Advertisement

Outline of an Arctic fjord Ecosystem Model for Kongsfjorden-Krossfjorden, Svalbard

  • Pedro DuarteEmail author
  • Jan Marcin Weslawski
  • Haakon Hop
Chapter
Part of the Advances in Polar Ecology book series (AVPE, volume 2)

Abstract

The main objective of this work is to present a detailed outline of an Arctic fjord ecosystem model using Kongsfjorden-Krossfjorden as a case study. Marine ecosystem models are compared, with emphasis on fjord models, towards defining best available modelling technologies. This comparison is based on an analysis of the differences in the variables and processes simulated by different models. We argue about the importance of: (i) coupling Arctic fjord models with land and glacier drainage models; (ii) including thermodynamic, hydrodynamic and ice dynamic sub-models; (iii) simulating biogeochemical processes in the water, ice and benthic environments for, at least, the macro-elements carbon, nitrogen and phosphorus. Furthermore, the energetic importance of higher trophic levels is discussed and used as an argument for their inclusion in fjord ecosystem models towards the development of end-to-end models. The complexity of all the processes mentioned above and respective interactions emphasizes the need for using different model tools and efficient couplers allowing the flow of data between them. A community-based approach with open source software seems to be the proper approach to handle the large complexity of the model strategy proposed herein.

Keywords

Arctic fjords Ecosystem models Model coupling End-to-end models 

Notes

Acknowledgement

JMW was supported by the project GAME Polish National Science Center no. DEC-2012/04/A/NZ8/00661.

References

  1. Aksnes DL, Aure J, Kaartvedt S, Magnesen T, Richard J (1989) Significance of advection for the carrying capacities of fjord populations. Mar Ecol Prog Ser 50:263–274CrossRefGoogle Scholar
  2. Albretsen J, Sperrevik AK, Staalstrøm A, Sandvik AD, Vikebø F, Asplin L (2011) NorKyst-800 report no. 1: User manual and technical descriptions. Fisken og Havet 2, Havforskningsintituttets Rapportserie, Institute of Marine Research, BergenGoogle Scholar
  3. Allen JI, Fulton EA (2010) Top-down, bottom-up or middle-out? Avoiding extraneous detail and over-generality in marine ecosystem models. Prog Oceanogr 84:129–133CrossRefGoogle Scholar
  4. Arrigo KR, Kremer JN, Sullivan CW (1993) A simulated Antarctic fast ice ecosystem. J Geophys Res 98:6926–6946CrossRefGoogle Scholar
  5. Azevedo IC, Bordalo AA, Duarte P (2014) Influence of freshwater inflow variability on the Douro estuary primary productivity: a modelling study. Ecol Model 272:1–15CrossRefGoogle Scholar
  6. Bacher C, Duarte P, Ferreira JG, Héral M, Raillard O (1998) Assessment and comparison of the Marennes-Oléron Bay (France) and Carlingford Lough (Ireland) carrying capacity with ecosystem models. Aquat Ecol 31:379–394CrossRefGoogle Scholar
  7. Baird D, Asmus H, Asmus R (2011) Carbon, nitrogen and phosphorus dynamics in nine sub-systems of the Sylt-Rømø Bight ecosystem, German Wadden Sea. Estuar Coast Shelf Sci 91:51–68CrossRefGoogle Scholar
  8. Baretta J, Ruardij P (eds) (1988) Tidal flat estuaries. Simulation and analysis of the Ems estuary. Springer, BerlinGoogle Scholar
  9. Baretta-Bekker JG, Baretta JW, Ebenhoh W (1997) Microbial dynamics in the marine ecosystem model ESEM ii with decoupled carbon assimilation and nutrient uptake. J Sea Res 38:195–211CrossRefGoogle Scholar
  10. Basedow SL, Eiane K, Tverberg V, Spindler M (2004) Advection of zooplankton in an Arctic fjord (Kongsfjorden, Svalbard). Estuar Coast Shelf Sci 60:113–124CrossRefGoogle Scholar
