GMP-Compliant Perinatal Tissue-Derived Stem Cells

  • Babak ArjmandEmail author
  • Parisa Goodarzi
  • Khadijeh Falahzadeh
  • Hamid Reza Aghayan
  • Fakher Rahim
  • Fereshteh Mohamadi-Jahani
  • Bagher Larijani
Part of the Stem Cell Biology and Regenerative Medicine book series (STEMCELL)


Regenerative medicine as a novel approach uses biological methods and products to regenerate, repair, replace, and enhance the lost function of an organ or tissue. Stem cells have a crucial role in regenerative medicine. Therefore, several sources of stem cells have been used for cell therapy, tissue engineering and regenerative medicine. Recently, perinatal stem cells as a promising cell source have been suggested for regenerative medicine. Their great advantages such as convenient accessibility, low immunogenicity, high proliferation capacity, and minimal ethical limitations have introduced them as a novel source for regenerative medicine. However, good manufacturing practice (GMP) is needed to provide these cells with defined quality, safety, and efficacy for clinical application. Like to other types of stem cells, perinatal stem cells manufacturing in accordance with GMP regulations and standards could provide a valuable source of stem cells for cell therapy and regenerative medicine.


Cell therapy Mesenchymal stromal cells Perinatal stem cells Umbilical cord Good manufacturing practice Regenerative medicine 



The authors would like to acknowledge Dr. Bahram Moazami, Maryam moghadari, and Maryam sadat Gousheh for their kind support in procurement of the donated tissues. We also like to thank Dr. Mohamad Vasei, Dr. Nasser Ahmadbeigi, Dr. Yousof Gheisari, Dr. Hossein Adibi, Shokouh Salimi, Hanieh Rostamabadi, and Azam Ranjbar.


  1. Abdi R, Fiorina P, Adra CN, Atkinson M, Sayegh MH (2008) Immunomodulation by mesenchymal stem cells: a potential therapeutic strategy for type 1 diabetes. Diabetes 57:1759–1767PubMedPubMedCentralCrossRefGoogle Scholar
  2. Aghayan H-R, Arjmand B, Norouzi-Javidan A, Saberi H, Soleimani M, Tavakoli SA-H, Khodadadi A, Tirgar N, Mohammadi-Jahani F (2012) Clinical grade cultivation of human Schwann cell, by the using of human autologous serum instead of fetal bovine serum and without growth factors. Cell Tissue Bank 13:281–285PubMedCrossRefGoogle Scholar
  3. Aghayan HR, Goodarzi P, Larijani B, Mohamadi-Jahani F, Norouzi-Javidan A, Dehpour AR, Fallahzadeh K, Sayahpour FA, Arjmand B (2015) Clinical grade human adipose tissue-derived mesenchymal stem cell banking. Acta Med Iran 53(9):540–546PubMedGoogle Scholar
  4. Anselme K, Broux O, Noel B, Bouxin B, Bascoulergue G, Dudermel AF, Bianchi F, Jeanfils J, Hardouin P (2002) In vitro control of human bone marrow stromal cells for bone tissue engineering. Tissue Eng 8:941–953PubMedCrossRefGoogle Scholar
  5. Arjmand B, Aghayan HR (2014) Cell manufacturing for clinical applications. Stem Cells 32:2557–2558PubMedCrossRefGoogle Scholar
  6. Arjmand B, Emami-Razavi SH, Larijani B, Norouzi-Javidan A, Aghayan HR (2012) The implementation of tissue banking experiences for setting up a cGMP cell manufacturing facility. Cell Tissue Bank 13:587–596PubMedCrossRefGoogle Scholar
  7. Avanzini MA, Bernardo ME, Cometa AM, Perotti C, Zaffaroni N, Novara F, Visai L, Moretta A, Del Fante C, Villa R, Ball LM, Fibbe WE, Maccario R, Locatelli F (2009) Generation of mesenchymal stromal cells in the presence of platelet lysate: a phenotypic and functional comparison of umbilical cord blood- and bone marrow-derived progenitors. Haematologica 94:1649–1660PubMedPubMedCentralCrossRefGoogle Scholar
  8. Baghbaderani BA, Tian X, Neo BH, Burkall A, Dimezzo T, Sierra G, Zeng X, Warren K, Kovarcik DP, Fellner T (2015) cGMP-manufactured human induced pluripotent stem cells are available for pre-clinical and clinical applications. Stem cell Rep 5:647–659CrossRefGoogle Scholar
  9. Barlow S, Brooke G, Chatterjee K, Price G, Pelekanos R, Rossetti T, Doody M, Venter D, Pain S, Gilshenan K, Atkinson K (2008) Comparison of human placenta- and bone marrow-derived multipotent mesenchymal stem cells. Stem Cells Dev 17:1095–1107PubMedCrossRefGoogle Scholar
  10. Bartmann C, Rohde E, Schallmoser K, Purstner P, Lanzer G, Linkesch W, Strunk D (2007) Two steps to functional mesenchymal stromal cells for clinical application. Transfusion 47:1426–1435PubMedCrossRefGoogle Scholar
  11. Beltrami AP, Barlucchi L, Torella D, Baker M, Limana F, Chimenti S, Kasahara H, Rota M, Musso E, Urbanek K, Leri A, Kajstura J, Nadal-Ginard B, Anversa P (2003) Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114:763–776PubMedCrossRefGoogle Scholar
  12. Bergstrom R, Strom S, Holm F, Feki A, Hovatta O (2011) Xeno-free culture of human pluripotent stem cells. Methods Mol Biol 767:125–136PubMedCrossRefGoogle Scholar
  13. Bernardi M, Albiero E, Alghisi A, Chieregato K, Lievore C, Madeo D, Rodeghiero F, Astori G (2013) Production of human platelet lysate by use of ultrasound for ex vivo expansion of human bone marrow-derived mesenchymal stromal cells. Cytotherapy 15:920–929PubMedCrossRefGoogle Scholar
  14. Bernardo ME, Avanzini MA, Perotti C, Cometa AM, Moretta A, Lenta E, Del Fante C, Novara F, de Silvestri A, Amendola G, Zuffardi O, Maccario R, Locatelli F (2007) Optimization of in vitro expansion of human multipotent mesenchymal stromal cells for cell-therapy approaches: further insights in the search for a fetal calf serum substitute. J Cell Physiol 211:121–130PubMedCrossRefGoogle Scholar
  15. Berz D, Mccormack EM, Winer ES, Colvin GA, Quesenberry PJ (2007) Cryopreservation of hematopoietic stem cells. Am J Hematol 82:463–472PubMedPubMedCentralCrossRefGoogle Scholar
  16. Bieback K (2008) Basic biology of mesenchymal stem cells. Transfus Med Hemother 35:151–152PubMedPubMedCentralCrossRefGoogle Scholar
  17. Bieback K (2013) Platelet lysate as replacement for fetal bovine serum in mesenchymal stromal cell cultures. Transfus Med Hemother 40:326–335PubMedPubMedCentralCrossRefGoogle Scholar
  18. Bieback K, Brinkmann I (2010) Mesenchymal stromal cells from human perinatal tissues: from biology to cell therapy. World J Stem Cells 2:81–92PubMedPubMedCentralCrossRefGoogle Scholar
