Kelps and Environmental Changes in Kongsfjorden: Stress Perception and Responses

  • Kai BischofEmail author
  • Christian Buschbaum
  • Stein Fredriksen
  • Francisco J. L. Gordillo
  • Sandra Heinrich
  • Carlos Jiménez
  • Cornelius Lütz
  • Markus Molis
  • Michael Y. Roleda
  • Max Schwanitz
  • Christian Wiencke
Part of the Advances in Polar Ecology book series (AVPE, volume 2)


On rocky substrata along shallow water cold-temperate and Arctic coastlines, large brown seaweeds (“kelps”) form structure- and organism-rich habitats of vast ecological significance. The distribution of these ecosystem engineers is largely controlled by the prevailing temperature, light regime and substrate availability, but can also be influenced by biotic interactions within the kelp communities. In Kongsfjorden, right in the transition of an Arctic to an Atlantic fjord system, the aforementioned factors are likely to be altered as a consequence of regional and global environmental change. The drivers of change entail increasing surface irradiances of harmful ultraviolet B radiation due to stratospheric ozone depletion, and variations related to increased atmospheric carbon dioxide concentrations, such as increase in atmospheric and sea surface temperatures with their marked influence on sea ice formation and ocean acidification. Other factors potentially driving the Kongsfjorden system into change might be alterations of current and wind patterns resulting in the increased inflow of Atlantic waters into the bay (Atlantification), and increased precipitation, and terrestrial and glacial runoff, yielding an altered salinity regime and sediment discharge into the fjord with the potential impact of reducing light availability to marine photosynthesizers. Hence, this article is aiming to provide an overview on ecologically relevant abiotic and biotic factors influencing kelp distribution, and with the potential to eventually act as environmental stressors. We assess responses on different organisational levels of kelp by following the effects cascading from the initial sensing of the environment, signal transduction to gene expression, physiological reactions, changes in cellular ultrastructure and subsequent consequences for growth, reproduction and population biology for the different species of kelps present in Kongsfjorden.

Results synthesized from more than 20 years of seaweed research in Kongsfjorden point to the overall large adaptability of most of the kelp species being present in the system. Such species are to be expected to cope with the levels of increased ultraviolet radiation and temperature predicted in climate scenarios. However, susceptibility largely differs among the various life history stages of kelps, with the microscopic reproductive stages responding sensitively. Manipulation experiments conducted at ecologically relevant amplitudes, however, do not point to an inhibition of kelp viability and reproduction under proceeding change. Still, there is the important exception of an Arctic endemic kelp species, Laminaria solidungula, which will largely suffer from temperature increase. Thus, changes in kelp community composition, but also system productivity are to be expected. Subsequent to the synthesis of seaweed responses, this review concludes by identifying the major research gaps and priority topics for future kelp studies in Kongsfjorden.


Kelps Seaweed Physiology Ecology 



This review is largely based on the research conducted in the frame of the long-term project KOL 06 - Biology of Arctic benthic algae, performed at AWIPEV station, Ny-Ålesund. Authors are most grateful for the continuous support by the entire AWIPEV base team. Most of the studies presented would not have been possible without the AWI diving team.


  1. Adey WH, Hayek LA (2011) Elucidating marine biogeography with macrophytes: quantitative analysis of the North Atlantic supports the thermogeographic model and demonstrates a distinct subarctic region in the Northwestern Atlantic. Northeast Nat 18:1–128CrossRefGoogle Scholar
  2. Agardh JG (1868) Bidrag till kännedomen om Spetsbergens alger. Tilläg till föregående afhandling. Kungliga Svenska Vetenskaps-Akademiens Handlingar. Nye Följd 7:28–49Google Scholar
  3. Aguilera J, Karsten U, Lippert H, Vögele B, Philipp E, Hanelt D, Wiencke C (1999) Effects of solar radiation on growth, photosynthesis and respiration of marine macroalgae from the Arctic. Mar Ecol Prog Ser 191:109–119CrossRefGoogle Scholar
  4. Amsler CD, Fairhead VA (2006) Defensive and sensory chemical ecology of brown algae. Adv Bot Res 43:1–91Google Scholar
  5. Axelsson L, Mercado JM, Figueroa FL (2000) Utilization of HCO3 at high pH by the brown macroalga Laminaria saccharina. Eur J Phycol 35:53–59CrossRefGoogle Scholar
  6. Barradas A, Alberto F, Engelen AH, Serrão EA (2011) Fast sporophyte replacement after removal suggests banks of latent microscopic stages of Laminaria ochroleuca (Phaeophyceae) in tide pools in northern Portugal. Cah Biol Mar 52:435–439Google Scholar
  7. Bartsch I, Wiencke C, Laepple T (2012) Global seaweed biogeography under a changing climate: the prospected effects of temperature. In: Wiencke C, Bischof K (eds) Advances in seaweed biology. Novel insights into ecophysiology, ecology and utilization, Ecological studies, vol 219. Springer, Berlin/Heidelberg, pp 383–406Google Scholar
  8. Bartsch I, Vogt J, Pehlke C, Hanelt D (2013) Prevailing sea surface temperatures inhibit summer reproduction of the kelp Laminaria digitata at Helgoland (North Sea). J Phycol 49:1061–1073PubMedCrossRefGoogle Scholar
  9. Bartsch I, Paar M, Fredriksen S, Schwanitz M, Daniel C, Hop H, Wiencke C (2016) Changes in kelp forest biomass and depth distribution in Kongsfjorden, Svalbard, between 1996–1998 and 2012–2014 reflect Arctic warming. Polar Biol 39:2021–2036CrossRefGoogle Scholar
  10. Bischof K, Rautenberger R (2012) Seaweed responses to environmental stress: reactive oxygen and antioxidative strategies. In: Wiencke C, Bischof K (eds) Advances in seaweed biology. Novel insights into ecophysiology, ecology and utilization, Ecological studies, vol 219. Springer, Berlin/Heidelberg, pp 109–132Google Scholar
  11. Bischof K, Steinhoff FS (2012) Impacts of ozone depletion and solar UVB radiation on seaweeds. In: Wiencke C, Bischof K (eds) Advances in seaweed biology. Novel insights into ecophysiology, ecology and utilization, Ecological studies, vol 219. Springer, Berlin/Heidelberg, pp 433–448Google Scholar
  12. Bischof K, Hanelt D, Tüg H, Karsten U, Brouwer PEM, Wiencke C (1998a) Acclimation of brown algal photosynthesis to ultraviolet radiation in Arctic coastal waters (Spitsbergen, Norway). Polar Biol 20:388–395CrossRefGoogle Scholar
  13. Bischof K, Hanelt D, Wiencke C (1998b) UV-radiation can affect depth-zonation of Antarctic macroalgae. Mar Biol 131:597–605CrossRefGoogle Scholar
  14. Bischof K, Hanelt D, Wiencke C (1999) Acclimation of maximal quantum yield of photosynthesis in the brown alga Alaria esculenta under high light and UV radiation. Plant Biol 1:435–444CrossRefGoogle Scholar
  15. Bischof K, Peralta G, Kräbs G, van de Poll WH, Wiencke C, Perez-Llorens JL, Breeman AM (2002a) Effects of solar UVB radiation on canopy formation of natural Ulva communities from Southern Spain. J Exp Bot 53:2411–2421PubMedCrossRefPubMedCentralGoogle Scholar