  11. Berntsen J (2000) Users guide for a modesplit sigma-coordinate numerical ocean model, version 1.0. Report, Department of Applied Mathematics, University of Bergen, NorwayGoogle Scholar
  12. Beszczynska-Möller A, Weslawski JM, Walczowski W, Zajaczkowski M (1997) Estimation of glacial meltwater discharge into Svalbard coastal water. Oceanologia 39:289–297Google Scholar
  13. Blumberg AF, Mellor GL (1987) A description of a three-dimensional coastal ocean circulation model. In: Heaps N (ed) Three-dimensional coastal ocean models. American Geophysical Union, Washington, DC, pp 1–16Google Scholar
  14. Borum J, Pedersen MF, Krause-Jensen D, Christensen PB, Nielsen K (2002) Biomass, photosynthesis and growth of Laminaria saccharina in a High-Arctic fjord, NE Greenland. Mar Biol 141:11–19CrossRefGoogle Scholar
  15. Byun DS, Wang XH, Hart DE, Cho YK (2005) Modeling the effect of freshwater inflows on the development of spring blooms in an estuarine embayment. Estuar Coast Shelf Sci 65:351–360CrossRefGoogle Scholar
  16. Chapelle A (1995) A preliminary model of nutrient cycling in sediments of a Mediterranean lagoon. Ecol Model 80:131–147CrossRefGoogle Scholar
  17. Cottier F, Tverberg V, Inall M, Svendsen H, Nielsen F, Griffiths C (2005) Water mass modification in an Arctic fjord through cross-shelf exchange: the seasonal hydrography of Kongsfjorden, Svalbard. J Geophys Res 110:C12005.  https://doi.org/10.1029/2004JC002757 CrossRefGoogle Scholar
  18. Cottier F, Nilsen F, Inall ME, Gerland S, Tverberg V, Svendsen H (2007) Wintertime warming of an Arctic shelf in response to large-scale atmospheric circulation. Geophys Res Lett 34:L10607.  https://doi.org/10.1029/2007GL029948 CrossRefGoogle Scholar
  19. Cottier FR, Nilsen F, Skogseth R, Tverberg V, Skardhamar J, Svendsen H (2010) Arctic fjords: a review of the oceanographic environment and dominant physical processes. In: Howe JA, Austin EN, Forwick M, Paetzel M (eds) Fjords systems and archives: special publication 344. Geological Society Publishing House, Bath, pp 35–50Google Scholar
  20. Daly KL, Wallace DWR, Smith WO Jr, Skoog A, Lara R, Gosselin M, Falck E, Yager OL (1999) Non-Redfield carbon and nitrogen cycling in the Arctic: effects of ecosystem structure and dynamics. J Geophys Res 104:3185–3199CrossRefGoogle Scholar
  21. de Corte D, Sintes E, Yokokawa T, Herndl GJ (2011) Changes 665 in viral and bacterial communities during the ice-melting season in the coastal Arctic (Kongsfjorden, Ny-Ålesund). Environ Microbiol 667(13):1827–1841CrossRefGoogle Scholar
  22. Dike PPG (2001) Coastal and shelf sea modelling. Kluwer Academic Publishers, New YorkCrossRefGoogle Scholar
  23. Doughty CE, Roman J, Faurby S, Wolf A, Haque A, Bakker ES, Malhi Y, Dunning JB Jr, Svenning J-C (2015) Global nutrient transport in a world of giants. PNAS 113:868–873PubMedCrossRefPubMedCentralGoogle Scholar
  24. Duarte P, Meneses R, Hawkins AJS, Zhu M, Fang J, Grant J (2003) Mathematical modelling to assess the carrying capacity for multi-species culture within coastal water. Ecol Model 168:109–143CrossRefGoogle Scholar
  25. Duarte P, Hawkins AJS, Pereira A (2005) How does estimation of environmental carrying capacity for bivalve culture depend upon spatial and temporal scales. In: Dame R, Olenin S (eds) The comparative role of suspension feeders in aquatic systems. Kluwer Scientific Publishers, Dordrecht, pp 121–135CrossRefGoogle Scholar
  26. Duarte P, Azevedo B, Ribeiro C, Pereira A, Falcão M, Serpa D, Bandeira R, Reia J (2007) Management oriented mathematical modelling of Ria Formosa (South Portugal). Transit Water Monogr 1:13–51.  https://doi.org/10.1285/i18252273v1n1p13 CrossRefGoogle Scholar
