Skip to main content

Human Amniotic Membrane as a Biological Source for Regenerative Medicine

  • Chapter
  • First Online:
Perinatal Tissue-Derived Stem Cells

Abstract

The application of the matrix and cellular component of amniotic membrane to increase the regenerative potential of injured tissue dates back to several decades ago. The positive effects of this application have led to the in-depth studies of the properties of human amniotic membrane as a biological modality for regenerative medicine. In this chapter, the structural components and properties of human amniotic membrane and some of its applications are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbasi-Montazeri E, Khosravi AD, Feizabadi MM, Goodarzi H, Khoramrooz SS, Mirzaii M, Kalantar E, Darban-Sarokhalil D (2013) The prevalence of methicillin resistant Staphylococcus aureus (MRSA) isolates with high-level mupirocin resistance from patients and personnel in a burn center. Burns 39:650–654

    Article  PubMed  Google Scholar 

  • Alemdaroğlu C, Değim Z, Çelebi N, Zor F, Özturk S, Erdoğan D (2006) An investigation on burn wound healing in rats with chitosan gel formulation containing epidermal growth factor. Burns 32:319–327

    Article  PubMed  Google Scholar 

  • Alemdaroğlu C, Degim Z, Celebi N, Şengezer M, Alömeroglu M, Nacar A (2008) Investigation of epidermal growth factor containing liposome formulation effects on burn wound healing. J Biomed Mater Res A 85:271–283

    Article  PubMed  CAS  Google Scholar 

  • Alibardi L (2003) Adaptation to the land: the skin of reptiles in comparison to that of amphibians and endotherm amniotes. J Exp Zool B Mol Dev Evol 298:12–41

    Article  PubMed  Google Scholar 

  • Aplin J, Campbell S, Allen TD (1985) The extracellular matrix of human amniotic epithelium: ultrastructure, composition and deposition. J Cell Sci 79:119–136

    CAS  PubMed  Google Scholar 

  • Atiyeh BS, Hayek SN, Gunn SW (2005) New technologies for burn wound closure and healing—review of the literature. Burns 31:944–956

    Article  PubMed  Google Scholar 

  • Atiyeh BS, Costagliola M, Hayek SN, Dibo SA (2007) Effect of silver on burn wound infection control and healing: review of the literature. Burns 33:139–148

    Article  PubMed  Google Scholar 

  • Azami M, Tavakol S, Samadikuchaksaraei A, Hashjin MS, Baheiraei N, Kamali M, Nourani MR (2012) A porous hydroxyapatite/gelatin nanocomposite scaffold for bone tissue repair: in vitro and in vivo evaluation. J Biomater Sci Polym Ed 23:2353–2368

    CAS  PubMed  Google Scholar 

  • Azuara-Blanco A, Pillai C, Dua HS (1999) Amniotic membrane transplantation for ocular surface reconstruction. Br J Ophthalmol 83:399–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barret JP, Dziewulski P, Ramzy PI, Wolf SE, Desai MH, Herndon DN (2000) Biobrane versus 1% silver sulfadiazine in second-degree pediatric burns. Plast Reconstr Surg 105:62–65

    Article  CAS  PubMed  Google Scholar 

  • Baskovich B, Sampson EM, Schultz GS, Parnell LK (2008) Wound dressing components degrade proteins detrimental to wound healing. Int Wound J 5:543–551

    Article  PubMed  Google Scholar 

  • Baulier E, Favreau F, LE Corf A, Jayle C, Schneider F, Goujon J-M, Feraud O, Bennaceur-Griscelli A, Hauet T, Turhan AG (2014) Amniotic fluid-derived mesenchymal stem cells prevent fibrosis and preserve renal function in a preclinical porcine model of kidney transplantation. Stem Cells Transl Med 3(7):809–820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bello YM, Phillips TJ (2000) Recent advances in wound healing. JAMA 283:716–718

    Article  CAS  PubMed  Google Scholar 

  • Bilic G, Zeisberger SM, Mallik AS, Zimmermann R, Zisch AH (2008) Comparative characterization of cultured human term amnion epithelial and mesenchymal stromal cells for application in cell therapy. Cell Transplant 17:955–968

    Article  PubMed  Google Scholar 

  • Bleggi-Torres L, Werner B, Piazza M (1997) Ultrastructural study of the neovagina following the utilization of human amniotic membrane for treatment of congenital absence of the vagina. Braz J Med Biol Res 30:861–864

    Article  CAS  PubMed  Google Scholar 

  • Bose B (1979) Burn wound dressing with human amniotic membrane. Ann R Coll Surg Engl 61:444

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boulton AJ, Kirsner RS, Vileikyte L (2004) Neuropathic diabetic foot ulcers. N Engl J Med 351:48–55

    Article  CAS  PubMed  Google Scholar 

  • Bravo D, Rigley TH, Gibran N, Strong DM, Newman-Gage H (2000) Effect of storage and preservation methods on viability in transplantable human skin allografts. Burns 26:367–378

    Article  CAS  PubMed  Google Scholar 

  • Bromberg BE, Song IC, Mohn MP (1965) The use of pig skin as a temporary biological dressing. Plast Reconstr Surg 36:80–90

