alfred Wegener Institute, Helmholtz Centre for Polar and Marine ResearchBremerhavenGermany
  9. 9.Department of Ecology and Geology, Faculty of SciencesUniversity of MálagaMálagaSpain
  10. 10.Research association Typhoon, North-West BranchSaint-PetersburgRussia
  11. 11.Biodiversity and Conservation UnitUniversity Rey Juan CarlosMóstolesSpain
  12. 12.The Marine Science Institute, College of Science, University of the Philippines DilimanQuezon CityPhilippines
  13. 13.Institute of OceanologyPolish Academy of SciencesSopotPoland
  14. 14.University Centre in Svalbard (UNIS)SvalbardNorway

Personalised recommendations