  27. Duarte P, Alvarez-Salgado XA, Fernández-Reiriz MJ, Piedracoba S, Labarta U (2014) A modelling study on the hydrodynamics of a coastal embayment occupied by mussel farms (Ría de Ares-Betanzos, NW Iberian Peninsula). Estuar Coast Shelf Sci 147:42–55CrossRefGoogle Scholar
  28. Duarte P, Assmy P, Hop H, Spreen G, Gerland S, Hudson SR (2015) The importance of vertical resolution in sea ice algae production models. J Mar Syst 145:69–90CrossRefGoogle Scholar
  29. Eilertsen HC, Taasen JP, Weslawski JM (1989) Phytoplankton studies in the fjords of West Spitsbergen. Physical environment and production in spring and summer. J Plankton Res 11:1245–1260CrossRefGoogle Scholar
  30. Fasham MJR, Ducklow HW, McKelvie SM (1990) A nitrogen-based model of plankton dynamics in the oceanic mixed layer. J Mar Res 48:591–639CrossRefGoogle Scholar
  31. Ferreira JG (1995) ECOWIN – an object-oriented ecological model for aquatic ecosystems. Ecol Model 79:21–34CrossRefGoogle Scholar
  32. Figueiras FG, Labarta U, Fernández-Reiriz MJ (2002) Coastal upwelling, primary production and mussel growth in the Rías Baixas of Galicia. Hydrobiologia 484:121–131CrossRefGoogle Scholar
  33. Franks PJS (2002) NPZ models of plankton dynamics: their construction, coupling to physics, and application. J Oceanogr 58:379–387CrossRefGoogle Scholar
  34. Fredriksen S, Karsten U, Bartsch I, Woelfel J, Koblowsky M, Schumann R, Moy SR, Steneck RS, Wiktor J, Hop H, Wiencke C (this volume-d) Chapter 9: Biodiversity of benthic macro- and microalgae from Svalbard with special focus on Kongsfjorden. In: Hop H, Wiencke C (eds) The ecosystem of Kongsfjorden, Svalbard, Advances in polar ecology 2. Springer, ChamGoogle Scholar
  35. Fulton EA (2010) Approaches to end-to-end ecosystem models. J Mar Syst 81:171–183CrossRefGoogle Scholar
  36. Glud R, Rysgaard S (2007) The annual organic carbon budget of Young Sound, NE Greenland. In: Rysgaard S, Glud RN (eds) Carbon cycling in Arctic marine ecosystems: case study young sound. Meddr Grønland, Bioscience, vol 58. Danish Polar Center, Copenhagen, pp 194–203Google Scholar
  37. Guildford SJ, Hecky RE (2000) Total nitrogen, total phosphorus, and nutrient limitation in lakes and oceans: is there a common relationship? Limnol Oceanogr 45:1213–1223CrossRefGoogle Scholar
  38. Haidvogel DB, Arango H, Budgell WP, Cornuelle BD, Curchitser E, Di Lorenzo E, Fennel K, Geyer WR, Hermann AJ, Lanerolle L, Levin J, McWilliams JC, Miller AJ, Moore AM, Powell TM, Shchepetkin AF, Sherwood CR, Signell RP, Warner JC, Wilkin J (2008) Ocean forecasting in terrain-following coordinates: formulation and skill assessment of the Regional Ocean Modeling System. J Comput Phys 227:3595–3624CrossRefGoogle Scholar
  39. Hannah C, Vezina A, John MS (2010) The case for marine ecosystem models of intermediate complexity. Prog Oceanogr 84:121–128CrossRefGoogle Scholar
  40. Hegseth EN, Tverberg V (2013) Effect of Atlantic water inflow on timing of the phytoplankton spring bloom in a high Arctic fjord (Kongsfjorden, Svalbard). J Mar Syst 113–114:94–105CrossRefGoogle Scholar
  41. Hessen DO, Leu E, Færøvig PJ, Falk-Petersen S (2008) Light and spectral properties as determinants of C:N:P ratios in phytoplankton. Deep-Sea Res II 55:2169–2175CrossRefGoogle Scholar
  42. Hobson KA, Welch HE (1992) Determination of trophic relationships within a high-arctic marine food web using δ13C and δ15N analysis. Mar Ecol Prog Ser 84:9–18CrossRefGoogle Scholar