  16. Bischof K, Hanelt D, Aguilera J, Karsten U, Vögele B, Sawall T, Wiencke C (2002b) Seasonal variation in ecophysiological patterns in macroalgae from an Arctic fjord: I. Sensitivity of photosynthesis to ultraviolet radiation. Mar Biol 140:1097–1106CrossRefGoogle Scholar
  17. Bischof K, Gómez I, Molis M, Hanelt D, Karsten U, Lüder U, Roleda MY, Zacher K, Wiencke C (2006) Ultraviolet radiation shapes seaweed communities. Rev Environ Sci Biotechnol 5:141–166CrossRefGoogle Scholar
  18. Bischoff B, Wiencke C (1993) Temperature requirements for growth and survival of macroalgae from Disko Island (Greenland). Helgol Meeresunters 47:167–191CrossRefGoogle Scholar
  19. Bolton JJ, Lüning K (1982) Optimal-growth and maximal survival temperatures of atlantic Laminaria species (Phaeophyta) in culture. Mar Biol 66:89–94CrossRefGoogle Scholar
  20. Bouck GB (1965) Fine structure and organelle associations in brown algae. J Cell Biol 26:523–537PubMedPubMedCentralCrossRefGoogle Scholar
  21. Brinkhuis BH, Chung IK (1986) The effects of copper on the fine structure of the kelp Laminaria saccharina (L.) Lamour. Mar Environ Res 19:205–223CrossRefGoogle Scholar
  22. Brodie J, Williamson CJ, Smale DA, Kamenos NA, Mieszkowska N, Santos R, Cunliffe M, Steinke M, Yesson C, Anderson KM, Asnaghi V, Brownlee C, Burdett HL, Burrows MT, Collins S, Donohue PJC, Harvey B, Foggo A, Noisette F, Nunes J, Ragazzola F, Raven JA, Schmidt DN, Suggett D, Teichberg M, Hall-Spencer JM (2014) The future of the northeast Atlantic benthic flora in a high CO2 world. Ecol Evol 4:2787–2798PubMedPubMedCentralCrossRefGoogle Scholar
  23. Brown MB, Edwards MS, Kim KY (2014) Effects of climate change on the physiology of giant kelp, Macrocystis pyrifera, and grazing by purple urchin, Strongylocentrotus purpuratus. Algae 29:203–215CrossRefGoogle Scholar
  24. Busa W (1986) Mechanisms and consequences of pH-mediated cell regulation. Annu Rev Physiol 48:389–402PubMedCrossRefPubMedCentralGoogle Scholar
  25. Carlsen BP, Johnsen G, Berge J, Kuklinski P (2007) Biodiversity patterns of macro-epifauna on different lamina parts of Laminaria digitata and Saccharina latissima collected during spring and summer 2004 in Kongsfjorden, Svalbard. Polar Biol 30:939–943CrossRefGoogle Scholar
  26. Chapman ARO, Craigie JS (1977) Seasonal growth in Laminaria longicruris: relation with dissolved inorganic nutrients and internal reserves of nitrogen. Mar Biol 40:197–205CrossRefGoogle Scholar
  27. Chapman ARO, Lindley JE (1980) Seasonal growth of Laminaria solidungula in the Canadian High Arctic in relation to irradiance and dissolved nutrients concentrations. Mar Biol 57:1–5CrossRefGoogle Scholar
  28. Christie H, Frederiksen S, Rinde E (1998) Regrowth of kelp and colonization of epiphyte and fauna community after kelp trawling at the coast of Norway. Hydrobiologia 375/376:49–58CrossRefGoogle Scholar
  29. Christie H, Norderhaug KM, Fredriksen S (2009) Macrophytes as habitat for fauna. Mar Ecol Prog Ser 396:221–233CrossRefGoogle Scholar
  30. Cock J, Sterck L, Rouze P, Scornet D, Allen A, Amoutzias G, Anthouard V, Artiguenave F, Aury JM, Badger J, Beszteri B, Billiau K, Bonnet E, Bothwell J, Bowler C, Boyen C, Brownlee C, Carrano C, Charrier B, Cho G, Coelho S, Collen J, Corre E, Da Silva C, Delage L, Delaroque N, Dittami S, Doulbeau S, Elias M, Farnham G, Gachon C, Gschloessl B, Heesch S, Jabbari K, Jubin C, Kawai H, Kimura K, Kloareg B, Kupper F, Lang D, Le Bail A, Leblanc C, Lerouge P, Lohr M, Lopez P, Martens C, Maumus F, Michel G, Miranda-Saavedra D, Morales J, Moreau H, Motomura T, Nagasato C, Napoli C, Nelson D, Nyvall-Collen P, Peters A, Pommier C, Potin P, Poulain J, Quesneville H, Read B, Rensing S, Ritter A, Rousvoal S, Samanta M, Samson G, Schroeder D, Segurens B, Strittmatter M, Tonon T, Tregear J, Valentin K, Von Dassow P, Yamagishi T, Van De Peer Y, Wincker P (2010) The Ectocarpus genome and the independent evolution of multicellularity in brown algae. Nature 465:617–621PubMedCrossRefPubMedCentralGoogle Scholar
  31. Connell SD, Kroeker KJ, Fabricius KE, Kline DI, Russell BD (2013) The other ocean acidification problem: CO2 as a resource among competitors for ecosystem dominance. Philos Trans Roy Soc B-Biol Sci 368:20120442CrossRefGoogle Scholar
  32. Cottier FR, Nilsen F, Inall ME, Gerland S, Tverberg V, Svendsen H (2007) Wintertime warming of an Arctic shelf in response to large-scale atmospheric circulation. Geophys Res Lett 34:L10607CrossRefGoogle Scholar
  33. Davison IR, Davison JO (1987) The effect of growth temperature on enzyme activities in the brown alga Laminaria saccharina. Br Phycol J 22:77–87CrossRefGoogle Scholar
  34. Davison IR, Pearson GA (1996) Stress tolerance in intertidal seaweeds. J Phycol 32:197–211CrossRefGoogle Scholar
  35. Davison I, Greene M, Podolak E (1991) Temperature acclimation of respiration and photosynthesis in the brown alga Laminaria saccharina. Mar Biol 110:449–454CrossRefGoogle Scholar
  36. Dayton PK (1985) Ecology of kelp communities. Annu Rev Ecol Syst 16:215–245CrossRefGoogle Scholar
  37. Deng Y, Yao J, Wang X, Guo H, Duan D (2012) Transcriptome sequencing and comparative analysis of Saccharina japonica (Laminariales, Phaeophyceae) under blue light induction. PLoS One 7:e39704PubMedPubMedCentralCrossRefGoogle Scholar
  38. Dring MJ (1982) The biology of marine plants. Cambridge University Press, CambridgeGoogle Scholar
  39. Duarte P, Weslawski JM, Hop H (this volume-b) Chapter 12: Outline of an Arctic fjord ecosystem model for Kongsfjorden-Krossfjorden, Svalbard. In: Hop H, Wiencke C (eds) The ecosystem of Kongsfjorden, Svalbard, Advances in polar ecology 2. Springer, ChamGoogle Scholar
  40. Dunton KH (1985) Growth of dark-exposed Laminaria saccharina (L.) Lamour. and Laminaria solidungula J. Ag. (Laminariales, Phaeophyta) in the Alaskan Beaufort Sea. J Exp Mar Biol Ecol 94:181–189CrossRefGoogle Scholar
  41. Eckhardt S, Hermansen O, Grythe H, Fiebig M, Stebel K, Cassiani M, Baecklund A, Stohl A (2013) The influence of cruise ship emissions on air pollution in Svalbard – a harbinger of a more polluted Arctic? Atmos Chem Phys 13:8401–8409CrossRefGoogle Scholar
  42. Ehrenshaft M, Bilski P, Li MY, Chignell CF, Daub ME (1999) A highly conserved sequence is a novel gene involved in de novo vitamin B6 biosynthesis. Proc Nat Acad Sci 96:9374–9378PubMedCrossRefPubMedCentralGoogle Scholar
  43. Engardt M, Holmén K (1996) Towards deducing regional sources and sinks from atmospheric CO2 measurements at Spitsbergen. Phys Chem Earth 21:523–528CrossRefGoogle Scholar
  44. Engardt M, Holmén K, Heintzenberg J (1996) Short-term variations in atmospheric CO2 at Ny-Ålesund, Spitsbergen, during spring and summer. Tellus 48B:33–43CrossRefGoogle Scholar
  45. Falkenberg LJ, Connell SD, Russell BD (2014) Herbivory mediates the expansion of an algal habitat under nutrient and CO2 enrichment. Mar Ecol Prog Ser 497:87–92CrossRefGoogle Scholar
  46. Feehan C, Scheibling RE, Lauzon-Guay JS (2012) Aggregative feeding behaviour in sea urchins leads to destructive grazing in a Nova Scotia kelp bed. Mar Ecol Prog Ser 444:69–83CrossRefGoogle Scholar