  19. Bieback K, Kern S, Kluter H, Eichler H (2004) Critical parameters for the isolation of mesenchymal stem cells from umbilical cord blood. Stem Cells 22:625–634PubMedCrossRefGoogle Scholar
  20. Bieback K, Kern S, Kocaomer A, Ferlik K, Bugert P (2008a) Comparing mesenchymal stromal cells from different human tissues: bone marrow, adipose tissue and umbilical cord blood. Biomed Mater Eng 18:S71–S76PubMedGoogle Scholar
  21. Bieback K, Schallmoser K, Kluter H, Strunk D (2008b) Clinical protocols for the isolation and expansion of mesenchymal stromal cells. Transfus Med Hemother 35:286–294PubMedPubMedCentralGoogle Scholar
  22. Bieback K, Hecker A, Kocaomer A, Lannert H, Schallmoser K, Strunk D, Kluter H (2009) Human alternatives to fetal bovine serum for the expansion of mesenchymal stromal cells from bone marrow. Stem Cells 27:2331–2341PubMedCrossRefGoogle Scholar
  23. Bieback K, Ha VA, Hecker A, Grassl M, Kinzebach S, Solz H, Sticht C, Kluter H, Bugert P (2010) Altered gene expression in human adipose stem cells cultured with fetal bovine serum compared to human supplements. Tissue Eng Part A 16:3467–3484PubMedCrossRefGoogle Scholar
  24. Bieback K, Kinzebach S, Karagianni M (2011) Translating research into clinical scale manufacturing of mesenchymal stromal cells. Stem Cells Int 2010:193519PubMedPubMedCentralGoogle Scholar
  25. Bieback K, Hecker A, Schlechter T, Hofmann I, Brousos N, Redmer T, Besser D, Kluter H, Muller AM, Becker M (2012) Replicative aging and differentiation potential of human adipose tissue-derived mesenchymal stromal cells expanded in pooled human or fetal bovine serum. Cytotherapy 14:570–583PubMedCrossRefGoogle Scholar
  26. Brinchmann JE (2008) Expanding autologous multipotent mesenchymal bone marrow stromal cells. J Neurol Sci 265:127–130PubMedCrossRefGoogle Scholar
  27. Brooke G, Rossetti T, Pelekanos R, Ilic N, Murray P, Hancock S, Antonenas V, Huang G, Gottlieb D, Bradstock K, Atkinson K (2009) Manufacturing of human placenta-derived mesenchymal stem cells for clinical trials. Br J Haematol 144:571–579PubMedCrossRefGoogle Scholar
  28. Bruder SP, Jaiswal N, Haynesworth SE (1997) Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J Cell Biochem 64:278–294PubMedCrossRefGoogle Scholar
  29. Buchanan SS, Gross SA, Acker JP, Toner M, Carpenter JF, Pyatt DW (2004) Cryopreservation of stem cells using trehalose: evaluation of the method using a human hematopoietic cell line. Stem Cells Dev 13:295–305PubMedCrossRefGoogle Scholar
  30. Burger SR (2000) Design and operation of a current good manufacturing practices cell-engineering laboratory. Cytotherapy 2:111–122PubMedCrossRefGoogle Scholar
  31. Burger SR (2003) Current regulatory issues in cell and tissue therapy. Cytotherapy 5:289–298PubMedCrossRefGoogle Scholar
  32. Cao C, Dong Y, Dong Y (2005) [Study on culture and in vitro osteogenesis of blood-derived human mesenchymal stem cells]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 19:642–647PubMedGoogle Scholar
  33. Carmelo JG, Fernandes-Platzgummer A, Cabral JM, da Silva CL (2015a) Scalable ex vivo expansion of human mesenchymal stem/stromal cells in microcarrier-based stirred culture systems. Methods Mol Biol 1283:147–159PubMedCrossRefGoogle Scholar
  34. Carmelo JG, Fernandes-Platzgummer A, Diogo MM, da Silva CL, Cabral JM (2015b) A xeno-free microcarrier-based stirred culture system for the scalable expansion of human mesenchymal stem/stromal cells isolated from bone marrow and adipose tissue. Biotechnol J 10:1235–1247PubMedCrossRefGoogle Scholar
  35. Carvalho PP, Gimble JM, Dias IR, Gomes ME, Reis RL (2013) Xenofree enzymatic products for the isolation of human adipose-derived stromal/stem cells. Tissue Eng Part C Methods 19:473–478PubMedCrossRefGoogle Scholar
  36. Castiglia S, Mareschi K, Labanca L, Lucania G, Leone M, Sanavio F, Castello L, Rustichelli D, Signorino E, Gunetti M, Bergallo M, Bordiga AM, Ferrero I, Fagioli F (2014) Inactivated human platelet lysate with psoralen: a new perspective for mesenchymal stromal cell production in Good Manufacturing Practice conditions. Cytotherapy 16:750–763PubMedCrossRefGoogle Scholar
  37. Caterson EJ, Nesti LJ, Danielson KG, Tuan RS (2002) Human marrow-derived mesenchymal progenitor cells: isolation, culture expansion, and analysis of differentiation. Mol Biotechnol 20:245–256PubMedCrossRefGoogle Scholar
  38. Charron D, Suberbielle-Boissel C, Al-Daccak R (2009) Immunogenicity and allogenicity: a challenge of stem cell therapy. J Cardiovasc Transl Res 2:130–138PubMedCrossRefGoogle Scholar
  39. Chase LG, Lakshmipathy U, Solchaga LA, Rao MS, Vemuri MC (2010) A novel serum-free medium for the expansion of human mesenchymal stem cells. Stem Cell Res Ther 1:8PubMedPubMedCentralCrossRefGoogle Scholar
  40. Chen HI, Tsai CD, Wang HT, Hwang SM (2006a) Cryovial with partial membrane sealing can prevent liquid nitrogen penetration in submerged storage. Cryobiology 53:283–287PubMedCrossRefGoogle Scholar
  41. Chen X, Xu H, Wan C, Mccaigue M, Li G (2006b) Bioreactor expansion of human adult bone marrow-derived mesenchymal stem cells. Stem Cells 24:2052–2059PubMedCrossRefGoogle Scholar
  42. Chen AK, Reuveny S, Oh SK (2013) Application of human mesenchymal and pluripotent stem cell microcarrier cultures in cellular therapy: achievements and future direction. Biotechnol Adv 31:1032–1046PubMedCrossRefGoogle Scholar
  43. Cooper K, Viswanathan C (2011) Establishment of a mesenchymal stem cell bank. Stem Cells Int 2011:905621PubMedPubMedCentralCrossRefGoogle Scholar
  44. Crespo-Diaz R, Behfar A, Butler GW, Padley DJ, Sarr MG, Bartunek J, Dietz AB, Terzic A (2011) Platelet lysate consisting of a natural repair proteome supports human mesenchymal stem cell proliferation and chromosomal stability. Cell Transplant 20:797–811PubMedCrossRefGoogle Scholar
  45. Crisan M, Yap S, Casteilla L, Chen CW, Corselli M, Park TS, Andriolo G, Sun B, Zheng B, Zhang L, Norotte C, Teng PN, Traas J, Schugar R, Deasy BM, Badylak S, Buhring HJ, Giacobino JP, Lazzari L, Huard J, Peault B (2008) A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3:301–313PubMedCrossRefGoogle Scholar