  43. Hobson KA, Ambrose WG Jr, Renaud PE (1995) Sources of primary production, benthic-pelagic coupling, and trophic relationships within the Northeast Water Polynya: insights from δ13C and δ15N analysis. Mar Ecol Prog Ser 128:1–10CrossRefGoogle Scholar
  44. Hobson KA, Fisk A, Karnovsky N, Holst M, Gagnon J-M, Fortier M (2002) A stable isotope (δ13C, δ15N) model for the North Water food web: implications for evaluating trophodynamics and the flow of energy and contaminants. Deep-Sea Res II 49:5131–5150CrossRefGoogle Scholar
  45. Hodal H, Falk-Petersen S, Hop H, Kristiansen S, Reigstad M (2011) Spring bloom dynamics in Kongsfjorden, Svalbard: nutrients, phytoplankton, protozoans and primary production. Polar Biol 35:1989–2005Google Scholar
  46. Hop H, Pearson T, Hegseth EN, Kovacs KM, Wiencke C, Kwasniewski S, Eiane K, Mehlum F, Gulliksen B, Wlodarska-Kowalczuk M, Lydersen C, Weslawski JM, Cochrane S, Gabrielsen GW, Leakey RJG, Lønne OJ, Zajaczkowski M, Falk-Petersen S, Kendall M, Wängberg S-Å, Bischof K, Voronkov AY, Kovaltchouk NA, Wiktor J, Poltermann M, di Prisco G, Papucci C, Gerland S (2002) The marine ecosystem of Kongsfjorden, Svalbard. Polar Res 21:167–208Google Scholar
  47. Hop H, Falk-Petersen S, Svendsen H, Kwasniewski S, Pavlov V, Pavlova O, Søreide JE (2006) Physical and biological characteristics of the pelagic system across Fram Strait to Kongsfjorden. Prog Oceanogr 71:182–231CrossRefGoogle Scholar
  48. Hop H, Wiencke C, Vögele B, Kovaltchouk NA (2012) Species composition, zonation, and biomass of marine benthic macroalgae in Kongsfjorden, Svalbard. Bot Mar 55:399–414CrossRefGoogle Scholar
  49. Hop H, Kovaltchouk NA, Wiencke C (2016) Distribution of macroalgae in Kongsfjorden, Svalbard. Polar Biol 39(11):2037–2051CrossRefGoogle Scholar
  50. Huang HS, Chen CS, Cowles GW, Winant CD, Beardsley RC, Hedstrom KS, Haidvogel DB (2008) FVCOM validation experiments: comparisons with ROMS for three idealized barotropic test problems. J Geophys Res Oceans 113.  https://doi.org/10.1029/2007jc004557
  51. Hunke EC, Lipscomb WH, Turner AK, Jeffery N, Elliot S (2013) CICE: the Los Alamos Sea Ice Model. Documentation and user’s manual version 5.0. Los Alamos National Laboratory, Washington, DCGoogle Scholar
  52. Ingvaldsen R, Reitan MB, Svendsen H, Asplin L (2001) The upper layer circulation in the Kongsfjorden and Krossfjorden—a complex fjord system on the west coast of Spitsbergen. Mem Natl Inst Polar Res, Spec Issue 54:393–407Google Scholar
  53. Jeffery N, Hunke EC, Elliott S (2011) Modelling the transport of passive tracers in sea ice. J Geophys Res 116:C07020CrossRefGoogle Scholar
  54. Jin M, Deal C, Wang J (2008) A coupled ice-ocean ecosystem model for I-D and 3-D applications in the Bering and Chukchi Seas. Chin J Polym Sci 19:218–229Google Scholar
  55. Jin M, Deal C, Lee SH, Elliot S, Hunke E, Maltrud M, Jeffery N (2012) Investigation of Arctic sea ice and oceanic primary production for the period 1992–2007 using a 3-D global ice-ocean ecosystem model. Deep-Sea Res II 81–84:28–35CrossRefGoogle Scholar
  56. Kendall MA, Widdicombe S, Weslawski JM (2003) A multiscale study of the biodiversity of the benthic infauna of the high latitude Kongsfjord, Svalbard. Polar Biol 26:383–388Google Scholar
  57. Kooijman SALM (2000) Dynamic and energy budgets in biological systems. University Press, CambridgeCrossRefGoogle Scholar
  58. Kramer F, Obleiter F, Krismer T, Kohler J, Greuell W (2013) A decade of energy and mass balance investigations on the glacier Kongsvegen, Svalbard. J Geophys Res Atmos 118:3986–4000CrossRefGoogle Scholar
  59. Krause-Jensen D, Kühl M, Christensen PB, Borum J (2007) Benthic primary production in young sound, northeastern Greenland. In: Rysgaard S, Glud RN (eds) Carbon cycling in Arctic marine ecosystems: case study young sound. Meddr Grønland, Bioscience, vol 58. Danish Polar Center, Copenhagen, pp 159–174Google Scholar
  60. Krause-Jensen D, Marbà N, Olesen B, Sejr MK, Christensen PB, Rodrigues J, Renaud PE, Blasby TJS, Rysgaard S (2012) Seasonal sea ice cover as principal driver of spatial and temporal variation in depth extension and annual production of kelp in Greenland. Glob Change Biol 18:2981–2994CrossRefGoogle Scholar
  61. Kruss A, Tęgowski J, Tatarek A, Wiktor J, Blondel P (2012) Spatial distribution of macroalgae along the shores of Kongsfjorden (West Spitsbergen) using acoustic imaging. Pol Polar Res 38:205–229CrossRefGoogle Scholar
  62. Lavery TJ, Roudnew B (2014) Whales sustain fisheries: Blue whales stimulate primary production in the Southern Ocean. Mar Mamm Sci 30:888–904CrossRefGoogle Scholar
  63. Lavoie D, Denman K, Michel C (2005) Modelling ice algal growth and decline in a seasonally ice-covered region of the Arctic (Resolute passage, Canadian Archipelago). J Geophys Res 110:C11009CrossRefGoogle Scholar
  64. Luyten PJ, Jones JE, Proctor R, Tabor A, Tette P, Wild-Allen K (eds) (1999) COHERENS – A Coupled Hydrodynamic–Ecological Model for Regional and Shelf Seas. Users Documentation. Mumm Report, Management Unit of the Mathematical Models of the North SeaGoogle Scholar
  65. Lydersen C, Assmy P, Falk-Petersen S, Kohler J, Kovacs KM, Reigstad M, Steen H, Strøm H, Sundfjord A, Varpe Ø, Walczowski W, Weslawski JM, Zajaczkowski M (2014) The importance of tidewater glaciers for marine mammals and seabirds in Svalbard, Norway. J Mar Syst 129:452–471CrossRefGoogle Scholar
  66. Marshall J, Adcroft A, Hill C, Perelman L, Heisey C (1997) A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J Geophys Res 102:5753–5766CrossRefGoogle Scholar
  67. Maturilli M, Hanssen-Bauer I, Neuber R, Rex M, Edvardsen K (this volume-c) Chapter 2: The atmosphere above Ny-Ålesund – climate and global warming, ozone and surface UV radiation. In: Hop H, Wiencke C (eds) The ecosystem of Kongsfjorden, Svalbard, Advances in polar ecology 2. Springer, ChamGoogle Scholar
  68. McMeans BC, Arts MT, Lydersen C, Kovacs KM, Hop H, Falk-Petersen S, Fisk AT (2013) The role of Greenland sharks (Somniosus microcephalus) in an Arctic ecosystem: assessed via stable isotopes and fatty acids. Mar Biol 160:1223–1238CrossRefGoogle Scholar
  69. Mock T, Gradinger R (1999) Determination of ice algal production with a new in situ incubation technique. Mar Ecol Prog Ser 177:15–26CrossRefGoogle Scholar
  70. Molnár PK, Derocher AE, Thiemann GW, Lewis MA (2010a) Predicting survival, reproduction and abundance of polar bears under climate change. Biol Conserv 143:1612–1622CrossRefGoogle Scholar
  71. Molnár PK, Derocher AE, Klanjscek T, Lewis MA (2010b) Predicting climate change impacts on polar bear litter size. Nat Commun 2:186.  https://doi.org/10.1038/ncomms1183 CrossRefGoogle Scholar
  72. Moore JK, Doney SC, Kleypas JA, Glover DM, Fung IY (2002) An intermediate complexity marine ecosystem model for the global domain. Deep-Sea Res II 49:403–462CrossRefGoogle Scholar
  73. Neitsch SL, Arnold JP, Kiniry JR, Srinivasan R, Williams JR (2002) Soil and water assessment tool. User’s manual. Grassland, Soil and water research laboratory, Agricultural Research Service, USAGoogle Scholar
  74. Nilsen F, Cottier F, Skogseth R, Mattsson S (2008) Fjord–shelf exchanges controlled by ice and brine production: the interannual variation of Atlantic Water in Isfjorden, Svalbard. Cont Shelf Res 28:1838–1853CrossRefGoogle Scholar
  75. Nuth C, Schuler TV, Kohler J, Altena B, Hagen JO (2012) Estimating the long-term calving flux of Kronebreen, Svalbard, from geodetic elevation changes and mass-balance modelling. J Glaciol 58:119–133CrossRefGoogle Scholar
  76. Pauly D, Christensen V (1995) Primary production required to sustain global fisheries. Nature 374:255–257CrossRefGoogle Scholar
  77. Pereira A, Duarte P, Norro A (2006) Different modelling tools of aquatic ecosystems: a proposal for a unified approach. Ecol Inform 1:407–421CrossRefGoogle Scholar
  78. Piquet AM-T, Scheepens JF, Bolhuis H, Wiencke C, Buma AGJ (2010) Variability of protistan and bacterial communities in two Arctic fjords (Spitsbergen). Polar Biol 33:1521–1536CrossRefGoogle Scholar
  79. Piwosz K, Walkusz W, Hapter R, Wieczorek P, Hop H, Wiktor J (2009) Comparison of productivity and phytoplankton in a warm (Kongsfjorden) and a cold (Hornsund) Spitsbergen fjord in mid-summer 2002. Polar Biol 32:549–559CrossRefGoogle Scholar
  80. Pogson L, Tremblay B, Lavoie D, Michel C, Vancoppenole M (2011) Development and validation of a one-dimensional snow-ice algae model against observations in Resolute Passage, Canadian Arctic Archipelago. J Geophys Res 116:C07020.  https://doi.org/10.1029/2010JC00652 CrossRefGoogle Scholar
  81. Popova EE, Yool A, Coward AC, Aksenov YK, Alderson SG, de Cuevas BA, Anderson TR (2010) Control of primary production in the Arctic by nutrients and light: insights from a high resolution ocean general circulation model. Biogeosciences 7:3569–3591CrossRefGoogle Scholar
  82. Price JF, Weller RA, Pinkel R (1986) Diurnal cycling: observations and models of the upper ocean response to diurnal heating, cooling, and wind mixing. J Geophys Res 91:8411–8427CrossRefGoogle Scholar
  83. Rasmussen LA, Kohler J (2007) Mass balance of three Svalbard glaciers reconstructed back to 1948. Polar Res 26:168–174CrossRefGoogle Scholar
  84. Reijmer CH, Hock R (2008) A distributed energy balance model including a multi-layer sub-surface snow model. J Glaciol 54:61–72CrossRefGoogle Scholar
  85. Renaud PE, Tessmann M, Evenset A, Christensen GN (2011) Benthic food-web structure of an Arctic fjord (Kongsfjorden, Svalbard). Mar Biol Res 7:13–26CrossRefGoogle Scholar
  86. Rokkan Iversen K, Seuthe L (2011) Seasonal microbial processes in a high-latitude fjord (Kongsfjorden, Svalbard): I. Heterotrophic bacteria, picoplankton and nanoflagellates. Polar Biol 34:731–749CrossRefGoogle Scholar
  87. Rose KA, Allen JI, Artioli Y, Barange M, Blackford J, Carlotti F, Cropp R, Daewel U, Edwards K, Flynn K, Hill SL, HilleRisLambers R, Huse G, Mackinson S, Megrey B, Moll A, Rivkin R, Salihoglu B, Schrum C, Shannon L, Shin Y-J, Smith SL, Smith C, Solidoro C, John MS, Zhou M (2010) End-to-end models for the analysis of marine ecosystems: challenges, issues, and next steps. Mar Coast Fish: Dyn Manag Ecosyst Sci 2:115–130CrossRefGoogle Scholar
  88. Ross AH, Gurney WSC, Heath MR, Hay SJ, Henderson EW (1993) A strategic simulation model of a fjord ecosystem. Limnol Oceanogr 38:128–153CrossRefGoogle Scholar
  89. Ross AH, Gurney WSC, Heath MR (1994) A comparative study of the ecosystem dynamics of four fjords. Limnol Oceanogr 39:318–343CrossRefGoogle Scholar
  90. Rysgaard S, Nielsen TG (2006) Carbon cycling in a high-arctic marine ecosystem – young sound, NE Greenland. Prog Oceanogr 71:426–445CrossRefGoogle Scholar
  91. Saenz BT, Arrigo KR (2012) Simulation of a sea ice ecosystem using a hybrid model for slush layer desalination. J Geophys Res 116:C07020.  https://doi.org/10.1029/2011JC007544 CrossRefGoogle Scholar
  92. Salvanes AGV (2001) Review of ecosystem models of fjords; new insights of relevance to fisheries management. Sarsia 86:441–463CrossRefGoogle Scholar
  93. Sanders R, Brown L, Henson S, Lucas M (2005) New production in the Irminger Basin during 2002. J Mar Syst 55:291–310CrossRefGoogle Scholar
  94. Scholten H, Van der Tol MWM (1998) Quantitative validation of deterministic models: when is a model acceptable? The proceedings of the summer computer simulation conference. SCS, San Diego, pp 404–409Google Scholar
  95. Serpa D, Ferreira PP, Caetano M, Cancela da Fonseca L, Dinis MT, Duarte P (2013) A coupled biogeochemical-dynamic energy budget model as a tool for managing fish production ponds. Sci Total Environ 463–464:861–874PubMedCrossRefGoogle Scholar
  96. Seuthe L, Rokkan Iversen K, Narcy F (2011) Microbial processes in a high latitude fjord (Kongsfjorden, Svalbard): II Ciliates and dinoflagellates. Polar Biol 34:751–766CrossRefGoogle Scholar
  97. Sevilgen DS, de Beer D, Al-Handal AY, Brey T, Polerecky L (2014) Oxygen budgets in subtidal arctic (Kongsfjorden, Svalbard) and temperate (Helgoland, North Sea) microphytobenthic communities. Mar Ecol Prog Ser 504:27–42CrossRefGoogle Scholar
  98. Skamarock W, Klemp J, Dudhia J, Gill D, Barker D, Duda M, Huang XY, Wang W (2008) A description of the advanced research WRF Version 3. NCAR Technical Note NCAR/TN-475+STRGoogle Scholar
  99. Slagstad D (1987) A 4-dimensional physical model of the Barents Sea. Trondheim: SINTEF Report STF 48:F87013Google Scholar
  100. Slagstad D, Ellingsen IH, Wassmann P (2011) Evaluating primary and secondary production in an Arctic Ocean void of summer sea ice: an experimental simulation approach. Prog Oceanogr 90:117–131CrossRefGoogle Scholar
  101. Smetacek V, Klaas C, Strass VH, Assmy P, Montresor M, Cisewski B, Savoye N, Webb A, d’Ovidio F, Arrieta JM, Bathmann U, Bellerby R, Berg GM, Croot P, Gonzalez S, Henjes J, Herndl GJ, Hoffmann LJ, Leach H, Losch M, Mills MM, Neill C, Peeken I, Röttgers R, Sachs O, Sauter E, Schmidt MM, Schwarz J, Terbrüggen A, Wolf-Gladrow D (2012) Deep carbon export from a Southern Ocean iron-fertilized diatom bloom. Nature 487:313–319PubMedCrossRefPubMedCentralGoogle Scholar
  102. Stempniewicz L, Blachowiak-Samolyk K, Weslawski JM (2007) Impact of climate change on zooplankton communities, seabird populations and arctic terrestrial ecosystem–a scenario. Deep-Sea Res II 54:2934–2945CrossRefGoogle Scholar
  103. Sundfjord A, Albretsen J, Kasajima Y, Skogseth R, Kohler J, Nuth C, Skarðhamar J, Cottier F, Nilsen F, Asplin L, Gerland S, Torsvik T (2017) Effects of glacier runoff and wind on surface layer dynamics and Atlantic water exchange in Kongsfjorden, Svalbard; a model study. Estuar Coast Shelf Sci 187:260–272CrossRefGoogle Scholar
  104. Svendsen H, Beszczynska-Möller A, Hagen JO, Lefauconnier B, Tverberg V, Gerland S, Ørbæk JB, Bischof K, Papucci C, Zajaczkowski M, Azzolini R, Bruland O, Wiencke C, Winther J-G, Dallmann W (2002) The physical environment of Kongsfjorden-Krossfjorden, an Arctic fjord system in Svalbard. Polar Res 21:133–166Google Scholar
  105. Tamelander T, Reigstad M, Olli K, Slagstad D, Wassmann P (2013) New production regulates export stoichiometry in the ocean. PLoS One 8:e54027.  https://doi.org/10.1371/journal.pone.0054027 CrossRefPubMedPubMedCentralGoogle Scholar
  106. Tedesco L, Vichi M (2014) Sea ice biogeochemistry: a guide for Modellers. PLoS One 9:e89217.  https://doi.org/10.1371/journal.pone.0089217 CrossRefPubMedPubMedCentralGoogle Scholar
  107. Tedesco L, Vichi M, Haapala J, Stipa T (2010) A dynamic biologically active layer for numerical studies of the sea ice ecosystem. Ocean Model 35:89–104CrossRefGoogle Scholar
  108. Tedesco L, Vichi M, Thomas DN (2012) Process studies on the ecological coupling between sea ice algae and phytoplankton. Ecol Model 226:120–138CrossRefGoogle Scholar
  109. Thingstad TF, Bellerby RGJ, Bratbak G, Børsheim KY, Egge JK, Heldal M, Larsen A, Neill C, Nejstgaard J, Norland S, Sandaa R-A, Skjoldal EF, Tanaka T, Thyrhaug R, Töpper B (2008) Counterintuitive carbon-to-nutrient coupling in an Arctic pelagic ecosystem. Nature 455:387–391PubMedCrossRefPubMedCentralGoogle Scholar
  110. Tverberg V, Nøst OA (2009) Eddy overturning across a shelf edge front: Kongsfjorden, west Spitsbergen. J Geophys Res 114:C04024.  https://doi.org/10.1029/2008JC005106 CrossRefGoogle Scholar
  111. Vancoppenolle M, Goose H, Montety A, Fichefet T, Tremblay B, Tison J-L (2010) Modeling brine and nutrient dynamics in Antarctic sea ice: the case of dissolved silica. J Geophys Res 116:C07020.  https://doi.org/10.1029/2010JC006119 CrossRefGoogle Scholar
  112. Vichi M, Pinardi N, Masina S (2007) A generalized model of pelagic biogeochemistry for the global ocean ecosystem. Part I: theory. J Mar Syst 64:89–109CrossRefGoogle Scholar
  113. Welch HE, Bergmann MA, Siferd TD, Martin KA, Curtis MF, Crawford RE, Conover RJ, Hop H (1992) Energy flow through the marine ecosystem of the Lancaster sound region, Arctic Canada. Arctic 45:343–357CrossRefGoogle Scholar
  114. Weslawski JM, Legezynska J (1998) Glacier caused zooplankton mortality? J Plankton Res 20:1233–1240CrossRefGoogle Scholar
  115. Weslawski JM, Pedersen G, Petersen SF, Porazinski K (2000a) Entrapment of macroplankton in an Arctic fjord basin, Kongsfjorden, Svalbard. Oceanologia 42:57–69Google Scholar
  116. Weslawski JM, Hacquebord L, Stempniewicz L, Malinga M (2000b) Greenland whales and walruses in the Svalbard food web before and after exploitation. Oceanologia 42:37–56Google Scholar
  117. Weslawski JM, Kwasniewski S, Stempniewicz L, Blachowiak-Samolyk K (2006) Biodiversity and energy transfer to top trophic levels in two contrasting Arctic fjords. Pol Polar Res 27:259–278Google Scholar
  118. Willis K, Cottier FR, Kwasniewski S, Wold A, Falk-Petersen S (2006) The influence of advection on zooplankton community composition in an Arctic fjord (Kongsfjorden, Svalbard). J Mar Syst 61:39–54CrossRefGoogle Scholar
  119. Woelfel J, Schumann R, Peine F, Flohr A, Kruss A, Tegowski J, Blondel P, Wiencke C, Karsten U (2010) Microphytobenthos of Arctic Kongsfjorden (Svalbard, Norway): biomass and potential primary production along the shore line. Polar Biol 33:1239–1253CrossRefGoogle Scholar
  120. Wold A, Jæger I, Hop H, Gabrielsen GW, Falk-Petersen S (2011) Arctic seabird food chains explored by fatty acid composition and stable isotopes in Kongsfjorden, Svalbard. Polar Biol 34:1147–1155CrossRefGoogle Scholar
  121. Yool A, Popova EE, Anderson TR (2010) MEDUSA: a new intermediate complexity plankton ecosystem model for the global domain. Geosci Model Dev Discuss 3:1939–2019CrossRefGoogle Scholar
  122. Zajaczkowski M, Legezynska J (2001) Estimation of zooplankton mortality caused by an Arctic glacier outflow. Oceanologia 43:341–351Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Pedro Duarte
    • 1
    Email author
  • Jan Marcin Weslawski
    • 2
  • Haakon Hop
    • 1
    • 3
  1. 1.Norwegian Polar Institute, Fram CentreTromsøNorway
  2. 2.Department of Marine EcologyInstitute of Oceanology PASSopotPoland
  3. 3.Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and EconomicsUiT The Arctic University of NorwayTromsøNorway

Personalised recommendations