  47. Fernández PA, Hurd CL, Roleda MY (2014) Bicarbonate uptake via an anion exchange protein is the main mechanism of inorganic carbon acquisition by the giant kelp Macrocystis pyrifera (Laminariales, Phaeophyceae) under variable pH. J Phycol 50:998–1008PubMedCrossRefPubMedCentralGoogle Scholar
  48. Fernández PA, Roleda MY, Hurd CL (2015) Effects of ocean acidification on the photosynthetic performance, carbonic anhydrase activity and growth of the giant kelp Macrocystis pyrifera. Photosynth Res 124:293–304PubMedCrossRefPubMedCentralGoogle Scholar
  49. Flores-Moya A, Fernandez JA (1998) The role of external carbonic anhydrase in the photosynthetic use of inorganic carbon in the deep–water alga Phyllariopsis purpurascens (Laminariales, Phaeophyta). Planta 207:115–119CrossRefGoogle Scholar
  50. Foslie MH (1884) Ueber die Laminarien Norwegens. Christiania videnskapelige selskaps forhandlinger no 14, 112 ppGoogle Scholar
  51. Franklin LA, Forster RM (1997) The changing irradiance environment: consequences for marine macrophyte physiology, productivity and ecology. Eur J Phycol 32:207–232Google Scholar
  52. Fredersdorf J, Müller R, Becker S, Wiencke C, Bischof K (2009) Interactive effects of radiation, temperature and salinity on different life history stages of the Arctic kelp Alaria esculenta (Phaeophyceae). Oecologia 160:483–492PubMedPubMedCentralCrossRefGoogle Scholar
  53. Fredriksen S, Kile MR (2012) The algal vegetation in the outer part of Isfjorden, Spitsbergen: revisiting Per Svendsen’s sites 50 years later. Polar Res 31. CrossRefGoogle Scholar
  54. Fredriksen S, Bartsch I, Wiencke C (2014) New additions to the benthic marine flora of Kongsfjorden, western Svalbard, and comparison between 1996/1998 and 2012/2013. Bot Mar 57:203–216CrossRefGoogle Scholar
  55. Fredriksen S, Karsten U, Bartsch I, Woelfel J, Koblowsky M, Schumann R, Moy SR, Steneck RS, Wiktor J, Hop H, Wiencke C (this volume) Chapter 9: Biodiversity of benthic macro- and microalgae from Svalbard with special focus on Kongsfjorden. In: Hop H, Wiencke C (eds) The ecosystem of Kongsfjorden, Svalbard, Advances in polar ecology 2. Springer, ChamGoogle Scholar
  56. Friedrich MW (2012) Bacterial communities on macroalgae. In: Wiencke C, Bischof K (eds) Advances in seaweed biology. Novel insights into ecophysiology, ecology and utilization, Ecological studies, vol 219. Springer, Berlin/Heidelberg, pp 189–201Google Scholar
  57. Gagnon P, Himmelman JH, Johnson LE (2003) Algal colonization in urchin barrens: defense by association during recruitment of the brown alga Agarum cribrosum. J Exp Mar Biol Ecol 290:179–196CrossRefGoogle Scholar
  58. Gaitan-Espitia JD, Hancock JR, Padilla-Gamino JL, Rivest EB, Blanchette CA, Reed DC, Hofmann GE (2014) Interactive effects of elevated temperature and pCO2 on early life-history stages of the giant kelp Macrocystis pyrifera. J Exp Mar Biol Ecol 457:51–58CrossRefGoogle Scholar
  59. Gao K, Xu J (2010) Ecological and physiological responses of macroalgae to solar and UV radiation. In: Israel A, Einav R, Seckbach J (eds) Seaweeds and their role in globally changing environments. Springer, Dordrecht, pp 183–198CrossRefGoogle Scholar
  60. García-Gómez C, Parages ML, Jiménez C, Palma A, Mata MT, Segovia M (2012) Cell survival after UV radiation stress in the unicellular chlorophyte Dunaliella tertiolecta is mediated by DNA repair and MAPK phosphorylation. J Exp Bot 63:5259–5274PubMedPubMedCentralCrossRefGoogle Scholar
  61. Gerard VA (1997) Environmental stress during early development of kelp sporophytes (Laminaria saccharina): how long do effects persist? J Appl Phycol 9:5–9CrossRefGoogle Scholar
  62. Gévaert F, Créach A, Davoult D, Migné A, Levavasseur G, Arzel P, Holl AC, Lemoine Y (2003) Laminaria saccharina photosynthesis measured in situ: photoinhibition and xanthophyll cycle during a tidal cycle. Mar Ecol Prog Ser 247:43–50CrossRefGoogle Scholar
  63. Gordillo FJL, Dring MJ, Savidge G (2001a) Nitrate and phosphate uptake characteristics of three brown algae cultured at low salinity. Mar Ecol Prog Ser 234:111–118CrossRefGoogle Scholar
  64. Gordillo FJL, Niell FX, Figueroa FL (2001b) Non-photosynthetic enhancement of growth by high CO2 level in the nitrophilic seaweed Ulva rigida C. Agardh (Chlorophyta). Planta 213:64–70PubMedCrossRefPubMedCentralGoogle Scholar
  65. Gordillo FJL, Aguilera J, Jiménez C (2006) The response of nutrient assimilation and biochemical composition of Arctic seaweeds to a nutrient input in summer. J Exp Bot 57:2661–2671CrossRefGoogle Scholar
  66. Gordillo FJL, Aguilera J, Wiencke C, Jiménez C (2015) Ocean acidification modulates the response of two Arctic kelps to ultraviolet radiation. J Plant Physiol 173:41–50PubMedCrossRefPubMedCentralGoogle Scholar
  67. Graham MH (1997) Factors determining the upper limit of giant kelp, Macrocystis pyrifera Agardh, along the Monterey Peninsula, central California, USA. J Exp Mar Biol Ecol 218:127–149CrossRefGoogle Scholar
  68. Graham MH, Kinlan BP, Druhel LD, Garske LE, Banks S (2007) Deep-water refugia as potential hotspots of tropical marine diversity and productivity. Proc Nat Acad Sci 104:16576–16580PubMedCrossRefPubMedCentralGoogle Scholar
  69. Gruber A, Roleda M, Bartsch I, Hanelt D, Wiencke C (2011) Sporogenesis under ultraviolet radiation in Laminaria digitata (Phaeophyceae) reveals protection of photosensitive meiospores within soral tissue: physiological and anatomical evidence. J Phycol 47:603–614PubMedCrossRefPubMedCentralGoogle Scholar
  70. Halm H, Lüder UH, Wiencke C (2011) Induction of phlorotannins through mechanical wounding and radiation conditions in the brown macroalga Laminaria hyperborea. Eur J Phycol 46:16–26CrossRefGoogle Scholar
  71. Hanelt D (1998) Capability of dynamic photoinhibition in Arctic macroalgae is related to their depth distribution. Mar Biol 131:361–369CrossRefGoogle Scholar
  72. Hanelt D, Roleda MY (2009) Acclimation to UVB radiation may induce a reduction in photoinhibitory stress on some Caribbean marine macrophytes. Aquat Bot 91:6–12CrossRefGoogle Scholar
  73. Hanelt D, Wiencke C, Karsten U, Nultsch W (1997) Photoinhibition and recovery after high light stress in different developmental and life-history stages of Laminaria saccharina (Phaeophyta). J Phycol 33:387–395CrossRefGoogle Scholar
  74. Hanelt D, Tüg H, Bischof K, Gross C, Lippert H, Sawall T, Wiencke C (2001) Light regime in an Arctic fjord: a study related to stratospheric ozone depletion as a basis for determination of UV effects on algal growth. Mar Biol 138:649–658CrossRefGoogle Scholar
  75. Hansen JR, Jenneborg LH (1996) Benthic marine algae and cyanobacteria. In: Elvebakk A, Presterud P (eds) A catalogue of Svalbard plants, fungi, algae and cyanobacteria, vol 198. Norsk Polarinstitutts Skrifter, Oslo, pp 361–374Google Scholar
  76. Harley CDG, Anderson KM, Demes KW, Jorve JP, Kordas RL, Coyle TA, Graham MH (2012) Effects of climate change on global seaweed communities. J Phycol 48:1064–1078PubMedCrossRefPubMedCentralGoogle Scholar
  77. Harris NRP, Kyr E, Staehelin J, Brunner D, Andersen SB, Godin-Beekmann S, Dhomse S, Hadjinicolaou P, Hansen G, Isaksen I, Jrrar A, Karpetchko A, Kivi R, Knudsen B, Krizan P, Lastovicka J, Maeder J, Orsolini Y, Pyle JA, Rex M, Vanicek K, Weber M, Wohltmann I, Zanis P, Zerefos C (2008) Ozone trends at northern mid- and high latitudes – a European perspective. Ann Geophys 26:1207–1220CrossRefGoogle Scholar