  46. Crook JM, Peura TT, Kravets L, Bosman AG, Buzzard JJ, Horne R, Hentze H, Dunn NR, Zweigerdt R, Chua F, Upshall A, Colman A (2007) The generation of six clinical-grade human embryonic stem cell lines. Cell Stem Cell 1:490–494PubMedCrossRefGoogle Scholar
  47. Da Silva Meirelles L, Chagastelles PC, Nardi NB (2006) Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci 119:2204–2213PubMedCrossRefGoogle Scholar
  48. Dahl JA, Duggal S, Coulston N, Millar D, Melki J, Shahdadfar A, Brinchmann JE, Collas P (2008) Genetic and epigenetic instability of human bone marrow mesenchymal stem cells expanded in autologous serum or fetal bovine serum. Int J Dev Biol 52:1033–1042PubMedCrossRefGoogle Scholar
  49. Ding S, Schultz PG (2004) A role for chemistry in stem cell biology. Nat Biotechnol 22:833–840PubMedCrossRefGoogle Scholar
  50. dos Santos FF, Andrade PZ, da Silva CL, Cabral JM (2013) Bioreactor design for clinical-grade expansion of stem cells. Biotechnol J 8:644–654PubMedCrossRefGoogle Scholar
  51. dos Santos F, Campbell A, Fernandes-Platzgummer A, Andrade PZ, Gimble JM, Wen Y, Boucher S, Vemuri MC, da Silva CL, Cabral JM (2014) A xenogeneic-free bioreactor system for the clinical-scale expansion of human mesenchymal stem/stromal cells. Biotechnol Bioeng 111:1116–1127PubMedCrossRefGoogle Scholar
  52. Doucet C, Ernou I, Zhang Y, Llense JR, Begot L, Holy X, Lataillade JJ (2005) Platelet lysates promote mesenchymal stem cell expansion: a safety substitute for animal serum in cell-based therapy applications. J Cell Physiol 205:228–236PubMedCrossRefGoogle Scholar
  53. Drukker M, Katchman H, Katz G, Even-Tov Friedman S, Shezen E, Hornstein E, Mandelboim O, Reisner Y, Benvenisty N (2006) Human embryonic stem cells and their differentiated derivatives are less susceptible to immune rejection than adult cells. Stem Cells 24:221–229PubMedCrossRefGoogle Scholar
  54. Eibes G, dos Santos F, Andrade PZ, Boura JS, Abecasis MM, da Silva CL, Cabral JM (2010) Maximizing the ex vivo expansion of human mesenchymal stem cells using a microcarrier-based stirred culture system. J Biotechnol 146:194–197PubMedCrossRefGoogle Scholar
  55. Elseberg CL, Salzig D, Czermak P (2015) Bioreactor expansion of human mesenchymal stem cells according to GMP requirements. Methods Mol Biol 1283:199–218PubMedCrossRefGoogle Scholar
  56. Engela AU, Baan CC, Dor FJ, Weimar W, Hoogduijn MJ (2012) On the interactions between mesenchymal stem cells and regulatory T cells for immunomodulation in transplantation. Front Immunol 3:126PubMedPubMedCentralCrossRefGoogle Scholar
  57. Fekete N, Gadelorge M, Furst D, Maurer C, Dausend J, Fleury-Cappellesso S, Mailander V, Lotfi R, Ignatius A, Sensebe L, Bourin P, Schrezenmeier H, Rojewski MT (2012a) Platelet lysate from whole blood-derived pooled platelet concentrates and apheresis-derived platelet concentrates for the isolation and expansion of human bone marrow mesenchymal stromal cells: production process, content and identification of active components. Cytotherapy 14:540–554PubMedPubMedCentralCrossRefGoogle Scholar
  58. Fekete N, Rojewski MT, Furst D, Kreja L, Ignatius A, Dausend J, Schrezenmeier H (2012b) GMP-compliant isolation and large-scale expansion of bone marrow-derived MSC. PLoS One 7:e43255PubMedPubMedCentralCrossRefGoogle Scholar
  59. Fekete N, Rojewski MT, Lotfi R, Schrezenmeier H (2014) Essential components for ex vivo proliferation of mesenchymal stromal cells. Tissue Eng Part C Methods 20:129–139PubMedCrossRefGoogle Scholar
  60. Fernandes AM, Marinho PA, Sartore RC, Paulsen BS, Mariante RM, Castilho LR, Rehen SK (2009) Successful scale-up of human embryonic stem cell production in a stirred microcarrier culture system. Braz J Med Biol Res 42:515–522PubMedGoogle Scholar
  61. Ferrari G, Cusella-De Angelis G, Coletta M, Paolucci E, Stornaiuolo A, Cossu G, Mavilio F (1998) Muscle regeneration by bone marrow-derived myogenic progenitors. Science 279:1528–1530PubMedCrossRefGoogle Scholar
  62. Frechette JP, Martineau I, Gagnon G (2005) Platelet-rich plasmas: growth factor content and roles in wound healing. J Dent Res 84:434–439PubMedCrossRefGoogle Scholar
  63. Fuller BJ (2004) Cryoprotectants: the essential antifreezes to protect life in the frozen state. Cryo Letters 25:375–388PubMedGoogle Scholar
  64. Galvao J, Davis B, Tilley M, Normando E, Duchen MR, Cordeiro MF (2014) Unexpected low-dose toxicity of the universal solvent DMSO. FASEB J 28:1317–1330PubMedCrossRefGoogle Scholar
  65. Garcia-Olmo D, Garcia-Arranz M, Herreros D, Pascual I, Peiro C, Rodriguez-Montes JA (2005) A phase I clinical trial of the treatment of Crohn’s fistula by adipose mesenchymal stem cell transplantation. Dis Colon Rectum 48:1416–1423PubMedCrossRefGoogle Scholar
  66. Gastens MH, Goltry K, Prohaska W, Tschope D, Stratmann B, Lammers D, Kirana S, Gotting C, Kleesiek K (2007) Good manufacturing practice-compliant expansion of marrow-derived stem and progenitor cells for cell therapy. Cell Transplant 16:685–696PubMedCrossRefGoogle Scholar
  67. George B (2011) Regulations and guidelines governing stem cell based products: clinical considerations. Perspect Clin Res 2:94–99PubMedPubMedCentralCrossRefGoogle Scholar
  68. Ghodsi M, Heshmat R, Amoli M, Keshtkar A-A, Arjmand B, Aghayan H, Hosseini P, Sharifi AM, Larijani B (2012) The effect of fetal liver-derived cell suspension allotransplantation on patients with diabetes: first year of follow-up. Acta Med Iran 50:541PubMedGoogle Scholar
  69. Gluckman E, Broxmeyer HA, Auerbach AD, Friedman HS, Douglas GW, Devergie A, Esperou H, Thierry D, Socie G, Lehn P et al (1989) Hematopoietic reconstitution in a patient with Fanconi’s anemia by means of umbilical-cord blood from an HLA-identical sibling. N Engl J Med 321:1174–1178PubMedCrossRefGoogle Scholar
  70. Gong W, Han Z, Zhao H, Wang Y, Wang J, Zhong J, Wang B, Wang S, Wang Y, Sun L, Han Z (2012) Banking human umbilical cord-derived mesenchymal stromal cells for clinical use. Cell Transplant 21:207–216PubMedCrossRefGoogle Scholar
  71. Goodarzi P, Arjmand B, Emami-Razavi SH, Soleimani M, Khodadadi A, Mohamadi-Jahani F, Aghayan HR (2014) Human autologous serum as a substitute for fetal bovine serum in human Schwann cell culture. Acta Med Iran 52:241PubMedGoogle Scholar