    Article  CAS  PubMed  Google Scholar 

  • Brown GL, Nanney LB, Griffen J, Cramer AB, Yancey JM, Curtsinger LJ III, Holtzin L, Schultz GS, Jurkiewicz MJ, Lynch JB (1989) Enhancement of wound healing by topical treatment with epidermal growth factor. N Engl J Med 321:76–79

    Article  CAS  PubMed  Google Scholar 

  • Bujang-Safawi E, Halim A, Khoo T, Dorai A (2010) Dried irradiated human amniotic membrane as a biological dressing for facial burns—A 7-year case series. Burns 36:876–882

    Article  CAS  PubMed  Google Scholar 

  • Burgos H (1986) Angiogenic factor from human term placenta. Purification and partial characterization. Eur J Clin Investig 16:486–493

    Article  CAS  Google Scholar 

  • Cao Y, Rodriguez A, Vacanti M, Ibarra C, Arevalo C, Vacanti CA (1998) Comparative study of the use of poly (glycolic acid), calcium alginate and pluronics in the engineering of autologous porcine cartilage. J Biomater Sci Polym Ed 9:475–487

    Article  CAS  PubMed  Google Scholar 

  • Carmeliet P (2003) Angiogenesis in health and disease. Nat Med 9:653–660

    Article  CAS  PubMed  Google Scholar 

  • Chang J-W, Hung S-P, Wu H-H, Wu W-M, Yang A-H, Tsai H-L, Yang L-Y, Lee OK (2011) Therapeutic effects of umbilical cord blood-derived mesenchymal stem cell transplantation in experimental lupus nephritis. Cell Transplant 20:245–257

    Article  PubMed  Google Scholar 

  • Chen J, Tseng S (1991) Abnormal corneal epithelial wound healing in partial-thickness removal of limbal epithelium. Invest Ophthalmol Vis Sci 32:2219–2233

    CAS  PubMed  Google Scholar 

  • Chen C, Lumsden AB, Ofenloch JC, Noe B, Campbell EJ, Stratford PW, Yianni YP, Taylor AS, Hanson SR (1997) Phosphorylcholine coating of ePTFE grafts reduces neointimal hyperplasia in canine model. Ann Vasc Surg 11:74–79

    Article  CAS  PubMed  Google Scholar 

  • Chen H-J, Pires RT, Tseng SC (2000) Amniotic membrane transplantation for severe neurotrophic corneal ulcers. Br J Ophthalmol 84:826–833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi YS, Kim JY, Wee WR, Lee JH (1998) Effect of the application of human amniotic membrane on rabbit corneal wound healing after excimer laser photorefractive keratectomy. Cornea 17:389–395

    Article  CAS  PubMed  Google Scholar 

  • Cohen S, Samadikuchaksaraei A, Polak JM, Bishop AE (2006) Antibiotics reduce the growth rate and differentiation of embryonic stem cell cultures. Tissue Eng 12:2025–2030

    Article  CAS  PubMed  Google Scholar 

  • Cribbs R, Luquette M, Besner G (1998) Acceleration of partial-thickness burn wound healing with topical application of heparin-binding EGF-like growth factor (HB-EGF). J Burn Care Rehabil 19:95–101

    Article  CAS  PubMed  Google Scholar 

  • Cribbs RK, Harding PA, Luquette MH, Besner GE (2002) Endogenous production of heparin-binding EGF-like growth factor during murine partial-thickness burn wound healing. J Burn Care Rehabil 23:116–125

    Article  PubMed  Google Scholar 

  • Davis JS (1910) Skin transplantation. Johns Hopkins Hosp Rep 15:307–396

    Google Scholar 

  • Daya SM, Bell RD, Habib NE, Powell-Richards A, Dua HS (2000) Clinical and pathologic findings in human keratolimbal allograft rejection. Cornea 19:443–450

    Article  CAS  PubMed  Google Scholar 

  • Deitch EA, Wheelahan TM, Rose MP, Clothier J, Cotter J (1983) Hypertrophic burn scars: analysis of variables. J Trauma Acute Care Surg 23:895–898

    Article  CAS  Google Scholar 

  • Diegelmann RF, Evans MC (2004) Wound healing: an overview of acute, fibrotic and delayed healing. Front Biosci 9:283–289

    Article  CAS  PubMed  Google Scholar 

  • Dietrich-Ntoukas T, Hofmann-Rummelt C, Kruse FE, Schlotzer-Schrehardt U (2012) Comparative analysis of the basement membrane composition of the human limbus epithelium and amniotic membrane epithelium. Cornea 31:564–569

    Article  PubMed  Google Scholar 

  • Dua HS, Azuara-Blanco A (2000) Autologous limbal transplantation in patients with unilateral corneal stem cell deficiency. Br J Ophthalmol 84:273–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dua HS, Forrester JV (1990) The corneoscleral limbus in human corneal epithelial wound healing. Am J Ophthalmol 110:646–656

    Article  CAS  PubMed  Google Scholar 

  • Dua HS, Gomes JA, King AJ, Maharajan VS (2004) The amniotic membrane in ophthalmology. Surv Ophthalmol 49:51–77

    Article  PubMed  Google Scholar 

  • Eaglstein WH (1985) Experiences with biosynthetic dressings. J Am Acad Dermatol 12:434–440