  78. Hegseth EN, Tverberg V (2013) Effect of Atlantic water inflow on timing of the phytoplankton spring bloom in a high Arctic fjord (Kongsfjorden, Svalbard). J Mar Syst 113–114:94–105CrossRefGoogle Scholar
  79. Heinrich S, Frickenhaus S, Glöckner G, Valentin K (2012a) A comprehensive cDNA library of light- and temperature-stressed Saccharina latissima (Phaeophyceae). Eur J Phycol 47:83–94CrossRefGoogle Scholar
  80. Heinrich S, Valentin KU, Frickenhaus S, John U, Wiencke C (2012b) Transcriptomic analysis of acclimation to temperature and light stress in Saccharina latissima (Phaeophyceae). PLoS One 7:e44342PubMedPubMedCentralCrossRefGoogle Scholar
  81. Heinrich S, Valentin K, Frickenhaus S, Wiencke C (2015) Temperature and light interactively modulate gene expression in Saccharina latissima (Phaeophyceae). J Phycol 51:93–108PubMedCrossRefPubMedCentralGoogle Scholar
  82. Heinrich S, Valentin K, Frickenhaus S, Wiencke C (2016) Origin matters — comparative transcriptomics in Saccharina latissima (Phaeophyceae). J Exp Mar Biol Ecol 476:22–30CrossRefGoogle Scholar
  83. Henley WJ, Dunton KH (1997) Effects of nitrogen supply and continuous darkness on growth and photosynthesis of the Arctic kelp Laminaria solidungula. Limnol Oceanogr 42:209–216CrossRefGoogle Scholar
  84. Hernandez I, Corzo A, Gordillo FJ, Robles MD, Saez E, Fernandez JA, Niell FX (1993) Seasonal cycle of the gametophytic form of Porphyra umbilicalis: nitrogen and carbon. Mar Ecol Prog Ser 99:301–311CrossRefGoogle Scholar
  85. Hodal H, Falk-Petersen S, Hop H, Kristiansen S, Reigstad M (2011) Spring bloom dynamics in Kongsfjorden, Svalbard: nutrients, phytoplankton, protozoans and primary production. Polar Biol 35:191–203CrossRefGoogle Scholar
  86. Hofmann G, Place S (2007) Genomics-enabled research in marine ecology: challenges, risks and pay-offs. Mar Ecol Prog Ser 332:249–255CrossRefGoogle Scholar
  87. Holzinger A, Lütz C (2006) Algae and UV irradiation: effects on ultrastructure and related metabolic functions. Micron 37:190–207PubMedCrossRefPubMedCentralGoogle Scholar
  88. Holzinger A, Di Piazza L, Lütz C, Roleda MY (2011) Sporogenic and vegetative tissues of Saccharina latissima (Laminariales, Phaeophyceae) exhibit distinctive sensitivity to experimentally enhanced ultraviolet radiation: photosynthetically active radiation ratio. Phycol Res 59:221–235CrossRefGoogle Scholar
  89. Hop H, Pearson T, Hegseth EN, Kovacs KM, Wiencke C, Kwasniewski S, Eiane K, Mehlum F, Gulliksen B, Wlodarska-Kowalczuk M, Lydersen C, Weslawski JM, Cochrane S, Gabrielsen GW, Leakey RJG, Lønne OJ, Zajaczkowski M, Falk-Petersen S, Kendall M, Wängberg S-Å, Bischof K, Voronkov AY, Kovaltchouk NA, Wiktor J, Poltermann M, di Prisco G, Papucci C, Gerland S (2002) The marine ecosystem of Kongsfjorden, Svalbard. Polar Res 21:167–208CrossRefGoogle Scholar
  90. Hop H, Wiencke C, Vögele B, Kovaltchouk N (2012) Species composition, zonation, and biomass of marine benthic macroalgae in Kongsfjorden, Svalbard. Bot Mar 55:399–414CrossRefGoogle Scholar
  91. Hop H, Kovaltchouk NA, Wiencke C (2016) Distribution of macroalgae in Kongsfjorden. Polar Biol 39:2037–2051CrossRefGoogle Scholar
  92. Hulme M, Jenkins GJ, Lu X, Turnpenny JR, Mitchell TD, Jones RG, Lowe J, Murphy JM, Hassell D, Boorman P, McDonald R, Hill S (2002) Climate change scenarios for the United Kingdom: the UKCIP02 scientific report. Tyndall Centre for Climate Change Research, School of Environmental Sciences, University of East Anglia, Norwich, 120 ppGoogle Scholar
  93. Hurd CL, Harrison PJ, Bischof K, Lobban CS (2014) Seaweed ecology and Physiology, 2nd edn. Cambridge University Press, Cambridge, p 551CrossRefGoogle Scholar
  94. Husa V, Steen H, Sjøtun K (2014) Historical changes in macroalgal communities in Hardangerfjord (Norway). Mar Biol Res 10:226–240CrossRefGoogle Scholar
  95. Iken K (2012) Grazers on benthic seaweeds. In: Wiencke C, Bischof K (eds) Advances in seaweed biology. Novel insights into ecophysiology, ecology and utilization, Ecological studies, vol 219. Springer, Berlin/Heidelberg, pp 157–175Google Scholar
  96. Iñiguez C, Carmona R, Lorenzo MR, Niell FX, Wiencke C, Gordillo FJL (2016) Increased pCO2 modifies the carbon balance and the photosynthetic yield of two common Arctic brown seaweeds: Desmarestia aculeata and Alaria esculenta. Polar Biol 39:1979–1991CrossRefGoogle Scholar
  97. IPCC (2013) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change 1535 ppGoogle Scholar
  98. Jamers A, Blust R, De Coen W (2009) Omics in algae: paving the way for a systems biological understanding of algal stress phenomena? Aquat Toxicol 92:114–121PubMedCrossRefPubMedCentralGoogle Scholar
  99. Jiménez C, Berl T, Rivard CJ, Edelstein CL, Capasso JM (2004) Phosphorylation of MAP kinase-like proteins mediate the response of the halotolerant alga Dunaliella viridis to hypertonic shock. Biochim Biophys Acta 1644:61–69PubMedCrossRefPubMedCentralGoogle Scholar
  100. Jiménez C, Cossío BR, Rivard CJ, Berl T, Edelstein CL, Capasso JM (2007) Cell division in the unicellular microalga Dunaliella viridis depends on phosphorylation of extracellular signal-regulated kinases (ERKs). J Exp Bot 58:1001–1011PubMedCrossRefPubMedCentralGoogle Scholar
  101. Jokiel PL, Jury CP, Rodgers KS (2014) Coral-algae metabolism and diurnal changes in the CO2-carbonate system of bulk seawater. Peer J 2:e378PubMedCrossRefPubMedCentralGoogle Scholar
  102. Jueterbock A, Tyberghein L, Verbruggen H, Coyer JA, Olsen JL, Hoarau G (2013) Climate change impact on seaweed meadow distribution in the North Atlantic rocky intertidal. Ecol Evol 12:1356–1373CrossRefGoogle Scholar
  103. Jury CP, Thomas FIM, Atkinson MJ, Toonen RJ (2013) Buffer capacity, ecosystem feedbacks, and seawater chemistry under global change. Water 5:1303–1325CrossRefGoogle Scholar
  104. Karleskint G, Turner R, Small J (2010) Introduction to marine biology. Brooks/Cole, BelmontGoogle Scholar
  105. Karsten U, Bischof K, Wiencke C (2001) Photosynthetic performance of Arctic macroalgae after transplantation from deep to shallow waters followed by exposure to natural solar radiation. Oecologia 127:11–20PubMedCrossRefPubMedCentralGoogle Scholar
  106. Klenell M, Snoeijs P, Pedersen M (2004) Active carbon uptake in Laminaria digitata and L. saccharina (Phaeophyta) is driven by a proton pump in the plasma membrane. Hydrobiologia 514:41–53CrossRefGoogle Scholar
  107. Konotchick T, Dupont CL, Valas RE, Badger JH, Allen AE (2013) Transcriptomic analysis of metabolic function in the giant kelp, Macrocystis pyrifera, across depth and season. New Phytol 198:398–407PubMedPubMedCentralCrossRefGoogle Scholar
  108. Korb RE, Gerard VA (2000a) Nitrogen assimilation characteristics of polar seaweeds from differing nutrient environment. Mar Ecol Prog Ser 198:83–92CrossRefGoogle Scholar
  109. Korb RE, Gerard VA (2000b) Effects of concurrent low temperature and low nitrogen supply on polar and temperate waters. Mar Ecol Prog Ser 198:73–82CrossRefGoogle Scholar
  110. Kortsch S, Primicerio R, Beuchel F, Renaud PE, Rodrigues J, Lønne OJ, Gulliksen B (2012) Climate-driven regime shifts in Arctic marine benthos. Proc Nat Acad Sci 109:14052–14057PubMedCrossRefPubMedCentralGoogle Scholar
  111. Krause-Jensen D, Duarte C (2014) Expansion of vegetated coastal ecosystems in the future Arctic. Front Mar Sci 1:77.