  72. Gordon SL, Oppenheimer SR, Mackay AM, Brunnabend J, Puhlev I, Levine F (2001) Recovery of human mesenchymal stem cells following dehydration and rehydration. Cryobiology 43:182–187PubMedCrossRefGoogle Scholar
  73. Gottipamula S, Sharma A, Krishnamurthy S, Majumdar AS, Seetharam RN (2012) Human platelet lysate is an alternative to fetal bovine serum for large-scale expansion of bone marrow-derived mesenchymal stromal cells. Biotechnol Lett 34:1367–1374PubMedCrossRefGoogle Scholar
  74. Gottipamula S, Muttigi MS, Kolkundkar U, Seetharam RN (2013) Serum-free media for the production of human mesenchymal stromal cells: a review. Cell Prolif 46:608–627PubMedCrossRefGoogle Scholar
  75. Griffiths MJ, Bonnet D, Janes SM (2005) Stem cells of the alveolar epithelium. Lancet 366:249–260PubMedCrossRefGoogle Scholar
  76. Griffiths S, Baraniak PR, Copland IB, Nerem RM, Mcdevitt TC (2013) Human platelet lysate stimulates high-passage and senescent human multipotent mesenchymal stromal cell growth and rejuvenation in vitro. Cytotherapy 15:1469–1483PubMedCrossRefGoogle Scholar
  77. Grinnemo KH, Kumagai-Braesch M, Mansson-Broberg A, Skottman H, Hao X, Siddiqui A, Andersson A, Stromberg AM, Lahesmaa R, Hovatta O, Sylven C, Corbascio M, Dellgren G (2006) Human embryonic stem cells are immunogenic in allogeneic and xenogeneic settings. Reprod Biomed Online 13:712–724PubMedCrossRefGoogle Scholar
  78. Grinnemo KH, Sylven C, Hovatta O, Dellgren G, Corbascio M (2008) Immunogenicity of human embryonic stem cells. Cell Tissue Res 331:67–78PubMedCrossRefGoogle Scholar
  79. Gstraunthaler G (2003) Alternatives to the use of fetal bovine serum: serum-free cell culture. ALTEX 20:275–281PubMedGoogle Scholar
  80. Guillot PV, de Bari C, Dell’accio F, Kurata H, Polak J, Fisk NM (2008) Comparative osteogenic transcription profiling of various fetal and adult mesenchymal stem cell sources. Differentiation 76:946–957PubMedCrossRefGoogle Scholar
  81. Hagell P, Brundin P (2001) Cell survival and clinical outcome following intrastriatal transplantation in Parkinson disease. J Neuropathol Exp Neurol 60:741–752PubMedCrossRefGoogle Scholar
  82. Hartmann I, Hollweck T, Haffner S, Krebs M, Meiser B, Reichart B, Eissner G (2010) Umbilical cord tissue-derived mesenchymal stem cells grow best under GMP-compliant culture conditions and maintain their phenotypic and functional properties. J Immunol Methods 363:80–89PubMedCrossRefGoogle Scholar
  83. Hass R, Kasper C, Bohm S, Jacobs R (2011) Different populations and sources of human mesenchymal stem cells (MSC): a comparison of adult and neonatal tissue-derived MSC. Cell Commun Signal 9:12PubMedPubMedCentralCrossRefGoogle Scholar
  84. Hayakawa J, Joyal EG, Gildner JF, Washington KN, Phang OA, Uchida N, Hsieh MM, Tisdale JF (2010) 5% dimethyl sulfoxide (DMSO) and pentastarch improves cryopreservation of cord blood cells over 10% DMSO. Transfusion 50:2158–2166PubMedCrossRefGoogle Scholar
  85. Hayes M, Curley G, Laffey JG (2012) Mesenchymal stem cells—a promising therapy for Acute Respiratory Distress Syndrome. F1000 Med Rep 4:2PubMedPubMedCentralGoogle Scholar
  86. Heazlewood C, Atkinson K (2013) Optimal tissue sources of mesenchymal stromal cells for clinical applications. In: Chase LG, Vemuri MC (eds) Mesenchymal stem cell therapy. Humana Press, New YorkGoogle Scholar
  87. Heiskanen A, Satomaa T, Tiitinen S, Laitinen A, Mannelin S, Impola U, Mikkola M, Olsson C, Miller-Podraza H, Blomqvist M, Olonen A, Salo H, Lehenkari P, Tuuri T, Otonkoski T, Natunen J, Saarinen J, Laine J (2007) N-glycolylneuraminic acid xenoantigen contamination of human embryonic and mesenchymal stem cells is substantially reversible. Stem Cells 25:197–202PubMedCrossRefGoogle Scholar
  88. Herrera B, Inman GJ (2009) A rapid and sensitive bioassay for the simultaneous measurement of multiple bone morphogenetic proteins. Identification and quantification of BMP4, BMP6 and BMP9 in bovine and human serum. BMC Cell Biol 10:20PubMedPubMedCentralCrossRefGoogle Scholar
  89. Holm F, Strom S, Inzunza J, Baker D, Stromberg AM, Rozell B, Feki A, Bergstrom R, Hovatta O (2010) An effective serum- and xeno-free chemically defined freezing procedure for human embryonic and induced pluripotent stem cells. Hum Reprod 25:1271–1279PubMedPubMedCentralCrossRefGoogle Scholar
  90. Horwitz EM, Gordon PL, Koo WK, Marx JC, Neel MD, Mcnall RY, Muul L, Hofmann T (2002) Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: implications for cell therapy of bone. Proc Natl Acad Sci U S A 99:8932–8937PubMedPubMedCentralCrossRefGoogle Scholar
  91. Hunt CJ (2011) Cryopreservation of human stem cells for clinical application: a review. Transfus Med Hemother 38:107–123PubMedPubMedCentralCrossRefGoogle Scholar
  92. Ikebe C, Suzuki K (2014) Mesenchymal stem cells for regenerative therapy: optimization of cell preparation protocols. Biomed Res Int 2014:951512PubMedPubMedCentralCrossRefGoogle Scholar
  93. Ilic N, Brooke G, Murray P, Barlow S, Rossetti T, Pelekanos R, Hancock S, Atkinson K (2011) Manufacture of clinical grade human placenta-derived multipotent mesenchymal stromal cells. Methods Mol Biol 698:89–106PubMedCrossRefGoogle Scholar
  94. Ishikane S, Ohnishi S, Yamahara K, Sada M, Harada K, Mishima K, Iwasaki K, Fujiwara M, Kitamura S, Nagaya N, Ikeda T (2008) Allogeneic injection of fetal membrane-derived mesenchymal stem cells induces therapeutic angiogenesis in a rat model of hind limb ischemia. Stem Cells 26:2625–2633PubMedCrossRefGoogle Scholar
  95. Iudicone P, Fioravanti D, Bonanno G, Miceli M, Lavorino C, Totta P, Frati L, Nuti M, Pierelli L (2014) Pathogen-free, plasma-poor platelet lysate and expansion of human mesenchymal stem cells. J Transl Med 12:28PubMedPubMedCentralCrossRefGoogle Scholar
  96. Janz Fde L, Debes Ade A, Cavaglieri Rde C, Duarte SA, Romao CM, Moron AF, Zugaib M, Bydlowski SP (2012) Evaluation of distinct freezing methods and cryoprotectants for human amniotic fluid stem cells cryopreservation. J Biomed Biotechnol 2012:649353PubMedGoogle Scholar
  97. Johansson L, Klinth J, Holmqvist O, Ohlson S (2003) Platelet lysate: a replacement for fetal bovine serum in animal cell culture? Cytotechnology 42:67–74PubMedPubMedCentralCrossRefGoogle Scholar