    Article  CAS  PubMed  Google Scholar 

  • Eftekharzadeh M, Nobakht M, Alizadeh A, Soleimani M, Hajghasem M, Kordestani Shargh B, Karkuki Osguei N, Behnam B, Samadikuchaksaraei A (2015) The effect of intrathecal delivery of bone marrow stromal cells on hippocampal neurons in rat model of Alzheimer’s disease. Iran J Basic Med Sci 18:520–525

    PubMed  PubMed Central  Google Scholar 

  • Eppler SM, Combs DL, Henry TD, Lopez JJ, Ellis SG, Yi JH, Annex BH, McCluskey ER, Zioncheck TF (2002) A target‐mediated model to describe the pharmacokinetics and hemodynamic effects of recombinant human vascular endothelial growth factor in humans. Clin Pharmacol Ther 72:20–32

    Article  CAS  PubMed  Google Scholar 

  • Epstein FH, Parry S, Strauss JF (1998) Premature rupture of the fetal membranes. N Engl J Med 338:663–670

    Article  Google Scholar 

  • Epstein FH, Singer AJ, Clark RA (1999) Cutaneous wound healing. N Engl J Med 341:738–746

    Article  Google Scholar 

  • Fang C-H, Jin J, Joe J-H, Song Y-S, So B-I, Lim SM, Cheon GJ, Woo S-K, Ra J-C, Lee Y-Y (2012) In vivo differentiation of human amniotic epithelial cells into cardiomyocyte-like cells and cell transplantation effect on myocardial infarction in rats: comparison with cord blood and adipose tissue-derived mesenchymal stem cells. Cell Transplant 21:1687–1696

    Article  PubMed  Google Scholar 

  • Fijan A, Hashemi A, Namazi H (2014) A novel use of amniotic membrane for fingertip injuries. J Wound Care 23:255–258

    Article  CAS  PubMed  Google Scholar 

  • Fukuda K, Chikama T-I, Nakamura M, Nishida T (1999) Differential distribution of subchains of the basement membrane components type IV collagen and laminin among the amniotic membrane, cornea, and conjunctiva. Cornea 18:73–79

    Article  CAS  PubMed  Google Scholar 

  • Ghalambor A, Pipelzadeh MH, Khodadadi A (2000) The amniotic membrane: a suitable biological dressing to prevent infection in thermal burns. Med J Islamic Acad Sci 13:115–118

    Google Scholar 

  • Gholipourmalekabadi M, Nezafati N, Hajibaki L, Mozafari M, Moztarzadeh F, Hesaraki S, Samadikuchaksaraei A (2015a) Detection and qualification of optimum antibacterial and cytotoxic activities of silver-doped bioactive glasses. IET Nanobiotechnol 9(4):209–214

    Article  PubMed  Google Scholar 

  • Gholipourmalekabadi M, Bandehpour M, Mozafari M, Hashemi A, Ghanbarian H, Sameni M, Salimi M, Gholami M, Samadikuchaksaraei A (2015b) Decellularized human amniotic membrane: more is needed for an efficient dressing for protection of burns against antibiotic-resistant bacteria isolated from burn patients. Burns 41:1488–1497

    Article  CAS  PubMed  Google Scholar 

  • Gholipourmalekabadi M, Mozafari M, Bandehpour M, Salehi M, Sameni M, Caicedo HH, Mehdipour A, Hamidabadi HG, Samadikuchaksaraei A, Ghanbarian H (2015c) Optimization of nanofibrous silk fibroin scaffold as a delivery system for bone marrow adherent cells: in vitro and in vivo studies. Biotechnol Appl Biochem 62(6):785–794

    Article  CAS  PubMed  Google Scholar 

  • Gholipourmalekabadi M, Mozafari M, Salehi M, Seifalian A, Bandehpour M, Ghanbarian H, Urbanska AM, Sameni M, Samadikuchaksaraei A, Seifalian AM (2015d) Development of a cost‐effective and simple protocol for decellularization and preservation of human amniotic membrane as a soft tissue replacement and delivery system for bone marrow stromal cells. Adv Healthc Mater 4:918–926

    Article  CAS  PubMed  Google Scholar 

  • Gholipourmalekabadi M, Sameni M, Hashemi A, Zamani F, Rostami A, Mozafari M (2015e) Silver-and fluoride-containing mesoporous bioactive glasses versus commonly used antibiotics: activity against multidrug-resistant bacterial strains isolated from patients with burns. Burns 42(1):131–140

    Article  PubMed  Google Scholar 

  • Gholipourmalekabadi M, Sameni M, Radenkovic D, Mozafari M, Mossahebi‐Mohammadi M, Seifalian A (2016) Decellularized human amniotic membrane: how viable is it as a delivery system for human adipose tissue‐derived stromal cells? Cell Prolif 49:115–121

    Article  CAS  PubMed  Google Scholar 

  • Greenhalgh DG (1996) The role of growth factors in wound healing. J Trauma Acute Care Surg 41:159–167

    Article  CAS  Google Scholar 

  • Groeber F, Holeiter M, Hampel M, Hinderer S, Schenke-Layland K (2011) Skin tissue engineering—in vivo and in vitro applications. Adv Drug Deliv Rev 63:352–366

    Article  CAS  PubMed  Google Scholar 

  • Grueterich M, Espana EM, Tseng SC (2003) Ex vivo expansion of limbal epithelial stem cells: amniotic membrane serving as a stem cell niche. Surv Ophthalmol 48:631–646