  112. Krause-Jensen D, Marbà N, Olesen B, Sejr MK, Christensen PB, Rodrigues J, Renaud PE, Balsby TJS, Rysgaard S (2012) Seasonal sea ice cover as principal driver of spatial and temporal variation in depth extension and annual production of kelp in Greenland. Glob Change Biol 10:2981–2994CrossRefGoogle Scholar
  113. Krauss G (2008) Biochemistry of signal transduction and regulation. Wiley-VCH Verlag GMBH and Co. KGaA, Weinheim, 626 ppGoogle Scholar
  114. Lampert WJ, Levin PS, Berman J (1992) Changes in the structure of a New England (USA) kelp bed: the effects of an introduced species? Mar Ecol Prog Ser 88:303–307CrossRefGoogle Scholar
  115. Lapointe BE (2004) Anthropogenic nutrient enrichment of seagrass and coral reef communities in the lower Florida Keys: discrimination of local versus regional nitrogen sources. J Exp Mar Biol Ecol 308:23–58CrossRefGoogle Scholar
  116. Lippert H, Iken K, Rachor E, Wiencke C (2001) Macrofauna associated with macroalgae in the Kongsfjord (Spitzbergen). Polar Biol 24:512–522CrossRefGoogle Scholar
  117. Longtin CM, Saunders GW (2015) On the utility of mucilage ducts as a taxonomic character in Laminaria and Saccharina (Phaeophyceae) – the conundrum of S. groenlandica. Phycologia 54:440–450CrossRefGoogle Scholar
  118. Longtin CM, Saunders GW (2016) The relative contribution of Saccharina nigripes (Phaeophyceae) to the Bay of Fundy Laminariaceae: spatial and temporal variability. Mar Ecol Prog Ser 543:153–162CrossRefGoogle Scholar
  119. Lüder UH, Clayton MN (2004) Induction of phlorotannins in the brown macroalga Ecklonia radiata (Laminariales, Phaeophyta) in response to simulated herbivory—the first microscopic study. Planta 218:928–937PubMedCrossRefPubMedCentralGoogle Scholar
  120. Lund L (2014) Morphological diversity in Laminaria digitata. MSc thesis in Marine Biology, NTNU, Trondheim, 65 ppGoogle Scholar
  121. Lüning K (1990) Seaweeds – their environment, biogeography and ecophysiology. John Wiley & Sons Inc, New York. 527 ppGoogle Scholar
  122. Lüning K (1991) Circannual growth rhythm in a brown alga, Pterygophora californica. Bot Act 104:157–162CrossRefGoogle Scholar
  123. Lütz C, Di Piazza L, Fredersdorf J, Bischof K (2016) The effect of ultraviolet radiation on cellular ultrastructure and photosystem II quantum yield of Alaria esculenta (L.) Greville from Spitsbergen (Norway). Polar Biol 39:1957–1966CrossRefGoogle Scholar
  124. Machalek K, Davison I, Falkowski P (1996) Thermal acclimation and photoacclimation of photosynthesis in the brown alga Laminaria saccharina. Plant Cell Environ 19:1005–1016CrossRefGoogle Scholar
  125. Mackerness SH, Jordan BR, Thomas B (1999) Reactive oxygen species in the regulation of photosynthetic genes by ultraviolet-B radiation (UVB: 280–320 nm) in green and etiolated buds of pea (Pisum sativum L.). J Photochem Photobiol B Biol 48:180–188CrossRefGoogle Scholar
  126. Manney GL, Santee ML, Rex M, Livesey NJ, Pitts MC, Veefkind P, Nash ER, Wohltmann I, Lehmann R, Froidevaux L, Poole LR, Schoeberl MR, Haffner DP, Davies J, Dorokhov V, Gernandt H, Johnson B, Kivi R, Kyrö E, Larsen N, Levelt PF, Makshtas A, McElroy CT, Nakajima H, Parrondo MC, Tarasick DW, von der Gathen P, Walker KA, Zinoviev NS (2011) Unprecedented Arctic ozone loss in 2011. Nature 478:469–475CrossRefGoogle Scholar
  127. McDevit DC, Saunders GW (2010) A DNA barcode examination of the Laminariaceae (Phaeophyceae) in Canada reveals novel biogeographical and evolutionary insights. Phycologia 49:235–248CrossRefGoogle Scholar
  128. McKenzie R, Smale D, Kotkamp M (2004) Relationship between UVB and erythemally weighted radiation. Photochem Photobiol Sci 3:252–256PubMedCrossRefPubMedCentralGoogle Scholar
  129. McNeil BI, Matear RJ (2008) Southern Ocean acidification: a tipping point at 450-ppm atmospheric CO2. Proc Nat Acad Sci 105:18860–18864PubMedCrossRefPubMedCentralGoogle Scholar
  130. Mercado JM, Andria JR, Perez-Llorens JL, Vergara JJ, Axelsson L (2006) Evidence for a plasmalemma–based CO2 concentrating mechanism in Laminaria saccharina. Photosynth Res 88:259–268PubMedCrossRefPubMedCentralGoogle Scholar
  131. Michler T, Aguilera J, Hanelt D, Bischof K, Wiencke C (2002) Long-term effects of ultraviolet radiation on growth and photosynthetic performance of polar and cold-temperate marcoalgae. Mar Biol 140:1117–1127CrossRefGoogle Scholar
  132. Moy SR (2015) Littoral and sublittoral macroalgal vegetation from 8 sites around Svalbard. MSc thesis in Marine Biology, University of Oslo, Oslo, 120 ppGoogle Scholar
  133. Moy FE, Christie H (2012) Large-scale shift from sugar kelp (Saccharina latissima) to ephemeral algae along the south and west coast of Norway. Mar Biol Res 8:309–321CrossRefGoogle Scholar
  134. Müller R, Wiencke C, Bischof K (2008) Interactive effects of UV radiation and temperature on microstages of Laminariales (Phaeophyceae) from the Arctic and North Sea. Clim Res 37:203–213CrossRefGoogle Scholar
  135. Müller R, Laepple T, Bartsch I, Wiencke C (2009a) Impact of oceanic warming on the distribution of seaweeds in polar and cold-temperate waters. Bot Mar 52:617–638CrossRefGoogle Scholar
  136. Müller R, Wiencke C, Bischof K, Krock B (2009b) Zoospores of three Arctic Laminariales under different UV radiation and temperature conditions: exceptional spectral absorbance properties and lack of phlorotannin induction. Photochem Photobiol 85:970–977PubMedCrossRefPubMedCentralGoogle Scholar
  137. Norderhaug KM, Christie H (2011) Secondary production in a Laminaria hyperborea kelp forest and variation according to wave exposure. Estuar Coast Shelf Sci 95:135–144CrossRefGoogle Scholar
  138. Nordli Ø, Przybylak R, Ogilvie AEJ, Isaksen K (2014) Long-term temperature trends and variability on Spitsbergen: the extended Svalbard Airport temperature series, 1898–2012. Polar Res 33:21349CrossRefGoogle Scholar
  139. Olischläger M, Wiencke C (2013) Seasonal fertility and combined effects of temperature and UV-radiation on Alaria esculenta and Laminaria digitata (Phaeophyceae) from Spitsbergen. Polar Biol 36:1019–1029CrossRefGoogle Scholar
  140. Olischläger M, Bartsch I, Gutow L, Wiencke C (2012) Effects of ocean acidification on different life-cycle stages of the kelp Laminaria hyperborea (Phaeophyceae). Bot Mar 55:511–525CrossRefGoogle Scholar
  141. Parages ML (2012) Role of mitogen activated protein kinases (MAPKs) cascades in environmental stress signal transduction in intertidal and Arctic macrophytes. PhD dissertation, University of MálagaGoogle Scholar