  98. Jung KW (2009) Perspectives on human stem cell research. J Cell Physiol 220:535–537PubMedCrossRefGoogle Scholar
  99. Kern S, Eichler H, Stoeve J, Kluter H, Bieback K (2006) Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 24:1294–1301PubMedCrossRefGoogle Scholar
  100. Kinzebach S, Bieback K (2013) Expansion of Mesenchymal Stem/Stromal cells under xenogenic-free culture conditions. Adv Biochem Eng Biotechnol 129:33–57PubMedGoogle Scholar
  101. Kocaoemer A, Kern S, Kluter H, Bieback K (2007) Human AB serum and thrombin-activated platelet-rich plasma are suitable alternatives to fetal calf serum for the expansion of mesenchymal stem cells from adipose tissue. Stem Cells 25:1270–1278PubMedCrossRefGoogle Scholar
  102. Koller MR, Maher RJ, Manchel I, Oxender M, Smith AK (1998) Alternatives to animal sera for human bone marrow cell expansion: human serum and serum-free media. J Hematother 7:413–423PubMedCrossRefGoogle Scholar
  103. Lange C, Cakiroglu F, Spiess AN, Cappallo-Obermann H, Dierlamm J, Zander AR (2007) Accelerated and safe expansion of human mesenchymal stromal cells in animal serum-free medium for transplantation and regenerative medicine. J Cell Physiol 213:18–26PubMedCrossRefGoogle Scholar
  104. Lanzoni G, Alviano F, Marchionni C, Bonsi L, Costa R, Foroni L, Roda G, Belluzzi A, Caponi A, Ricci F, Luigi Tazzari P, Pagliaro P, Rizzo R, Lanza F, Roberto Baricordi O, Pasquinelli G, Roda E, Paolo Bagnara G (2009) Isolation of stem cell populations with trophic and immunoregulatory functions from human intestinal tissues: potential for cell therapy in inflammatory bowel disease. Cytotherapy 11:1020–1031PubMedCrossRefGoogle Scholar
  105. Larijani B, Aghayan H-R, Goodarzi P, Arjmand B (2015a) GMP-grade human fetal liver-derived mesenchymal stem cells for clinical transplantation. Stem Cells Good Manuf Pract Methods Protoc Regul 1283:123–136Google Scholar
  106. Larijani B, Arjmand B, Ahmadbeigi N, Falahzadeh K, Soleimani M, Sayahpour FA, Aghayan HR (2015b) A simple and cost-effective method for isolation and expansion of human fetal pancreas derived mesenchymal stem cells. Arch Iran Med 18:770–775PubMedGoogle Scholar
  107. Lazarus HM, Haynesworth SE, Gerson SL, Rosenthal NS, Caplan AI (1995) Ex vivo expansion and subsequent infusion of human bone marrow-derived stromal progenitor cells (mesenchymal progenitor cells): implications for therapeutic use. Bone Marrow Transplant 16:557–564PubMedGoogle Scholar
  108. Le Blanc K, Rasmusson I, Sundberg B, Gotherstrom C, Hassan M, Uzunel M, Ringden O (2004) Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet 363:1439–1441PubMedCrossRefGoogle Scholar
  109. Lennon DP, Caplan AI (2006) Isolation of human marrow-derived mesenchymal stem cells. Exp Hematol 34:1604–1605PubMedCrossRefGoogle Scholar
  110. Lepperdinger G, Brunauer R, Jamnig A, Laschober G, Kassem M (2008) Controversial issue: is it safe to employ mesenchymal stem cells in cell-based therapies? Exp Gerontol 43:1018–1023PubMedCrossRefGoogle Scholar
  111. Lewis CM, Suzuki M (2014) Therapeutic applications of mesenchymal stem cells for amyotrophic lateral sclerosis. Stem Cell Res Ther 5:32PubMedPubMedCentralCrossRefGoogle Scholar
  112. Li Y, Ma T (2012) Bioprocessing of cryopreservation for large-scale banking of human pluripotent stem cells. Biores Open Access 1:205–214PubMedPubMedCentralCrossRefGoogle Scholar
  113. Lian Q, Lye E, Suan Yeo K, Khia Way Tan E, Salto-Tellez M, Liu TM, Palanisamy N, El Oakley RM, Lee EH, Lim B, Lim SK (2007) Derivation of clinically compliant MSCs from CD105+, CD24- differentiated human ESCs. Stem Cells 25:425–436PubMedCrossRefGoogle Scholar
  114. Lindroos B, Boucher S, Chase L, Kuokkanen H, Huhtala H, Haataja R, Vemuri M, Suuronen R, Miettinen S (2009) Serum-free, xeno-free culture media maintain the proliferation rate and multipotentiality of adipose stem cells in vitro. Cytotherapy 11:958–972PubMedCrossRefGoogle Scholar
  115. Lindroos B, Suuronen R, Miettinen S (2011) The potential of adipose stem cells in regenerative medicine. Stem Cell Rev 7:269–291PubMedCrossRefGoogle Scholar
  116. Liu Y, Xu X, Ma X, Martin-Rendon E, Watt S, Cui Z (2010) Cryopreservation of human bone marrow-derived mesenchymal stem cells with reduced dimethylsulfoxide and well-defined freezing solutions. Biotechnol Prog 26:1635–1643PubMedCrossRefGoogle Scholar
  117. Luttun A, Ross JJ, Verfaillie C, Aranguren XL, Prosper F (2006) Differentiation of multipotent adult progenitor cells into functional endothelial and smooth muscle cells. Curr Protoc Immunol Chapter 22:Unit 22F.9Google Scholar
  118. Mackay AM, Beck SC, Murphy JM, Barry FP, Chichester CO, Pittenger MF (1998) Chondrogenic differentiation of cultured human mesenchymal stem cells from marrow. Tissue Eng 4:415–428PubMedCrossRefGoogle Scholar
  119. Mackensen A, Drager R, Schlesier M, Mertelsmann R, Lindemann A (2000) Presence of IgE antibodies to bovine serum albumin in a patient developing anaphylaxis after vaccination with human peptide-pulsed dendritic cells. Cancer Immunol Immunother 49:152–156PubMedCrossRefGoogle Scholar
  120. Makino S, Fukuda K, Miyoshi S, Konishi F, Kodama H, Pan J, Sano M, Takahashi T, Hori S, Abe H, Hata J, Umezawa A, Ogawa S (1999) Cardiomyocytes can be generated from marrow stromal cells in vitro. J Clin Invest 103:697–705PubMedPubMedCentralCrossRefGoogle Scholar
  121. Mannello F, Tonti GA (2007) Concise review: no breakthroughs for human mesenchymal and embryonic stem cell culture: conditioned medium, feeder layer, or feeder-free; medium with fetal calf serum, human serum, or enriched plasma; serum-free, serum replacement nonconditioned medium, or ad hoc formula? All that glitters is not gold! Stem Cells 25:1603–1609PubMedCrossRefGoogle Scholar
  122. Martin MJ, Muotri A, Gage F, Varki A (2005) Human embryonic stem cells express an immunogenic nonhuman sialic acid. Nat Med 11:228–232PubMedCrossRefGoogle Scholar
  123. Mazur P (1988) Stopping biological time. The freezing of living cells. Ann N Y Acad Sci 541:514–531PubMedCrossRefGoogle Scholar
  124. Mccullough J, Haley R, Clay M, Hubel A, Lindgren B, Moroff G (2010) Long-term storage of peripheral blood stem cells frozen and stored with a conventional liquid nitrogen technique compared with cells frozen and stored in a mechanical freezer. Transfusion 50:808–819PubMedCrossRefGoogle Scholar
  125. Meryman HT (2007) Cryopreservation of living cells: principles and practice. Transfusion 47:935–945PubMedCrossRefGoogle Scholar
  126. Meuleman N, Tondreau T, Delforge A, Dejeneffe M, Massy M, Libertalis M, Bron D, Lagneaux L (2006) Human marrow mesenchymal stem cell culture: serum-free medium allows better expansion than classical alpha-MEM medium. Eur J Haematol 76:309–316PubMedCrossRefGoogle Scholar
  127. Moon SY, Park YB, Kim DS, Oh SK, Kim DW (2006) Generation, culture, and differentiation of human embryonic stem cells for therapeutic applications. Mol Ther 13:5–14PubMedCrossRefGoogle Scholar
  128. Morris C, de Wreede L, Scholten M, Brand R, van Biezen A, Sureda A, Dickmeiss E, Trneny M, Apperley J, Chiusolo P, van Imhoff GW, Lenhoff S, Martinelli G, Hentrich M, Pabst T, Onida F, Quinn M, Kroger N, de Witte T, Ruutu T (2014) Should the standard dimethyl sulfoxide concentration be reduced? Results of a European Group for Blood and Marrow Transplantation prospective noninterventional study on usage and side effects of dimethyl sulfoxide. Transfusion 54:2514–2522PubMedCrossRefGoogle Scholar
  129. Motta JP, Paraguassu-Braga FH, Bouzas LF, Porto LC (2014) Evaluation of intracellular and extracellular trehalose as a cryoprotectant of stem cells obtained from umbilical cord blood. Cryobiology 68:343–348PubMedCrossRefGoogle Scholar
  130. Muller I, Kordowich S, Holzwarth C, Spano C, Isensee G, Staiber A, Viebahn S, Gieseke F, Langer H, Gawaz MP, Horwitz EM, Conte P, Handgretinger R, Dominici M (2006) Animal serum-free culture conditions for isolation and expansion of multipotent mesenchymal stromal cells from human BM. Cytotherapy 8:437–444PubMedCrossRefGoogle Scholar
  131. Muramatsu T, Pinontoan R, Okumura J (1995) Biopotency of fetal bovine serum, and insulin and insulin-like growth factors I and II in enhancing whole-body protein synthesis of chicken embryos cultured in vitro. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 111:281–286PubMedCrossRefGoogle Scholar
  132. Nakajima H, Uchida K, Guerrero AR, Watanabe S, Sugita D, Takeura N, Yoshida A, Long G, Wright KT, Johnson WE, Baba H (2012) Transplantation of mesenchymal stem cells promotes an alternative pathway of macrophage activation and functional recovery after spinal cord injury. J Neurotrauma 29:1614–1625PubMedPubMedCentralCrossRefGoogle Scholar
  133. Nie Y, Bergendahl V, Hei DJ, Jones JM, Palecek SP (2009) Scalable culture and cryopreservation of human embryonic stem cells on microcarriers. Biotechnol Prog 25:20–31PubMedPubMedCentralCrossRefGoogle Scholar
  134. Nimura A, Muneta T, Koga H, Mochizuki T, Suzuki K, Makino H, Umezawa A, Sekiya I (2008) Increased proliferation of human synovial mesenchymal stem cells with autologous human serum: comparisons with bone marrow mesenchymal stem cells and with fetal bovine serum. Arthritis Rheum 58:501–510PubMedCrossRefGoogle Scholar
  135. O’Donoghue K (2011) Validating and monitoring the cleanroom. In: Kanegsberg B, Kanegsberg E (eds) Handbook for critical cleaning: applications, processes, and controls, 2nd edn. CRC Press, Boca RatonGoogle Scholar
  136. Oreffo RO, Triffitt JT (1999) Future potentials for using osteogenic stem cells and biomaterials in orthopedics. Bone 25:5s–9sPubMedCrossRefGoogle Scholar
  137. Pal R, Hanwate M, Totey SM (2008) Effect of holding time, temperature and different parenteral solutions on viability and functionality of adult bone marrow-derived mesenchymal stem cells before transplantation. J Tissue Eng Regen Med 2:436–444PubMedCrossRefGoogle Scholar
  138. Parker A, Shang H, Khurgel M, Katz A (2007) Low serum and serum-free culture of multipotential human adipose stem cells. Cytotherapy 9:637–646PubMedCrossRefGoogle Scholar
  139. Parolini O, Alviano F, Bagnara GP, Bilic G, Buhring HJ, Evangelista M, Hennerbichler S, Liu B, Magatti M, Mao N, Miki T, Marongiu F, Nakajima H, Nikaido T, Portmann-Lanz CB, Sankar V, Soncini M, Stadler G, Surbek D, Takahashi TA, Redl H, Sakuragawa N, Wolbank S, Zeisberger S, Zisch A, Strom SC (2008) Concise review: isolation and characterization of cells from human term placenta: outcome of the first international Workshop on Placenta Derived Stem Cells. Stem Cells 26:300–311PubMedCrossRefGoogle Scholar
  140. Patrikoski M, Juntunen M, Boucher S, Campbell A, Vemuri MC, Mannerstrom B, Miettinen S (2013) Development of fully defined xeno-free culture system for the preparation and propagation of cell therapy-compliant human adipose stem cells. Stem Cell Res Ther 4:27PubMedPubMedCentralCrossRefGoogle Scholar
  141. Piskorska-Jasiulewicz MM, Witkowska-Zimny M (2015) [Perinatal sources of stem cells]. Postepy Hig Med Dosw (Online) 69:327–334CrossRefGoogle Scholar
  142. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147PubMedCrossRefGoogle Scholar
  143. Preynat-Seauve O, Krause KH (2011) Stem cell sources for regenerative medicine: the immunological point of view. Semin Immunopathol 33:519–524PubMedCrossRefGoogle Scholar
  144. Prindull G, Prindull B, Meulen N (1978) Haematopoietic stem cells (CFUc) in human cord blood. Acta Paediatr Scand 67:413–416PubMedCrossRefGoogle Scholar
  145. Prokhorova TA, Harkness LM, Frandsen U, Ditzel N, Schroder HD, Burns JS, Kassem M (2009) Teratoma formation by human embryonic stem cells is site dependent and enhanced by the presence of Matrigel. Stem Cells Dev 18:47–54PubMedCrossRefGoogle Scholar
  146. Puglisi MA, Tesori V, Lattanzi W, Piscaglia AC, Gasbarrini GB, D’ugo DM, Gasbarrini A (2011) Therapeutic implications of mesenchymal stem cells in liver injury. J Biomed Biotechnol 2011:860578PubMedPubMedCentralCrossRefGoogle Scholar
  147. Rajala K, Lindroos B, Hussein SM, Lappalainen RS, Pekkanen-Mattila M, Inzunza J, Rozell B, Miettinen S, Narkilahti S, Kerkela E, Aalto-Setala K, Otonkoski T, Suuronen R, Hovatta O, Skottman H (2010) A defined and xeno-free culture method enabling the establishment of clinical-grade human embryonic, induced pluripotent and adipose stem cells. PLoS One 5:e10246PubMedPubMedCentralCrossRefGoogle Scholar