    Article  PubMed  Google Scholar 

  • Gu H-W, Bian D-M, Hu N, Zhang J-F (2011) Effects of amniotic membrane transplantation on cytokines expression in chemically burned rat corneas. Int J Ophthalmol 4:33

    PubMed  PubMed Central  Google Scholar 

  • Haberal M, Oner Z, Bayraktar U, Bilgin N (1987) The use of silver nitrate-incorporated amniotic membrane as a temporary dressing. Burns 13:159–163

    Article  CAS  Google Scholar 

  • Halim AS, Khoo TL, Yussof SJM (2010) Biologic and synthetic skin substitutes: An overview. Indian journal of plastic surgery 43:S23

    Article  PubMed  PubMed Central  Google Scholar 

  • Hao Y, Ma DH-K, Hwang DG, Kim W-S, Zhang F (2000) Identification of antiangiogenic and antiinflammatory proteins in human amniotic membrane. Cornea 19:348–352

    Article  CAS  PubMed  Google Scholar 

  • Harder J, Meyer-Hoffert U, Teran LM, Schwichtenberg L, Bartels J, Maune S, Schroder J-M (2000) Mucoid Pseudomonas aeruginosa, TNF-α, and IL-1 β, but Not IL-6, induce human β-defensin-2 in respiratory epithelia. Am J Respir Cell Mol Biol 22:714–721

    Article  CAS  PubMed  Google Scholar 

  • He Q, Chen B, Wang Z, Li Q (2002) [The experimental study of culture in vitro of fibroblasts seeded onto human amnion extracellular matrix (HA-ECM)]. Zhonghua zheng xing wai ke za zhi 18:229–231

    PubMed  Google Scholar 

  • Heiligenhaus A, Heinz C, Schmitz K, Tappeiner C, Bauer D, Meller D (2008) Amniotic membrane transplantation for the treatment of corneal ulceration in infectious keratitis. In: Cornea and external eye disease. Springer, New York

    Google Scholar 

  • Herndon DN, Barrow RE, Rutan RL, Rutan TC, Desai MH, Abston S (1989) A comparison of conservative versus early excision. Therapies in severely burned patients. Ann Surg 209:547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Higa K, Shimmura S, Shimazaki J, Tsubota K (2005) Hyaluronic acid-CD44 interaction mediates the adhesion of lymphocytes by amniotic membrane stroma. Cornea 24:206–212

    Article  PubMed  Google Scholar 

  • Höckel M, Schlenger K, Doctrow S, Kissel T, Vaupel P (1993) Therapeutic angiogenesis. Arch Surg 128:423–429

    Article  PubMed  Google Scholar 

  • Hodde J (2002) Naturally occurring scaffolds for soft tissue repair and regeneration. Tissue Eng 8:295–308

    Article  CAS  PubMed  Google Scholar 

  • Hodge A, Lourensz D, Vaghjiani V, Nguyen H, Tchongue J, Wang B, Murthi P, Sievert W, Manuelpillai U (2014) Soluble factors derived from human amniotic epithelial cells suppress collagen production in human hepatic stellate cells. Cytotherapy 16:1132–1144

    Article  CAS  PubMed  Google Scholar 

  • Holland EJ (1996) Epithelial transplantation for the management of severe ocular surface disease. Trans Am Ophthalmol Soc 94:677

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang ES, Basu A, O’Grady M, Capretta JC (2009) Projecting the future diabetes population size and related costs for the US. Diabetes Care 32:2225–2229

    Article  PubMed  PubMed Central  Google Scholar 

  • Inge E, Talmi YP, Sigler L, Finkelstein Y, Zohar Y (1991) Antibacterial properties of human amniotic membranes. Placenta 12:285–288

    Article  PubMed  Google Scholar 

  • Insausti CL, Blanquer M, Bleda P, Iniesta P, Majado Martínez M, Castellanos G, Moraleda Jimenez JM (2010) The amniotic membrane as a source of stem cells. Histol Histopathol 25(1):91–98

    CAS  PubMed  Google Scholar 

  • Jafari J, Emami SH, Samadikuchaksaraei A, Bahar MA, Gorjipour F (2011) Electrospun chitosan-gelatin nanofiberous scaffold: fabrication and in vitro evaluation. Biomed Mater Eng 21:99–112

    CAS  PubMed  Google Scholar 

  • Jahovic N, Guzel E, Arbak S, Yeğen BÇ (2004) The healing-promoting effect of saliva on skin burn is mediated by epidermal growth factor (EGF): role of the neutrophils. Burns 30:531–538

    Article  PubMed  Google Scholar 

  • Jelenko C III (1967) Studies in burns. I. Water loss from the body surface. Ann Surg 165:83

    Article  PubMed  PubMed Central  Google Scholar 

  • John A, Oommen J (2010) Use of amniotic membrane in dermatology. Indian Journal of Dermatology, Venereology, and Leprology 76:196

    Article  Google Scholar 

  • Jones CA, Williams KA, Finlay-Jones JJ, Hart PH (1995) Interleukin 4 production by human amnion epithelial cells and regulation of its activity by glycosaminoglycan binding. Biol Reprod 52:839–847

    Article  CAS  PubMed  Google Scholar 

  • Kardas P, Devine S, Golembesky A, Roberts C (2005) A systematic review and meta-analysis of misuse of antibiotic therapies in the community. Int J Antimicrob Agents 26:106–113

    Article  CAS  PubMed  Google Scholar 

  • Keelan JA, Sato T, Mitchell MD (1997) Interleukin (IL)-6 and IL-8 production by human amnion: regulation by cytokines, growth factors, glucocorticoids, phorbol esters, and bacterial lipopolysaccharide. Biol Reprod 57:1438–1444

    Article  CAS  PubMed  Google Scholar 

  • Kesting MR, Wolff K-D, Hohlweg-Majert B, Steinstraesser L (2008) The role of allogenic amniotic membrane in burn treatment. Journal of burn care & research 29:907–916

    Article  Google Scholar 

  • Kim JC, Tseng SC (1995) Transplantation of preserved human amniotic membrane for surface reconstruction in severely damaged rabbit corneas. Cornea 14:473–484

    Article  CAS  PubMed  Google Scholar 

  • Kim JS, Kim JC, Na BK, Jeong JM, Song CY (2000) Amniotic membrane patching promotes healing and inhibits proteinase activity on wound healing following acute corneal alkali burn. Exp Eye Res 70:329–337

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Kang HM, Kim H, Kim MR, Kwon HC, Gye MC, Kang SG, Yang HS, You J (2007) Ex vivo characteristics of human amniotic membrane-derived stem cells. Cloning and stem cells 9:581–594

    Article  CAS  PubMed  Google Scholar 

  • Kim CH, Kim SS, Shon SK, Kim DH, Song CG, Kim HJ (2008) The effect of human amniotic membrane, epidermal cells and marrow mesenchymal stem cells in healing a skin defect. Journal of the Korean Orthopaedic Association 43:276–286

    Article  Google Scholar 

  • King AE, Critchley HO, Sallenave J-M, Kelly RW (2003) Elafin in human endometrium: an antiprotease and antimicrobial molecule expressed during menstruation. The Journal of Clinical Endocrinology & Metabolism 88:4426–4431

    Article  CAS  Google Scholar 

  • Koizumi N, Inatomi T, Quantock AJ, Fullwood NJ, Dota A, Kinoshita S (2000a) Amniotic membrane as a substrate for cultivating limbal corneal epithelial cells for autologous transplantation in rabbits. Cornea 19:65–71

    Article  CAS  PubMed  Google Scholar 

  • Koizumi N, Inatomi T, Sotozono C, Fullwood NJ, Quantock AJ, Kinoshita S (2000b) Growth factor mRNA and protein in preserved human amniotic membrane. Curr Eye Res 20:173–177

    Article  CAS  PubMed  Google Scholar 

  • Kondo T, Ishida Y (2010) Molecular pathology of wound healing. Forensic Sci Int 203:93–98

    Article  CAS  PubMed  Google Scholar 

  • Kruse FE, Rohrschneider K, Völcker HE (1999) Multilayer amniotic membrane transplantation for reconstruction of deep corneal ulcers. Ophthalmology 106:1504–1511

    Article  CAS  PubMed  Google Scholar 

  • Kuckelkorn R, Keller G, Redbrake C (2001) Long-term results of large diameter keratoplasties in the treatment of severe chemical and thermal eye burns. Klin Monatsbl Augenheilkd 218:542–552

    Article  CAS  PubMed  Google Scholar 

  • Lee S-H, Tseng SC (1997) Amniotic membrane transplantation for persistent epithelial defects with ulceration. Am J Ophthalmol 123:303–312

    Article  CAS  PubMed  Google Scholar 

  • Lee S-B, Li D-Q, Tan DT, Meller D, Tseng SC (2000) Suppression of TGF-ß signaling in both normal conjunctival fibroblasts and pterygial body fibroblasts by amniotic membrane. Curr Eye Res 20:325–334

    Article  CAS  PubMed  Google Scholar 

  • Lei H, Kalluri R, Furth EE, Baker AH, Strauss JF (1999) Rat amnion type IV collagen composition and metabolism: implications for membrane breakdown. Biol Reprod 60:176–182

    Article  CAS  PubMed  Google Scholar 

  • Lo V, Pope E (2009) Amniotic membrane use in dermatology. Int J Dermatol 48:935–940

    Article  CAS  PubMed  Google Scholar 

  • Loeffelbein DJ, Baumann C, Stoeckelhuber M, Hasler R, Mucke T, Steinsträßer L, Drecoll E, Wolff KD, Kesting MR (2012) Amniotic membrane as part of a skin substitute for full‐thickness wounds: an experimental evaluation in a porcine model. J Biomed Mater Res B Appl Biomater 100:1245–1256

    Article  PubMed  CAS  Google Scholar 

  • Loeffelbein DJ, Rohleder NH, Eddicks M, Baumann CM, Stoeckelhuber M, Wolff KD, Drecoll E, Steinstraesser L, Hennerbichler S, Kesting MR (2014). Evaluation of human amniotic membrane as a wound dressing for split-thickness skin-graft donor sites. Biomed Res Int 2014 Article ID 572183, 12 pages

    Google Scholar 

  • Luo J, Li X, Yang Z (2004) Preparation of human acellular amniotic membrane and its cytocompatibility and biocompatibility. Zhongguo xiu fu chong jian wai ke za zhi 18:108–111

    PubMed  Google Scholar 

  • Lynch J, Blocker T (1979) Thermal burns. Plastic Surgery 2:611–620

    Google Scholar 

  • Madison KC (2003) Barrier function of the skin: “la raison d’etre” of the epidermis. J Investig Dermatol 121:231–241

    Article  CAS  PubMed  Google Scholar 

  • Margolis DJ, Kantor J, Berlin JA (1999) Healing of diabetic neuropathic foot ulcers receiving standard treatment. A meta-analysis. Diabetes Care 22:692–695

    Article  CAS  PubMed  Google Scholar 

  • McCarthy DW, Downing MT, Brigstock DR, Luquette MH, Brown KD, Abad MS, Besner GE (1996) Production of heparin-binding epidermal growth factor-like growth factor (HB-EGF) at sites of thermal injury in pediatric patients. J Investig Dermatol 106:49–56

    Article  CAS  PubMed  Google Scholar 

  • Meinert M, Eriksen GV, Petersen AC, Helmig RB, Laurent C, Uldbjerg N, Malmström A (2001) Proteoglycans and hyaluronan in human fetal membranes. Am J Obstet Gynecol 184:679–685

    Article  CAS  PubMed  Google Scholar 

  • Meller D, Tseng SC (1999) Conjunctival epithelial cell differentiation on amniotic membrane. Investig Ophthalmol Vis Sci 40:878–886

    CAS  Google Scholar 

  • Mendelsohn M, Dunlop G (1998) Gore-tex augmentation grafting in rhinoplasty--Is it safe? Journal of Otolaryngology-Head & Neck Surgery 27:337

    CAS  Google Scholar 

  • Mermet I, Pottier N, Sainthillier JM, Malugani C, Cairey‐Remonnay S, Maddens S, Riethmuller D, Tiberghien P, Humbert P, Aubin F (2007) Use of amniotic membrane transplantation in the treatment of venous leg ulcers. Wound Repair Regen 15:459–464

    Article  PubMed  Google Scholar 

  • Meyer U, Handschel J, Meyer T, Wiesmann HP (2009) Fundamentals of tissue engineering and regenerative medicine. Springer, New York

    Book  Google Scholar 

  • Midwood KS, Williams LV, Schwarzbauer JE (2004) Tissue repair and the dynamics of the extracellular matrix. Int J Biochem Cell Biol 36:1031–1037

    Article  CAS  PubMed  Google Scholar 

  • Mligiliche N, Endo K, Okamoto K, Fujimoto E, Ide C (2002) Extracellular matrix of human amnion manufactured into tubes as conduits for peripheral nerve regeneration. J Biomed Mater Res 63:591–600

    Article  CAS  PubMed  Google Scholar 

  • Mobini S, Hoyer B, Solati-Hashjin M, Lode A, Nosoudi N, Samadikuchaksaraei A, Gelinsky M (2013a) Fabrication and characterization of regenerated silk scaffolds reinforced with natural silk fibers for bone tissue engineering. J Biomed Mater Res A 101:2392–2404

    Article  PubMed  CAS  Google Scholar 

  • Mobini S, Solati-Hashjin M, Peirovi H, Osman NAA, Gholipourmalekabadi M, Barati M, Samadikuchaksaraei A (2013b) Bioactivity and biocompatibility studies on silk-based scaffold for bone tissue engineering. J Med Biol Eng 33:207–214

    Article  Google Scholar 

  • Modesti A, Scarpa S, D’Orazi G, Simonelli L, Caramia FG (1989) Localization of type IV and V collagens in the stroma of human amnion. Prog Clin Biol Res 296:459

    CAS  PubMed  Google Scholar 

  • Mohammadi AA, Jafari SMS, Kiasat M, Tavakkolian AR, Imani MT, Ayaz M, Tolide-Ie HR (2013) Effect of fresh human amniotic membrane dressing on graft take in patients with chronic burn wounds compared with conventional methods. Burns 39:349–353

    Article  PubMed  Google Scholar 

  • Mohammadi AA, Sabet B, Riazi H, Tavakko-Lian AR, Mohammadi MK, Iranpak S (2015) Human amniotic membrane dressing: an excellent method for outpatient management of burn wounds. Iranian Journal of Medical Sciences 34:61–64

    Google Scholar 

  • Moncrief JA, Mason AD Jr (1964) Evaporative water loss in the burned patient. J Trauma Acute Care Surg 4:180–185

    Article  CAS  Google Scholar 

  • Moschidou D, Drews K, Eddaoudi A, Adjaye J, DE Coppi P, Guillot PV (2013) Molecular signature of human amniotic fluid stem cells during fetal development. Current stem cell research & therapy 8:73–81

    Article  CAS  Google Scholar 

  • Nakamura T, Inatomi T, Sotozono C, Ang LP, Koizumi N, Yokoi N, Kinoshita S (2006) Transplantation of autologous serum-derived cultivated corneal epithelial equivalents for the treatment of severe ocular surface disease. Ophthalmology 113:1765–1772

    Article  PubMed  Google Scholar 

  • Nezafati N, Moztarzadeh F, Hesaraki S, Mozafari M, Samadikuchaksaraei A, Hajibaki L, Gholipour M (2012) Effect of silver concentration on bioactivity and antibacterial properties of SiO2-CaO-P2O5 sol-gel derived bioactive glass. Key Eng Mater 493–494:74–79

    Google Scholar 

  • Niknejad H, Peirovi H, Jorjani M, Ahmadiani A, Ghanavi J, Seifalian AM (2008) Properties of the amniotic membrane for potential use in tissue engineering. Eur Cells Mater 15:88–99

    Article  CAS  Google Scholar 

  • Niknejad H, Paeini-Vayghan G, Tehrani F, Khayat-Khoei M, Peirovi H (2013) Side dependent effects of the human amnion on angiogenesis. Placenta 34:340–345

    Article  CAS  PubMed  Google Scholar 

  • Pan SC, Wu LW, Chen CL, Shieh SJ, Chiu HY (2010) Deep partial thickness burn blister fluid promotes neovascularization in the early stage of burn wound healing. Wound Repair Regen 18:311–318

    Article  PubMed  Google Scholar 

  • Papini R (2004) ABC of burns: management of burn injuries of various depths. BMJ: British Medical Journal 329:158

    Article  PubMed  PubMed Central  Google Scholar 

  • Parolini O, Alviano F, Bagnara GP, Bilic G, Buhring HJ, Evangelista M, Hennerbichler S, Liu B, Magatti M, Mao N (2008) Concise review: isolation and characterization of cells from human term placenta: outcome of the first international Workshop on Placenta Derived Stem Cells. Stem Cells 26:300–311

    Article  PubMed  Google Scholar 

  • Pellegrini G, Traverso CE, Franzi AT, Zingirian M, Cancedda R, DE Luca M (1997) Long-term restoration of damaged corneal surfaces with autologous cultivated corneal epithelium. Lancet 349:990–993

    Article  CAS  PubMed  Google Scholar 

  • Perin L, Sedrakyan S, Giuliani S, DA Sacco S, Carraro G, Shiri L, Lemley KV, Rosol M, Wu S, Atala A (2010) Protective effect of human amniotic fluid stem cells in an immunodeficient mouse model of acute tubular necrosis. PLoS One 5:e9357

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Proksch E, Brandner JM, Jensen JM (2008) The skin: an indispensable barrier. Exp Dermatol 17:1063–1072

    Article  PubMed  Google Scholar 

  • Rendal-Vázquez ME, San-Luis-Verdes A, Yebra-Pimentel-Vilar MT, López-Rodríguez I, Domenech-García N, Andión-Núñez C, Blanco-García F (2012) Culture of limbal stem cells on human amniotic membrane. Cell Tissue Bank 13:513–519

    Article  PubMed  CAS  Google Scholar 

  • Riau AK, Beuerman RW, Lim LS, Mehta JS (2010) Preservation, sterilization and de-epithelialization of human amniotic membrane for use in ocular surface reconstruction. Biomaterials 31:216–225

    Article  CAS  PubMed  Google Scholar 

  • Robson MC, Krizek TJ (1973) The effect of human amniotic membranes on the bacteria population of infected rat burns. Ann Surg 177:144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roh D-H, Seo M-S, Choi H-S, Park S-B, Han H-J, Beitz AJ, Kang K-S, Lee J-H (2013) Transplantation of human umbilical cord blood or amniotic epithelial stem cells alleviates mechanical allodynia after spinal cord injury in rats. Cell Transplant 22:1577–1590

    Article  PubMed  Google Scholar 

  • Saki M, Narbat MK, Samadikuchaksaraei A, Ghafouri HB, Gorjipour F (2009) Biocompatibility study of a hydroxyapatite-alumina and silicon carbide composite scaffold for bone tissue engineering. Yakhteh 11:55–60

    CAS  Google Scholar 

  • Samadikuchaksaraei A, Bishop AE (2006) Derivation and characterization of alveolar epithelial cells from murine embryonic stem cells in vitro. Methods Mol Biol 330:233–248

    CAS  PubMed  Google Scholar 

  • Samadikuchaksaraei A, Bishop AE (2007) Effects of growth factors on the differentiation of murine ESC into type II pneumocytes. Cloning Stem Cells 9:407–416

    Article  CAS  PubMed  Google Scholar 

  • Sangwan VS, Burman S, Tejwani S, Mahesh SP, Murthy R (2007) Amniotic membrane transplantation: a review of current indications in the management of ophthalmic disorders. Indian J Ophthalmol 55:251

    Article  PubMed  Google Scholar 

  • Sankar V, Muthusamy R (2003) Role of human amniotic epithelial cell transplantation in spinal cord injury repair research. Neuroscience 118:11–17

    Article  CAS  PubMed  Google Scholar 

  • Schwab IR, Reyes M, Isseroff RR (2000) Successful transplantation of bioengineered tissue replacements in patients with ocular surface disease. Cornea 19:421–426

    Article  CAS  PubMed  Google Scholar 

  • Shah AP (2014) Using amniotic membrane allografts in the treatment of neuropathic foot ulcers. J Am Podiatr Med Assoc 104:198–202

    Article  PubMed  Google Scholar 

  • Shapiro M, Friend J, Thoft R (1981) Corneal re-epithelialization from the conjunctiva. Invest Ophthalmol Vis Sci 21:135–142

    CAS  PubMed  Google Scholar 

  • Shevchenko RV, James SL, James SE (2010) A review of tissue-engineered skin bioconstructs available for skin reconstruction. J R Soc Interface 7:229–258

    Article  CAS  PubMed  Google Scholar 

  • Shimazaki J, Yang H-Y, Tsubota K (1997) Amniotic membrane transplantation for ocular surface reconstruction in patients with chemical and thermal burns. Ophthalmology 104:2068–2076

    Article  CAS  PubMed  Google Scholar 

  • Shimazaki J, Shinozaki N, Tsubota K (1998) Transplantation of amniotic membrane and limbal autograft for patients with recurrent pterygium associated with symblepharon. Br J Ophthalmol 82:235–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimmura S, Shimazaki J, Ohashi Y, Tsubota K (2001) Antiinflammatory effects of amniotic membrane transplantation in ocular surface disorders. Cornea 20:408–413

    Article  CAS  PubMed  Google Scholar 

  • Shoae-Hassani A, Mortazavi-Tabatabaei SA, Sharif S, Seifalian AM, Azimi A, Samadikuchaksaraei A, Verdi J (2015) Differentiation of human endometrial stem cells into urothelial cells on a three-dimensional nanofibrous silk-collagen scaffold: an autologous cell resource for reconstruction of the urinary bladder wall. J Tissue Eng Regen Med 9:1268–1276

    Article  CAS  PubMed  Google Scholar 

  • Shores JT, Gabriel A, Gupta S (2007) Skin substitutes and alternatives: a review. Adv Skin Wound Care 20:493–508

    Article  PubMed  Google Scholar 

  • Siti-Ismail N, Samadikuchaksaraei A, Bishop AE, Polak JM, Mantalaris A (2012) Development of a novel three-dimensional, automatable and integrated bioprocess for the differentiation of embryonic stem cells into pulmonary alveolar cells in a rotating vessel bioreactor system. Tissue Eng Part C Methods 18:263–272

    Article  CAS  PubMed  Google Scholar 

  • Skardal A, Mack D, Kapetanovic E, Atala A, Jackson JD, Yoo J, Soker S (2012) Bioprinted amniotic fluid-derived stem cells accelerate healing of large skin wounds. Stem cells translational medicine 1:792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Snyder RJ, Kirsner RS, Warriner R III, Lavery LA, Hanft JR, Sheehan P (2010) Consensus recommendations on advancing the standard of care for treating neuropathic foot ulcers in patients with diabetes. Ostomy Wound Manage 56:S1–S24

    PubMed  Google Scholar 

  • Solomon A, Rosenblatt M, Monroy D, Ji Z, Pflugfelder SC, Tseng SC (2001) Suppression of interleukin 1α and interleukin 1β in human limbal epithelial cells cultured on the amniotic membrane stromal matrix. Br J Ophthalmol 85:444–449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sorsby A, Symons H (1946) Amniotic membrane grafts in caustic burns of the eye:(Burns of the second degree). Br J Ophthalmol 30:337

    Article  PubMed Central  Google Scholar 

  • Sorsby A, Haythorne J, Reed H (1947) Further experience with amniotic membrane grafts in caustic burns of the eye. Br J Ophthalmol 31:409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stern M (1913) The grafting of preserved amniotic membrane to burned and ulcerated surfaces, substituing skin grafts: a preliminary report. J Am Med Assoc 60:973–974

    Article  Google Scholar 

  • Stern HS (1989) Silver sulphadiazine and the healing of partial thickness burns: a prospective clinical trial. Br J Plast Surg 42:581–585

    Article  CAS  PubMed  Google Scholar 

  • Sutherland AJ, Converse GL, Hopkins RA, Detamore MS (2015) The bioactivity of cartilage extracellular matrix in articular cartilage regeneration. Advanced healthcare materials 4:29–39

    Article  CAS  PubMed  Google Scholar 

  • Tchah H, Lee S-A, Sung K, Cho BJ, Kook MS (2003) Apoptosis in keratocytes caused by mitomycin C. Invest Ophthalmol Vis Sci 44:1912–1917

    Article  PubMed  Google Scholar 

  • Tehrani FA, Ahmadiani A, Niknejad H (2013) The effects of preservation procedures on antibacterial property of amniotic membrane. Cryobiology 67:293–298

    Article  CAS  PubMed  Google Scholar 

  • Thibault RA, Mikos AG, Kasper FK (2013) Scaffold/extracellular matrix hybrid constructs for bone‐tissue engineering. Advanced healthcare materials 2:13–24

    Article  CAS  PubMed  Google Scholar 

  • Thompson WD, Li WW, Maragoudakis M (2000) The clinical manipulation of angiogenesis: pathology, side‐effects, surprises, and opportunities with novel human therapies. J Pathol 190:330–337

    Article  CAS  PubMed  Google Scholar 

  • Toomey N, Monaghan Á, Fanning S, Bolton D (2009) Transfer of antibiotic resistance marker genes between lactic acid bacteria in model rumen and plant environments. Appl Environ Microbiol 75:3146–3152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trelford JD, Trelford-Sauder M (1979) The amnion in surgery, past and present. Am J Obstet Gynecol 134:833–845

    Article  CAS  PubMed  Google Scholar 

  • Tsai RJ-F, Li L-M, Chen J-K (2000) Reconstruction of damaged corneas by transplantation of autologous limbal epithelial cells. N Engl J Med 343:86–93

    Article  CAS  PubMed  Google Scholar 

  • Tseng SC, Prabhasawat P, Barton K, Gray T, Meller D (1998) Amniotic membrane transplantation with or without limbal allografts for corneal surface reconstruction in patients with limbal stem cell deficiency. