Perinatal Tissue-Derived Stem Cells pp 171-188 | Cite as
Amniotic Fluid: A Source of Stem Cells for Therapeutic Use and Modeling of Human Genetic Diseases
- 410 Downloads
Abstract
Nowadays, amniotic fluid (AF) has been introduced as a renewable stem cell source with easy procurement, availability, and without ethical issues associated with embryonic stem cells and adult stem cells like bone marrow. The immunomodulatory properties of amniotic fluid stem cells (AFSCs) along with capacity for long-term culturing, expansion, and cryopreservation make it suitable for potential applications in pharmaceutical screening, disease modeling, and cell-based therapies. Furthermore, there is compelling evidence about safety and functionality of AFSCs in treatment of different diseases in animal models. These features hold promise in clinical treatment of diseases by safe and accessible autologous cells in near future. On the other hand, AFSCs could represent a useful stem cell model for studying the molecular basis of prenatal diagnosed diseases since AFSCs demonstrate some pluripotent properties and are able to differentiate into different lineages. In this chapter, we describe the potential benefits and pitfalls of AFSCs in the regenerative medicine and modeling of human genetic diseases.
Keywords
Amniotic fluid Stem cells Regenerative medicine Genetic modelingAbbreviations
- AF
Amniotic fluid
- AFSCs
Amniotic fluid stem cells
- AFSCs-ECs
Amniotic fluid stem cell-derived endothelial cells
- ASCs
Adult stem cells
- BMSCs
Bone marrow mesenchymal stem cells
- BMP-4
Bone morphogenetic protein-4
- ESCs
Embryonic stem cells
- GDNF
Glia cell line-derived neurotrophic factor
- GVHD
Graft versus host disease
- HGFR
Hepatocyte growth factor receptor
- iPSC
Induced pluripotent stem cells
- ICAM-1
Intercellular adhesion molecule-1
- MDSC
Muscle-derived stem cells
- MSCs
Mesenchymal stem cells
- NRVM
Neonatal rat ventricular myocytes
- NCAM
Neural cell adhesion molecule
- PGA
Polyglycolic acid
- SSEA-1
Stage-specific embryonic antigens
- SPCL
Starch-poly(ε-caprolactone)
- TB4
Thymosin-beta-4
- Tra-1-60
Tumor-rejection antigens-1-60
- Tra-1-81
Tumor-rejection antigens-1-81
- VEGF
Vascular endothelial growth factor
Notes
Study Finding/Competing Interest
The authors indicate no potential conflict of interest.
References
- Antonucci I, Provenzano M, Rodrigues M, Pantalone A, Salini V, Ballerini P et al (2016) Amniotic fluid stem cells: a novel source for modeling of human genetic diseases. Int J Mol Sci 17(4):607CrossRefPubMedCentralGoogle Scholar
- Bollini S, Cheung KK, Riegler J, Dong X, Smart N, Ghionzoli M et al (2011) Amniotic fluid stem cells are cardioprotective following acute myocardial infarction. Stem Cells Dev 20(11):1985–1994, Epub 2011/05/04. engCrossRefPubMedGoogle Scholar
- Cannon TW, Lee JY, Somogyi G, Pruchnic R, Smith CP, Huard J et al (2003) Improved sphincter contractility after allogenic muscle-derived progenitor cell injection into the denervated rat urethra. Urology 62(5):958–963CrossRefPubMedGoogle Scholar
- Carraro G, Perin L, Sedrakyan S, Giuliani S, Tiozzo C, Lee J et al (2008) Human amniotic fluid stem cells can integrate and differentiate into epithelial lung lineages. Stem Cells 26(11):2902–2911, Pubmed Central PMCID: Pmc3174105. Epub 2008/08/23. engCrossRefPubMedPubMedCentralGoogle Scholar
- Castellani C, Vescovo G, Ravara B, Franzin C, Pozzobon M, Tavano R et al (2013) The contribution of stem cell therapy to skeletal muscle remodeling in heart failure. Int J Cardiol 168(3):2014–2021, Epub 2013/03/05. engCrossRefPubMedGoogle Scholar
- Cheng F-C, Tai M-H, Sheu M-L, Chen C-J, Yang D-Y, Su H-L et al (2010) Enhancement of regeneration with glia cell line-derived neurotrophic factor-transduced human amniotic fluid mesenchymal stem cells after sciatic nerve crush injury [RETRACTED] Laboratory investigation. J Neurosurg 112(4):868–879CrossRefPubMedGoogle Scholar
- Chiavegato A, Bollini S, Pozzobon M, Callegari A, Gasparotto L, Taiani J et al (2007) Human amniotic fluid-derived stem cells are rejected after transplantation in the myocardium of normal, ischemic, immuno-suppressed or immuno-deficient rat. J Mol Cell Cardiol 42(4):746–759, Epub 2007/02/16. engCrossRefPubMedGoogle Scholar
- Choi JY, Chun SY, Kim BS, Kim HT, Yoo ES, Shon Y-H et al (2015) Pre-clinical efficacy and safety evaluation of human amniotic fluid-derived stem cell injection in a mouse model of urinary incontinence. Yonsei Med J 56(3):648–657CrossRefPubMedPubMedCentralGoogle Scholar
- Chun SY, Cho DH, Chae SY, Choi KH, Lim HJ, Yoon GS et al (2012) Human amniotic fluid stem cell-derived muscle progenitor cell therapy for stress urinary incontinence. J Korean Med Sci 27(11):1300–1307, Pubmed Central PMCID: Pmc3492662. Epub 2012/11/21. engCrossRefPubMedPubMedCentralGoogle Scholar
- Chun SY, Kwon JB, Chae SY, Lee JK, Bae JS, Kim BS et al (2014) Combined injection of three different lineages of early-differentiating human amniotic fluid-derived cells restores urethral sphincter function in urinary incontinence. BJU Int 114(5):770–783, Epub 2014/05/21. engCrossRefPubMedGoogle Scholar
- Chun SY, Mack DL, Moorefield E, Oh SH, Kwon TG, Pettenati MJ et al (2015) Pdx1 and controlled culture conditions induced differentiation of human amniotic fluid‐derived stem cells to insulin‐producing clusters. J Tissue Eng Regen Med 9(5):540–549CrossRefPubMedGoogle Scholar
- Colosimo A, Curini V, Russo V, Mauro A, Bernabo N, Marchisio M et al (2013) Characterization, GFP gene Nucleofection, and allotransplantation in injured tendons of ovine amniotic fluid-derived stem cells. Cell Transplant 22(1):99–117, Epub 2012/04/18. engCrossRefPubMedGoogle Scholar
- Corcos J, Beaulieu S, Donovan J, Naughton M, Gotoh M (2002) Quality of life assessment in men and women with urinary incontinence. J Urol 168(3):896–905, Epub 2002/08/21. engCrossRefPubMedGoogle Scholar
- De Coppi P, Bartsch G, Siddiqui MM, Xu T, Santos CC, Perin L et al (2007) Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol 25(1):100–106CrossRefPubMedGoogle Scholar
- Deng DY (2011) Urinary incontinence in women. Med Clin N Am 95(1):101–109CrossRefPubMedGoogle Scholar
- Dziadosz M, Basch RS, Young BK (2016) Human amniotic fluid: a source of stem cells for possible therapeutic use. Am J Obstet Gynecol 214(3):321–327CrossRefPubMedGoogle Scholar
- Edwards RG, Hollands P (2007) Will stem cells in cord blood, amniotic fluid, bone marrow and peripheral blood soon be unnecessary in transplantation? Reprod Biomed Online 14(3):396–401CrossRefPubMedGoogle Scholar
- Eslaminejad MB, Jahangir S (2012) Amniotic fluid stem cells and their application in cell-based tissue regeneration. Int J Fertil Steril 6(3):147Google Scholar
- Gholizadeh-Ghalehaziz S, Farahzadi R, Fathi E, Pashaiasl M (2015) A mini overview of isolation, characterization and application of amniotic fluid stem cells. Int J Stem Cells 8(2):115CrossRefPubMedPubMedCentralGoogle Scholar
- Guan X, Delo DM, Atala A, Soker S (2011) In vitro cardiomyogenic potential of human amniotic fluid stem cells. J Tissue Eng Regen Med 5(3):220–228, Pubmed Central PMCID: Pmc2975013. Epub 2010/08/06. engCrossRefPubMedPubMedCentralGoogle Scholar
- Gundacker C, Dolznig H, Mikula M, Rosner M, Brandau O, Hengstschläger M (2012) Amniotic fluid stem cell-based models to study the effects of gene mutations and toxicants on male germ cell formation. Asian J Androl 14(2):247–250CrossRefPubMedPubMedCentralGoogle Scholar
- Hauser PV, De Fazio R, Bruno S, Sdei S, Grange C, Bussolati B et al (2010) Stem cells derived from human amniotic fluid contribute to acute kidney injury recovery. Am J Pathol 177(4):2011–2021, Pubmed Central PMCID: Pmc2947295. Epub 2010/08/21. engCrossRefPubMedPubMedCentralGoogle Scholar
- Iordache F, Constantinescu A, Andrei E, Amuzescu B, Halitzchi F, Savu L, et al (2016) Electrophysiology, immunophenotype, and gene expression characterization of senescent and cryopreserved human amniotic fluid stem cells. J Physiol Sci 1–14Google Scholar
- Joo S, Ko IK, Atala A, Yoo JJ, Lee SJ (2012) Amniotic fluid-derived stem cells in regenerative medicine research. Arch Pharm Res 35(2):271–280CrossRefPubMedGoogle Scholar
- Kim BS, Chun SY, Lee JK, Lim HJ, Bae J-s, Chung H-Y et al (2012) Human amniotic fluid stem cell injection therapy for urethral sphincter regeneration in an animal model. BMC Med 10(1):94CrossRefPubMedPubMedCentralGoogle Scholar
- Kim EY, Lee K-B, Kim MK (2014) The potential of mesenchymal stem cells derived from amniotic membrane and amniotic fluid for neuronal regenerative therapy. BMB Rep 47(3):135–140CrossRefPubMedPubMedCentralGoogle Scholar
- Kobold S, Guhr A, Kurtz A, Löser P (2015) Human embryonic and induced pluripotent stem cell research trends: complementation and diversification of the field. Stem Cell Rep 4(5):914–925CrossRefGoogle Scholar
- Koike C, Zhou K, Takeda Y, Fathy M, Okabe M, Yoshida T et al (2014) Characterization of amniotic stem cells. Cell Reprogram 16(4):298–305CrossRefPubMedPubMedCentralGoogle Scholar
- Kunisaki SM, Freedman DA, Fauza DO (2006) Fetal tracheal reconstruction with cartilaginous grafts engineered from mesenchymal amniocytes. J Pediatr Surg 41(4):675–682CrossRefPubMedGoogle Scholar
- Liu YW, Roan JN, Wang SP, Hwang SM, Tsai MS, Chen JH et al (2013) Xenografted human amniotic fluid-derived stem cell as a cell source in therapeutic angiogenesis. Int J Cardiol 168(1):66–75, Epub 2012/10/11. engCrossRefPubMedGoogle Scholar
- Loukogeorgakis SP, De Coppi P (2016) Stem cells from amniotic fluid—potential for regenerative medicine. Best Pract Res Clin Obstet Gynaecol 31:45–57CrossRefPubMedGoogle Scholar
- Maraldi T, Riccio M, Resca E, Pisciotta A, La Sala GB, Ferrari A et al (2011) Human amniotic fluid stem cells seeded in fibroin scaffold produce in vivo mineralized matrix. Tissue Eng Part A 17(21–22):2833–2843CrossRefPubMedGoogle Scholar
- Mareschi K, Rustichelli D, Comunanza V, De Fazio R, Cravero C, Morterra G et al (2009) Multipotent mesenchymal stem cells from amniotic fluid originate neural precursors with functional voltage-gated sodium channels. Cytotherapy 11(5):534–547CrossRefPubMedGoogle Scholar
- Martinelli D, Pereira RC, Mogni M, Benelli R, Mastrogiacomo M, Coviello D et al (2016) A humanized system to expand in vitro amniotic fluid-derived stem cells intended for clinical application. Cytotherapy 18(3):438–451CrossRefPubMedGoogle Scholar
- Murphy SV, Atala A (2013) Amniotic fluid and placental membranes: unexpected sources of highly multipotent cells. Semin Reprod Med 31(1):62–68CrossRefPubMedGoogle Scholar
- Odibo AO, Gray DL, Dicke JM, Stamilio DM, Macones GA, Crane JP (2008) Revisiting the fetal loss rate after second-trimester genetic amniocentesis: a single center’s 16-year experience. Obstet Gynecol 111(3):589–595CrossRefPubMedGoogle Scholar
- Ohi Y, Qin H, Hong C, Blouin L, Polo JM, Guo T et al (2011) Incomplete DNA methylation underlies a transcriptional memory of somatic cells in human iPS cells. Nat Cell Biol 13(5):541–549CrossRefPubMedPubMedCentralGoogle Scholar
- Pan H-C, Cheng F-C, Chen C-J, Lai S-Z, Lee C-W, Yang D-Y et al (2007) Post-injury regeneration in rat sciatic nerve facilitated by neurotrophic factors secreted by amniotic fluid mesenchymal stem cells. J Clin Neurosci 14(11):1089–1098CrossRefPubMedGoogle Scholar
- Pederiva F, Ghionzoli M, Pierro A, De Coppi P, Tovar J (2013) Amniotic fluid stem cells rescue both in vitro and in vivo growth, innervation, and motility in nitrofen-exposed hypoplastic rat lungs through paracrine effects. Cell Transplant 22(9):1683–1694CrossRefPubMedGoogle Scholar
- Perin L, Sedrakyan S, Giuliani S, Da Sacco S, Carraro G, Shiri L et al (2010) Protective effect of human amniotic fluid stem cells in an immunodeficient mouse model of acute tubular necrosis. PLoS One 5(2):e9357, Pubmed Central PMCID: Pmc2827539. Epub 2010/03/03. engCrossRefPubMedPubMedCentralGoogle Scholar
- Piccoli M, Franzin C, Bertin E, Urbani L, Blaauw B, Repele A et al (2012) Amniotic fluid stem cells restore the muscle cell niche in a HSA-Cre, Smn(F7/F7) mouse model. Stem Cells 30(8):1675–1684, Epub 2012/05/31. engCrossRefPubMedGoogle Scholar
- Pozzobon M, Piccoli M, De Coppi P (2014) Stem cells from fetal membranes and amniotic fluid: markers for cell isolation and therapy. Cell Tissue Bank 15(2):199–211PubMedGoogle Scholar
- Prasongchean W, Bagni M, Calzarossa C, De Coppi P, Ferretti P (2011) Amniotic fluid stem cells increase embryo survival following injury. Stem Cells Dev 21(5):675–688CrossRefPubMedGoogle Scholar
- Ramachandra DL, Shaw SS, Shangaris P, Loukogeorgakis S, Guillot PV, Coppi PD et al (2014) In utero therapy for congenital disorders using amniotic fluid stem cells. Front Pharmacol 5:270CrossRefPubMedPubMedCentralGoogle Scholar
- Rennie K, Gruslin A, Hengstschläger M, Pei D, Cai J, Nikaido T et al (2012) Applications of amniotic membrane and fluid in stem cell biology and regenerative medicine. Stem Cells Int 2012:721538CrossRefPubMedPubMedCentralGoogle Scholar
- Rennie K, Haukenfrers J, Ribecco-Lutkiewicz M, Ly D, Jezierski A, Smith B et al (2013) Therapeutic potential of amniotic fluid-derived cells for treating the injured nervous system. Biochem Cell Biol 91(5):271–286CrossRefPubMedGoogle Scholar
- Riccio M, Maraldi T, Pisciotta A, La Sala GB, Ferrari A, Bruzzesi G et al (2012) Fibroin scaffold repairs critical-size bone defects in vivo supported by human amniotic fluid and dental pulp stem cells. Tissue Eng Part A 18(9–10):1006–1013CrossRefPubMedGoogle Scholar
- Rodrigues MT, Lee SJ, Gomes ME, Reis RL, Atala A, Yoo JJ (2012) Bilayered constructs aimed at osteochondral strategies: the influence of medium supplements in the osteogenic and chondrogenic differentiation of amniotic fluid-derived stem cells. Acta Biomater 8(7):2795–2806CrossRefPubMedGoogle Scholar
- Rortveit G, Hannestad YS, Daltveit AK, Hunskaar S (2001) Age- and type-dependent effects of parity on urinary incontinence: the Norwegian EPINCONT study. Obstet Gynecol 98(6):1004–1010, Epub 2002/01/05. engPubMedGoogle Scholar
- Rosner M, Siegel N, Fuchs C, Slabina N, Dolznig H, Hengstschläger M (2010) Efficient siRNA-mediated prolonged gene silencing in human amniotic fluid stem cells. Nat Protoc 5(6):1081–1095CrossRefPubMedGoogle Scholar
- Rosner M, Schipany K, Shanmugasundaram B, Lubec G, Hengstschläger M (2012) Amniotic fluid stem cells: future perspectives. Stem Cells Int 2012:1–6Google Scholar
- Rosner M, Schipany K, Hengstschläger M (2014) The decision on the“optimal” human pluripotent stem cell. Stem Cells Transl Med 3(5):553–559CrossRefPubMedPubMedCentralGoogle Scholar
- Rota C, Imberti B, Pozzobon M, Piccoli M, De Coppi P, Atala A et al (2012) Human amniotic fluid stem cell preconditioning improves their regenerative potential. Stem Cells Dev 21(11):1911–1923, Pubmed Central PMCID: Pmc3396139. Epub 2011/11/10. engCrossRefPubMedGoogle Scholar
- Roubelakis MG, Trohatou O, Anagnou NP (2012) Amniotic fluid and amniotic membrane stem cells: marker discovery. Stem Cells Int 2012:1–9CrossRefGoogle Scholar
- Schmidt D, Achermann J, Odermatt B, Breymann C, Mol A, Genoni M et al (2007) Prenatally fabricated autologous human living heart valves based on amniotic fluid derived progenitor cells as single cell source. Circulation 116(11 Suppl):I64–I70, Epub 2007/09/14. engPubMedGoogle Scholar
- Sedrakyan S, Da Sacco S, Milanesi A, Shiri L, Petrosyan A, Varimezova R et al (2012) Injection of amniotic fluid stem cells delays progression of renal fibrosis. J Am Soc Nephrol 23(4):661–673, Pubmed Central PMCID: Pmc3312511. Epub 2012/02/04. engCrossRefPubMedPubMedCentralGoogle Scholar
- Sessarego N, Parodi A, Podestà M, Benvenuto F, Mogni M, Raviolo V et al (2008) Multipotent mesenchymal stromal cells from amniotic fluid: solid perspectives for clinical application. Haematologica 93(3):339–346CrossRefPubMedGoogle Scholar
- Shaw S-WS (2014) Amniotic fluid stem cells for minimally invasive prenatal cell therapy. Gynecol Minimally Invasive Ther 3(1):1–6CrossRefGoogle Scholar
- Streubel B, Martucci-Ivessa G, Fleck T, Bittner R (1995) In vitro transformation of amniotic cells to muscle cells—background and outlook. Wien Med Wochenschr 146(9–10):216–217Google Scholar
- Sun Q, Li F, Li H, Chen RH, Gu YZ, Chen Y et al (2015) Amniotic fluid stem cells provide considerable advantages in epidermal regeneration: B7H4 creates a moderate inflammation microenvironment to promote wound repair. Sci Rep 5:11560, Pubmed Central PMCID: Pmc4477371. Epub 2015/06/24. engCrossRefPubMedPubMedCentralGoogle Scholar
- Torricelli F, Brizzi L, Bernabei P, Gheri G, Di Lollo S, Nutini L et al (1992) Identification of hematopoietic progenitor cells in human amniotic fluid before the 12th week of gestation. Ital J Anat Embryol 98(2):119–126Google Scholar
- Tsai M-S, Hwang S-M, Tsai Y-L, Cheng F-C, Lee J-L, Chang Y-J (2006) Clonal amniotic fluid-derived stem cells express characteristics of both mesenchymal and neural stem cells. Biol Reprod 74(3):545–551CrossRefPubMedGoogle Scholar
- Vadasz S, Jensen T, Moncada C, Girard E, Zhang F, Blanchette A et al (2014) Second and third trimester amniotic fluid mesenchymal stem cells can repopulate a de-cellularized lung scaffold and express lung markers. J Pediatr Surg 49(11):1554–1563CrossRefPubMedGoogle Scholar
- Xinaris C, Benedetti V, Novelli R, Abbate M, Rizzo P, Conti S et al (2016) Functional human podocytes generated in organoids from amniotic fluid stem cells. J Am Soc Nephrol 27(5):1400–1411, Pubmed Central PMCID: Pmc4849826. Epub 2015/10/31. engCrossRefPubMedGoogle Scholar
- Yeh YC, Wei HJ, Lee WY, Yu CL, Chang Y, Hsu LW et al (2010) Cellular cardiomyoplasty with human amniotic fluid stem cells: in vitro and in vivo studies. Tissue Eng Part A 16(6):1925–1936, Epub 2010/01/14. engCrossRefPubMedGoogle Scholar
- Yokoyama T, Huard J, Chancellor MB (2000) Myoblast therapy for stress urinary incontinence and bladder dysfunction. World J Urol 18(1):56–61CrossRefPubMedGoogle Scholar
- Yoon BS, Moon JH, Jun EK, Kim J, Maeng I, Kim JS et al (2010) Secretory profiles and wound healing effects of human amniotic fluid-derived mesenchymal stem cells. Stem Cells Dev 19(6):887–902, Epub 2009/08/19. engCrossRefPubMedGoogle Scholar
- Zhu H, Lensch MW, Cahan P, Daley GQ (2011) Investigating monogenic and complex diseases with pluripotent stem cells. Nat Rev Genet 12(4):266–275CrossRefPubMedGoogle Scholar