  148. Rasmusson I (2006) Immune modulation by mesenchymal stem cells. Exp Cell Res 312:2169–2179PubMedCrossRefGoogle Scholar
  149. Rauch C, Feifel E, Amann EM, Spotl HP, Schennach H, Pfaller W, Gstraunthaler G (2011) Alternatives to the use of fetal bovine serum: human platelet lysates as a serum substitute in cell culture media. ALTEX 28:305–316PubMedCrossRefGoogle Scholar
  150. Reinisch A, Bartmann C, Rohde E, Schallmoser K, Bjelic-Radisic V, Lanzer G, Linkesch W, Strunk D (2007) Humanized system to propagate cord blood-derived multipotent mesenchymal stromal cells for clinical application. Regen Med 2:371–382PubMedCrossRefGoogle Scholar
  151. Riazi AM, Kwon SY, Stanford WL (2009) Stem cell sources for regenerative medicine. Methods Mol Biol 482:55–90PubMedCrossRefGoogle Scholar
  152. Rodriguez L, Azqueta C, Azzalin S, Garcia J, Querol S (2004) Washing of cord blood grafts after thawing: high cell recovery using an automated and closed system. Vox Sang 87:165–172PubMedCrossRefGoogle Scholar
  153. Rojewski MT, Weber BM, Schrezenmeier H (2008) Phenotypic characterization of mesenchymal stem cells from various tissues. Transfus Med Hemother 35:168–184PubMedPubMedCentralCrossRefGoogle Scholar
  154. Rotter N, Oder J, Schlenke P, Lindner U, Bohrnsen F, Kramer J, Rohwedel J, Huss R, Brandau S, Wollenberg B, Lang S (2008) Isolation and characterization of adult stem cells from human salivary glands. Stem Cells Dev 17:509–518PubMedCrossRefGoogle Scholar
  155. Rubinstein P, Dobrila L, Rosenfield RE, Adamson JW, Migliaccio G, Migliaccio AR, Taylor PE, Stevens CE (1995) Processing and cryopreservation of placental/umbilical cord blood for unrelated bone marrow reconstitution. Proc Natl Acad Sci U S A 92:10119–10122PubMedPubMedCentralCrossRefGoogle Scholar
  156. Salvade A, Della Mina P, Gaddi D, Gatto F, Villa A, Bigoni M, Perseghin P, Serafini M, Zatti G, Biondi A, Biagi E (2010) Characterization of platelet lysate cultured mesenchymal stromal cells and their potential use in tissue-engineered osteogenic devices for the treatment of bone defects. Tissue Eng Part C Methods 16:201–214PubMedCrossRefGoogle Scholar
  157. Saric T, Frenzel LP, Hescheler J (2008) Immunological barriers to embryonic stem cell-derived therapies. Cells Tissues Organs 188:78–90PubMedCrossRefGoogle Scholar
  158. Schafer R, Northoff H (2008) Characteristics of mesenchymal stem cells—new stars in regenerative medicine or unrecognized old fellows in autologous regeneration? Transfus Med Hemother 35:154–159PubMedPubMedCentralCrossRefGoogle Scholar
  159. Schallmoser K, Strunk D (2013) Generation of a pool of human platelet lysate and efficient use in cell culture. Methods Mol Biol 946:349–362PubMedCrossRefGoogle Scholar
  160. Schallmoser K, Bartmann C, Rohde E, Reinisch A, Kashofer K, Stadelmeyer E, Drexler C, Lanzer G, Linkesch W, Strunk D (2007) Human platelet lysate can replace fetal bovine serum for clinical-scale expansion of functional mesenchymal stromal cells. Transfusion 47:1436–1446PubMedCrossRefGoogle Scholar
  161. Schallmoser K, Rohde E, Reinisch A, Bartmann C, Thaler D, Drexler C, Obenauf AC, Lanzer G, Linkesch W, Strunk D (2008) Rapid large-scale expansion of functional mesenchymal stem cells from unmanipulated bone marrow without animal serum. Tissue Eng Part C Methods 14:185–196PubMedCrossRefGoogle Scholar
  162. Schallmoser K, Rohde E, Bartmann C, Obenauf AC, Reinisch A, Strunk D (2009) Platelet-derived growth factors for GMP-compliant propagation of mesenchymal stromal cells. Biomed Mater Eng 19:271–276PubMedGoogle Scholar
  163. Selvaggi TA, Walker RE, Fleisher TA (1997) Development of antibodies to fetal calf serum with arthus-like reactions in human immunodeficiency virus-infected patients given syngeneic lymphocyte infusions. Blood 89:776–779PubMedGoogle Scholar
  164. Sensebe L (2008) Clinical grade production of mesenchymal stem cells. Biomed Mater Eng 18:S3–S10PubMedGoogle Scholar
  165. Seshareddy K, Troyer D, Weiss ML (2008) Method to isolate mesenchymal-like cells from Wharton’s Jelly of umbilical cord. Methods Cell Biol 86:101–119PubMedCrossRefGoogle Scholar
  166. Shahdadfar A, Fronsdal K, Haug T, Reinholt FP, Brinchmann JE (2005) In vitro expansion of human mesenchymal stem cells: choice of serum is a determinant of cell proliferation, differentiation, gene expression, and transcriptome stability. Stem Cells 23:1357–1366PubMedCrossRefGoogle Scholar
  167. Shigeno Y, Ashton BA (1995) Human bone-cell proliferation in vitro decreases with human donor age. J Bone Joint Surg Br 77:139–142PubMedGoogle Scholar
  168. Spees JL, Gregory CA, Singh H, Tucker HA, Peister A, Lynch PJ, Hsu SC, Smith J, Prockop DJ (2004) Internalized antigens must be removed to prepare hypoimmunogenic mesenchymal stem cells for cell and gene therapy. Mol Ther 9:747–756PubMedCrossRefGoogle Scholar
  169. Stolzing A, Naaldijk Y, Fedorova V, Sethe S (2012) Hydroxyethylstarch in cryopreservation—mechanisms, benefits and problems. Transfus Apher Sci 46:137–147PubMedCrossRefGoogle Scholar
  170. Stute N, Holtz K, Bubenheim M, Lange C, Blake F, Zander AR (2004) Autologous serum for isolation and expansion of human mesenchymal stem cells for clinical use. Exp Hematol 32:1212–1225PubMedCrossRefGoogle Scholar
  171. Su CY, Kuo YP, Lin YC, Huang CT, Tseng YH, Burnouf T (2009) A virally inactivated functional growth factor preparation from human platelet concentrates. Vox Sang 97:119–128PubMedCrossRefGoogle Scholar
  172. Sundin M, Ringden O, Sundberg B, Nava S, Gotherstrom C, Le Blanc K (2007) No alloantibodies against mesenchymal stromal cells, but presence of anti-fetal calf serum antibodies, after transplantation in allogeneic hematopoietic stem cell recipients. Haematologica 92:1208–1215PubMedCrossRefGoogle Scholar
  173. Swamynathan P, Venugopal P, Kannan S, Thej C, Kolkundar U, Bhagwat S, Ta M, Majumdar AS, Balasubramanian S (2014) Are serum-free and xeno-free culture conditions ideal for large scale clinical grade expansion of Wharton’s jelly derived mesenchymal stem cells? A comparative study. Stem Cell Res Ther 5:88PubMedPubMedCentralCrossRefGoogle Scholar
  174. Szot GL, Lee MR, Tavakol MM, Lang J, Dekovic F, Kerlan RK, Stock PG, Posselt AM (2009) Successful clinical islet isolation using a GMP-manufactured collagenase and neutral protease. Transplantation 88:753–756PubMedPubMedCentralCrossRefGoogle Scholar
  175. Tapp H, Hanley EN Jr, Patt JC, Gruber HE (2009) Adipose-derived stem cells: characterization and current application in orthopaedic tissue repair. Exp Biol Med (Maywood) 234:1–9CrossRefGoogle Scholar
  176. Tateishi K, Ando W, Higuchi C, Hart DA, Hashimoto J, Nakata K, Yoshikawa H, Nakamura N (2008) Comparison of human serum with fetal bovine serum for expansion and differentiation of human synovial MSC: potential feasibility for clinical applications. Cell Transplant 17:549–557PubMedCrossRefGoogle Scholar
  177. Thirumala S, Goebel WS, Woods EJ (2009) Clinical grade adult stem cell banking. Organogenesis 5:143–154PubMedPubMedCentralCrossRefGoogle Scholar
  178. Thomas RJ, Anderson D, Chandra A, Smith NM, Young LE, Williams D, Denning C (2009a) Automated, scalable culture of human embryonic stem cells in feeder-free conditions. Biotechnol Bioeng 102:1636–1644PubMedCrossRefGoogle Scholar
  179. Thomas RJ, Hope AD, Hourd P, Baradez M, Miljan EA, Sinden JD, Williams DJ (2009b) Automated, serum-free production of CTX0E03: a therapeutic clinical grade human neural stem cell line. Biotechnol Lett 31:1167–1172PubMedCrossRefGoogle Scholar
  180. Todorov P, Hristova E, Konakchieva R, Michova A, Dimitrov J (2010) Comparative studies of different cryopreservation methods for mesenchymal stem cells derived from human fetal liver. Cell Biol Int 34:455–462PubMedCrossRefGoogle Scholar
  181. Tonti GA, Mannello F (2008) From bone marrow to therapeutic applications: different behaviour and genetic/epigenetic stability during mesenchymal stem cell expansion in autologous and foetal bovine sera? Int J Dev Biol 52:1023–1032PubMedCrossRefGoogle Scholar
  182. Troyer DL, Weiss ML (2008) Wharton’s jelly-derived cells are a primitive stromal cell population. Stem Cells 26:591–599PubMedCrossRefGoogle Scholar
  183. Unger C, Skottman H, Blomberg P, Dilber MS, Hovatta O (2008) Good manufacturing practice and clinical-grade human embryonic stem cell lines. Hum Mol Genet 17:R48–R53PubMedCrossRefGoogle Scholar
  184. Wang S, Qu X, Zhao RC (2012a) Clinical applications of mesenchymal stem cells. J Hematol Oncol 5:19PubMedPubMedCentralCrossRefGoogle Scholar
  185. Wang Y, Han ZB, Song YP, Han ZC (2012b) Safety of mesenchymal stem cells for clinical application. Stem Cells Int 2012:652034PubMedPubMedCentralCrossRefGoogle Scholar
  186. Wei X, Yang X, Han ZP, Qu FF, Shao L, Shi YF (2013) Mesenchymal stem cells: a new trend for cell therapy. Acta Pharmacol Sin 34:747–754PubMedPubMedCentralCrossRefGoogle Scholar
  187. Will RG, Ironside JW, Zeidler M, Cousens SN, Estibeiro K, Alperovitch A, Poser S, Pocchiari M, Hofman A, Smith PG (1996) A new variant of Creutzfeldt-Jakob disease in the UK. Lancet 347:921–925PubMedCrossRefGoogle Scholar
  188. Wingard JR, Majhail NS, Brazauskas R, Wang Z, Sobocinski KA, Jacobsohn D, Sorror ML, Horowitz MM, Bolwell B, Rizzo JD, Socie G (2011) Long-term survival and late deaths after allogeneic hematopoietic cell transplantation. J Clin Oncol 29:2230–2239PubMedPubMedCentralCrossRefGoogle Scholar
  189. Witkowska-Zimny M, Wrobel E (2011a) Perinatal sources of mesenchymal stem cells: Wharton’s jelly, amnion and chorion. Cell Mol Biol Lett 16:493–514PubMedGoogle Scholar
  190. Witkowska-Zimny M, Wrobel E (2011b) Perinatal sources of mesenchymal stem cells: Wharton’s jelly, amnion and chorion. Cell Mol Biol Lett 16:493–514PubMedGoogle Scholar
  191. Witzeneder K, Lindenmair A, Gabriel C, Holler K, Theiss D, Redl H, Hennerbichler S (2013) Human-derived alternatives to fetal bovine serum in cell culture. Transfus Med Hemother 40:417–423PubMedPubMedCentralCrossRefGoogle Scholar
  192. Woods EJ, Liu J, Pollok K, Hartwell J, Smith FO, Williams DA, Yoder MC, Critser JK (2003) A theoretically optimized method for cord blood stem cell cryopreservation. J Hematother Stem Cell Res 12:341–350PubMedCrossRefGoogle Scholar
  193. Woods EJ, Bagchi A, Goebel WS, Vilivalam VD, Vilivalam VD (2010) Container system for enabling commercial production of cryopreserved cell therapy products. Regen Med 5:659–667PubMedCrossRefGoogle Scholar
  194. Wouters G, Grossi S, Mesoraca A, Bizzoco D, Mobili L, Cignini P, Giorlandino C (2007) Isolation of amniotic fluid-derived mesenchymal stem cells. J Prenat Med 1:39–40PubMedPubMedCentralGoogle Scholar
  195. Wuchter P, Bieback K, Schrezenmeier H, Bornhauser M, Muller LP, Bonig H, Wagner W, Meisel R, Pavel P, Tonn T, Lang P, Muller I, Renner M, Malcherek G, Saffrich R, Buss EC, Horn P, Rojewski M, Schmitt A, Ho AD, Sanzenbacher R, Schmitt M (2015) Standardization of Good Manufacturing Practice-compliant production of bone marrow-derived human mesenchymal stromal cells for immunotherapeutic applications. Cytotherapy 17:128–139PubMedCrossRefGoogle Scholar
  196. Yamamoto N, Isobe M, Negishi A, Yoshimasu H, Shimokawa H, Ohya K, Amagasa T, Kasugai S (2003) Effects of autologous serum on osteoblastic differentiation in human bone marrow cells. J Med Dent Sci 50:63–69PubMedGoogle Scholar
  197. Zhao JW, Gao ZL, Mei H, Li YL, Wang Y (2011) Differentiation of human mesenchymal stem cells: the potential mechanism for estrogen-induced preferential osteoblast versus adipocyte differentiation. Am J Med Sci 341:460–468PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Babak Arjmand
    • 1
    • 2
    Email author
  • Parisa Goodarzi
    • 2
  • Khadijeh Falahzadeh
    • 3
  • Hamid Reza Aghayan
    • 3
  • Fakher Rahim
    • 4
  • Fereshteh Mohamadi-Jahani
    • 2
  • Bagher Larijani
    • 1
  1. 1.Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences InstituteTehran University of Medical SciencesTehranIran
  2. 2.Brain and Spinal Cord Injury Research CenterTehran University of Medical SciencesTehranIran
  3. 3.Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences InstituteTehran University of Medical SciencesTehranIran
  4. 4.Institute of Health Research, Thalassemia and Hemoglobinopathies Research CenterAhvaz Jundishapur University of Medical SciencesAhvazIran

Personalised recommendations