  142. Parages ML, Capasso JM, Meco V, Jiménez C (2012) A novel method for phosphoprotein extraction from macroalgae. Bot Mar 55:261–267CrossRefGoogle Scholar
  143. Parages ML, Heinrich S, Wiencke C, Jiménez C (2013) Rapid phosphorylation of MAP kinase-like proteins in two species of Arctic kelps in response to temperature and UV radiation stress. Environ Exp Bot 91:30–37CrossRefGoogle Scholar
  144. Parages ML, Capasso JM, Niell FX, Jiménez C (2014a) Environmental stress response by cyclic phosphorylation of MAP kinase-like proteins in intertidal macrophytes. J Plant Physiol 171:276–284PubMedCrossRefPubMedCentralGoogle Scholar
  145. Parages ML, Figueroa FL, Conde-Alvarez RM, Jiménez C (2014b) Phosphorylation of MAPK-like proteins in three intertidal macroalgae under stress conditions. Aquat Biol 22:213–226CrossRefGoogle Scholar
  146. Pavlov AK, Tverberg V, Ivanov BV, Nilsen F, Falk-Petersen S, Granskog MA (2013) Warming of Atlantic Water in two west Spitsbergen fjords over the last century (1912–2009). Polar Res 32:11206CrossRefGoogle Scholar
  147. Pavlov A, Leu E, Bartsch I, Karsten U, Berge J, Cottier F, Schulz K, Johnsen G, Hanelt D, Granskog MA, Hudson S, Darecki M, Sagan S, Kowalczuk P, Bischof K, Pedersen P, Gallet J-C, Gerland S (this volume-c) Chapter 5: Underwater light in Kongsfjorden and its ecological implications. In: Hop H, Wiencke C (eds) Ecosystem Kongsfjorden, Svalbard: arctic marine environment, ecosystem structure and function, physiological adaptations, effects of climate and anthropogenic changes, Long-term trends and models, Advances in polar ecology 2. Springer, ChamGoogle Scholar
  148. Pedersen PM (2011) Grønlands havalger. Epsilon, Copenhagen, 208 ppGoogle Scholar
  149. Pedersen MF, Nejrup LB, Frederiksen S, Christie H, Norderhaug KM (2012) Effects of wave exposure on population structure, demography, biomass and productivity of the kelp Laminaria hyperborea. Mar Ecol Prog Ser 451:45–60CrossRefGoogle Scholar
  150. Petrowski S, Molis M, Bender A, Buschbaum C (2016) Disturbance effects of kelp thalli on structure and diversity of a coastal Arctic marine soft-bottom assemblage. Polar Biol 39:2131–2140CrossRefGoogle Scholar
  151. Piquet AMT, van de Poll WH, Visser RJW, Wiencke C, Bolhuis H, Buma AGJ (2014) Springtime phytoplankton dynamics in Arctic Krossfjorden and Kongsfjorden (Spitsbergen) as a function of glacier proximity. Biogeoscience 11:2263–2279CrossRefGoogle Scholar
  152. Piquet AMT, Maat DS, Confurius-Guns V, Sintes E, Herndl GJ, Wiencke C, Buma AGJ, Bolhuis H (2015) Springtime dynamics, productivity and activity of prokaryotes in two Arctic fjords. Polar Biol 39:1749–1763CrossRefGoogle Scholar
  153. Polo LK, de L, Felix MR, Kreusch M, Pereira DT, Costa GB, Simioni C, Ouriques LC, Chow F, Ramlov F, Maraschin M, Bouzon ZL, Schmidt EC (2014) Photoacclimation responses of the brown macroalga Sargassum cymosum to the combined influence of UV radiation and salinity: cytochemical and ultrastructural organization and photosynthetic performance. Photochem Photobiol 90:560–573PubMedCrossRefPubMedCentralGoogle Scholar
  154. Potin P (2012) Intimate associations between epiphytes, endophytes, and parasites of seaweeds. In: Wiencke C, Bischof K (eds) Advances in seaweed biology. Novel insights into ecophysiology, ecology and utilization, Ecological studies, vol 219. Springer, Berlin/Heidelberg, pp 203–234Google Scholar
  155. Rautenberger R, Fernández PA, Strittmatter M, Heesch S, Cornwall CE, Hurd CL, Roleda MY (2015) Saturating light and not increased carbon dioxide under ocean acidification drives photosynthesis and growth in Ulva rigida (Chlorophyta). Ecol Evol 5:874–888PubMedPubMedCentralCrossRefGoogle Scholar
  156. Raven JA, Caldeira K, Elderfield H et al. (2005) Ocean acidification due to increasing atmospheric carbon dioxide. The Royal Society. The Clyvedon Press Ltd, Cardiff, 68 ppGoogle Scholar
  157. Raybaud V, Beaugrand G, Goberville E, Delebecq G, Destombe C, Valero M, Davoult D, Morin P, Gevaert F (2013) Decline in kelp in west Europe and climate. Plos One 8:e66044PubMedPubMedCentralCrossRefGoogle Scholar
  158. Rayko E, Maumus F, Maheswari U, Jabbari K, Bowler C (2010) Transcription factor families inferred from genome sequences of photosynthetic stramenopiles. New Phytol 188:52–66PubMedCrossRefPubMedCentralGoogle Scholar
  159. Rokkan Iversen KR, Seuthe L (2011) Seasonal microbial processes in a high-latitude fjord (Kongsfjorden, Svalbard): I. Heterotrophic bacteria, picoplankton and nanoflagellates. Polar Biol 34:731–749CrossRefGoogle Scholar
  160. Roleda MY (2009) Photosynthetic response of Arctic kelp zoospores exposed to radiation and thermal stress. Photochem Photobiol Sci 8:1302–1312PubMedCrossRefPubMedCentralGoogle Scholar
  161. Roleda MY (2016) Stress physiology and reproductive phenology of Arctic endemic kelp Laminaria solidungula. J Agardh. Polar Biol 39:1967–1977Google Scholar
  162. Roleda MY, Hurd CL (2012) Seaweed responses to ocean acidification. In: Wiencke C, Bischof K (eds) Advances in seaweed biology. Novel insights into ecophysiology, ecology and utilization, Ecological studies, vol 219. Springer, Berlin/Heidelberg, pp 407–431Google Scholar
  163. Roleda MY, Hanelt D, Kräbs G, Wiencke C (2004) Morphology, growth, photosynthesis and pigments in Laminaria ochroleuca (Laminariales, Phaeophyta) under UV radiation. Phycologia 43:603–613CrossRefGoogle Scholar
  164. Roleda MY, Hanelt D, Wiencke C (2005a) Growth kinetics related to physiological parameters in young Saccorhiza dermatodea and Alaria esculenta sporophytes exposed to UV radiation. Polar Biol 28:539–549CrossRefGoogle Scholar
  165. Roleda MY, Wiencke C, Hanelt D, van de Poll WH, Gruber A (2005b) Sensitivity of Laminariales zoospores from Helgoland (North Sea) to ultraviolet and photosynthetically active radiation: implications for depth distribution and seasonal reproduction. Plant Cell Environ 28:466–479CrossRefGoogle Scholar
  166. Roleda MY, Wiencke C, Lüder UH (2006a) Impact of ultraviolet radiation on cell structure, UV-absorbing compounds, photosynthesis, DNA damage and germination in zoospores of Arctic Saccorhiza dermatodea. J Exp Bot 57:3847–3847PubMedCrossRefPubMedCentralGoogle Scholar
  167. Roleda MY, Wiencke C, Hanelt D (2006b) Thallus morphology and optical characteristics affect growth and DNA damage by UV radiation in juvenile Arctic Laminaria sporophytes. Planta 223:407–417PubMedCrossRefPubMedCentralGoogle Scholar
  168. Roleda MY, Hanelt D, Wiencke C (2006c) Growth and DNA damage in young Laminaria sporophytes exposed to ultraviolet radiation: implication for depth zonation of kelps on Helgoland (North Sea). Mar Biol 148:1201–1211CrossRefGoogle Scholar
  169. Roleda MY, Hanelt D, Wiencke C (2006d) Exposure to ultraviolet radiation delays photosynthetic recovery in Arctic kelp zoospores. Photosynth Res 88:311–322CrossRefGoogle Scholar
  170. Roleda MY, Wiencke C, Hanelt D, Bischof K (2007) Sensitivity of the early life stages of macroalgae to ultraviolet radiation. Photochem Photobiol 83:851–862PubMedCrossRefPubMedCentralGoogle Scholar
  171. Roleda MY, Dethleff D, Wiencke C (2008) Transient sediment load on blades of Arctic Saccharina latissima can mitigate UV radiation effect on photosynthesis. Polar Biol 31:765–769CrossRefGoogle Scholar
  172. Roleda MY, Lüder U, Wiencke C (2010) UV-susceptibility of zoospores of the brown macroalga Laminaria digitata from Spitsbergen. Polar Biol 33:577–588CrossRefGoogle Scholar
  173. Roleda MY, Morris JN, McGraw CM, Hurd CL (2012a) Ocean acidification and seaweed reproduction: increased CO2 ammeliorates the negative effect of lowered pH on meiospore germination in the giant kelp Macrocystis pyrifera (Laminariales, Phaeophyceae). Global Change Biol 18:854–864CrossRefGoogle Scholar
  174. Roleda MY, Boyd PW, Hurd CL (2012b) Before ocean acidification: calcifier chemistry lessons. J Phycol 48:840–843PubMedCrossRefPubMedCentralGoogle Scholar
  175. Roleda MY, Cornwall CE, Feng YY, McGraw CM, Smith AM, Hurd CL (2015) Effect of ocean acidification and pH fluctuations on the growth and development of coralline algal recruits, and an associated benthic algal assemblages. PLos One:e0140394. PubMedPubMedCentralCrossRefGoogle Scholar
  176. Ronowicz M, Wlodarska-Kowalczuk M, Kuklinski P (2008) Factors influencing hydroids (Cnidaria: Hydrozoa) biodiversity and distribution in Arctic kelp forest. J Mar Biol Ass UK 88:1567–1575CrossRefGoogle Scholar
  177. Ronowicz M, Legezynska J, Kuklinski P, Wlodarska-Kowalczuk M (2013) Kelp forest as a habitat for mobile epifauna: case study of Caprella septentrionalis Kröyer, 1838 (Amphipoda, Caprellidae) in an Arctic glacial fjord. Polar Res 32:1–6CrossRefGoogle Scholar
  178. Rosenvinge LK (1893) Grønlands havalger. Medd Grønland 3:763–981Google Scholar
  179. Royal Society (2005) Ocean acidification due to increasing atmospheric carbon dioxide, Policy document 12/05 Royal Society, London. The Clyvedon Press Ltd, CardiffGoogle Scholar
  180. Rózycki O, Gruszczynski M (1986) Macrofana associated with laminarians in the coastal waters of West Spitsbergen. Polish Polar Res 7:337–351Google Scholar
  181. Rueness J (1977) Norsk algeflora. Universitetsforlaget Oslo, Bergen, Tromsø. 266 ppGoogle Scholar
  182. Saier B, Chapman AS (2004) Crusts of the alien bryozoan Membranipora membranacea can negatively impact spore output from native kelps (Laminaria longicruris). Bot Mar 47:265–271CrossRefGoogle Scholar
  183. Schaffelke B, Lüning K (1994) A circannual rhythm controls seasonal growth in the kelps Laminaria hyperborea and L. digitata from Helgoland (North Sea). Eur J Phycol 29:49–56CrossRefGoogle Scholar
  184. Schiffgens-Gruber A, Lütz C (1992) Ultrastructure of mesophyll cell chloroplasts of spruce needles exposed to O3, SO2 and NO2 alone and in combination. Environ Exp Bot 32:243–254CrossRefGoogle Scholar
  185. Schmitz K, Kühn R (1982) Fine structure, distribution and frequency of plasmodesmata and pits in the cortex of Laminaria hyperborea and L. saccharina. Planta 154:385–392PubMedCrossRefPubMedCentralGoogle Scholar
  186. Schoenwaelder MEA (2002) The occurrence and cellular significance of physodes in brown algae. Phycologia 41:125–139CrossRefGoogle Scholar
  187. Schoenwaelder MEA, Clayton MN (1998) Secretion of phenolic substances into the zygote wall and cell plate in embryos of Hormosira and Acrocarpia (Fucales, Phaeophyceae). J Phycol 34:969–980CrossRefGoogle Scholar
  188. Schreiber U, Bilger W, Neubauer C (1994) Chlorophyll fluorescence as a non-intrusive indicator for rapid assessment of in vivo photosynthesis. Ecol Stud 100:49–70Google Scholar
  189. Sivertsen K (1997) Geographic and environmental factors affecting the distribution of kelp beds and barren grounds and changes in biota associated with kelp reduction at sites along the Norwegian coast. Can J Aquat Sci 54:2872–2887CrossRefGoogle Scholar
  190. Sjøtun K, Christie H, Fosså JH (2006) The combined effect of canopy shading and sea urchin grazing on recruitment in kelp forest (Laminaria hyperborea). Mar Biol Res 2:24–32CrossRefGoogle Scholar
  191. Steinhoff F, Wiencke C, Bischof K (2008) Effects of ultraviolet radiation and temperature on the ultrastructure of zoospores of the brown macroalga Laminaria hyperborea. Plant Biol 10:388–397PubMedCrossRefPubMedCentralGoogle Scholar
  192. Steinhoff FS, Graeve M, Wiencke C, Wulff A, Bischof K (2011a) Lipid content and fatty acid consumption in zoospores/developing gametophytes of Saccharina latissima (Laminariales, Phaeophyceae) as potential precursors for secondary metabolites as phlorotannins. Polar Biol 34:1011–1018CrossRefGoogle Scholar
  193. Steinhoff FS, Wiencke C, Wuttke S, Bischof K (2011b) Effects of water temperatures, UV radiation and low versus high PAR on phlorotannin content and germination in zoospores of Saccorhiza dermatodea (Tilopteridales, Phaeophyceae). Phycologia 50:256–263CrossRefGoogle Scholar
  194. Steneck RS, Graham MH, Bourque BJ, Corbett D, Erlandson JM, Estes JA, Tegner MJ (2002) Kelp forest ecosystems: biodiversity, stability, resilience and future. Environ Conserv 29:436–459CrossRefGoogle Scholar
  195. Sun J, Wang L, Wu SX, Wang XM, Xiao JF, Chi S, Liu C, Ren LF, Zhao YH, Liu T, Yu J (2014) Transcriptome-wide evolutionary analysis on essential brown algae (Phaeophyceae) in China. Acta Oceanol Sin 33:13–19CrossRefGoogle Scholar
  196. Surif MB, Raven JA (1989) Exogenous inorganic carbon sources for photosynthesis in seawater by members of the Fucales and the Laminariales (Phaeophyta): ecological and taxonomic implications. Oecologia 78:97–105PubMedCrossRefPubMedCentralGoogle Scholar
  197. Suzuki S, Furuya K, Kawai T, Takeuchi I (2008) Effect of seawater temperature on the productivity of Laminaria japonica in the Uwa Sea, southern Japan. J Appl Phycol 20:833–844CrossRefGoogle Scholar
  198. Svendsen H, Beszczynska-Møller A, Hagen JO, Lefauconnier B, Tverberg V, Gerland S, Ørbæk JB, Bischof K, Papucci C, Zajaczkowski M, Azzolini R, Bruland O, Wiencke C, Winther J-G, Dallmann W (2002) The physical environment of Kongsfjorden-Krossfjorden – an Arctic fjord system in Svalbard. Polar Res 21:133–166Google Scholar
  199. Swanson AK, Druehl LD (2000) Differential meiospore size and tolerance of ultraviolet light stress within and among kelp species along a depth gradient. Mar Biol 136:657–664CrossRefGoogle Scholar
  200. Tait LW (2014) Impacts of natural and manipulated variations in temperature, pH and light on photosynthetic parameters of coralline-kelp assemblages. J Exp Mar Biol Ecol 454:1–8CrossRefGoogle Scholar
  201. Taylor AR, Brownlee C, Wheeler GL (2012) Proton channels in algae: reasons to be excited. Trends Plant Sci 17:675–684PubMedCrossRefPubMedCentralGoogle Scholar
  202. tom Dieck I (1992) North Pacific and North Atlantic digitate Laminaria species (Phaeophyta): hybridization experiments and temperature responses. Phycologia 31:147–163CrossRefGoogle Scholar
  203. tom Dieck I (1993) Temperature tolerance and survival in darkness of kelp gametophytes (Laminariales, Phaeophyta)- ecological and biogeographic implications. Mar Ecol Prog Ser 100:253–264CrossRefGoogle Scholar
  204. Voerman SE, Llera E, Rico JM (2013) Climate driven changes in subtidal kelp forest communities in NW Spain. Mar Environ Res 90:119–127PubMedCrossRefPubMedCentralGoogle Scholar
  205. Wang WJ, Wang FJ, Sun XT, Liu FL, Liang ZR (2013) Comparison of transcriptome under red and blue light culture of Saccharina japonica (Phaeophyceae). Planta 237:1123–1133PubMedCrossRefPubMedCentralGoogle Scholar
  206. Weslawski JM, Wiktor J, Kotwicki L (2010) Increase in biodiversity in the Arctic rocky littoral, Sorkappland, Svalbard, after 20 years of climate warming. Mar Biodivers 40:123–130CrossRefGoogle Scholar
  207. Weslawski JM, Kendall MA, Wlodarska-Kowalczuk M, Iken K, Kedra M, Legezynska J, Sejr MK (2011) Climate change effects on Arctic fjord and coastal macrobenthic diversity – observations and predictions. Mar Biodivers 41:71–85CrossRefGoogle Scholar
  208. Wessels H, Hagen W, Molis M, Wiencke C, Karsten U (2006) Intra- and interspecific differences in palatability of Arctic macroalgae from Kongsfjorden (Spitzbergen) for two benthic sympatric invertebrates. J Exp Mar Biol Ecol 329:20–33CrossRefGoogle Scholar
  209. Widmann C, Gibson S, Jarpe MB Johnson GL (1999) Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol Rev 79:143–180PubMedCrossRefPubMedCentralGoogle Scholar
  210. Wiencke C, Amsler CD (2012) Seaweeds and their communities in polar regions. In: Wiencke C, Bischof K (eds) Advances in seaweed biology. Novel insights into ecophysiology, ecology and utilization, Ecological studies, vol 219. Springer, Berlin/Heidelberg, pp 265–291Google Scholar
  211. Wiencke C, Bischof K (eds) (2012) Seaweed biology. Novel insights into ecophysiology, ecology and utilization. Ecological studies Vol 219, Springer Publishers, 518 ppGoogle Scholar
  212. Wiencke C, Fischer G (1990) Growth and stable carbon isotope composition of cold-water macroalgae in relation to light and temperature. Mar Ecol Prog Ser 65:283–292CrossRefGoogle Scholar
  213. Wiencke C, Bartsch I, Bischoff B, Peters AF, Breeman AM (1994) Temperature requirements and biogeography of Antarctic, Arctic and amphiequatorial seaweeds. Bot Mar 37:247–259CrossRefGoogle Scholar
  214. Wiencke C, Gómez I, Pakker H, Flores-Moya A, Altamirano M, Hanelt D, Bischof K, Figueroa FL (2000) Impact of UV radiation on viability, photosynthetic characteristics and DNA of brown algal zoospores: implications for depth zonation. Mar Ecol Prog Ser 197:217–229CrossRefGoogle Scholar
  215. Wiencke C, Clayton MN, Schoenwaelder M (2004) Sensitivity and acclimation to UV radiation of zoospores from five species of Laminariales from the Arctic. Mar Biol 145:31–39CrossRefGoogle Scholar
  216. Wiencke C, Roleda M, Gruber A, Clayton M, Bischof K (2006) Susceptibility of zoospores to UV radiation determines upper depth distribution limit of Arctic kelps: evidence through field experiments. J Ecol 94:455–463CrossRefGoogle Scholar
  217. Wiencke C, Lüder UH, Roleda MY (2007) Impact of ultraviolet radiation on physiology and development of zoospores of the brown alga Alaria esculenta from Spitsbergen. Physiol Plant 130:601–612CrossRefGoogle Scholar
  218. Wiencke C, Gómez I, Dunton KH (2009) Phenology and seasonal physiological performance of polar seaweeds. Bot Mar:585–592Google Scholar
  219. Wlodarska-Kowalczuk M, Pearson TH, Kendall MA (2005) Benthic response to chronic natural physical disturbance by glacial sedimentation in an Arctic fjord. Mar Ecol Prog Ser 303:31–41CrossRefGoogle Scholar
  220. Włodarska-Kowalczuk M, Kukliński P, Ronowicz M, Legeżyńska J, Gromisz S (2009) Assessing species richness of macrofauna associated with macroalgae in Arctic kelp forests (Hornsund, Svalbard). Polar Biol 32:897–905CrossRefGoogle Scholar
  221. Wu S, Sun J, Chi S, Wang L, Wang X, Liu C, Li X, Yin J, Liu T, Yu J (2014) Transcriptome sequencing of essential marine brown and red algal species in China and its significance in algal biology and phylogeny. Acta Oceanol Sin 33:1–12CrossRefGoogle Scholar
  222. Wulff A, Iken K, Quartino ML, Al-Handal A, Wiencke C, Clayton MN (2009) Biodiversity, biogeography and zonation of marine benthic micro- and macroalgae in the Arctic and Antarctic. Bot Mar 52:491–508CrossRefGoogle Scholar
  223. Young IR, Zieger S, Babanin AV (2011) Global trends in wind speed and wave height. Science 332:451–455PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Kai Bischof
    • 1
    Email author
  • Christian Buschbaum
    • 2
  • Stein Fredriksen
    • 3
  • Francisco J. L. Gordillo
    • 4
  • Sandra Heinrich
    • 5
  • Carlos Jiménez
    • 4
  • Cornelius Lütz
    • 6
  • Markus Molis
    • 5
  • Michael Y. Roleda
    • 7
  • Max Schwanitz
    • 5
  • Christian Wiencke
    • 5
  1. 1.Marine Botany, Faculty Biology/ChemistryUniversity of BremenBremenGermany
  2. 2.Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Wadden Sea Station SyltList/SyltGermany
  3. 3.Section for Aquatic Biology and Toxicology, Department of BiosciencesUniversity of OsloOsloNorway
  4. 4.Department of Ecology and Geology, Faculty of SciencesUniversity of MálagaMálagaSpain
  5. 5.University of Hamburg, Institute for Plant Sciences and Microbiology, Molecular Plant GeneticsHamburgGermany
  6. 6.Institute of Botany, Faculty of BiologyUniversity of InnsbruckInnsbruckAustria
  7. 7.The Marine Science Institute, College of Science, University of the Philippines DilimanQuezon CityPhilippines

Personalised recommendations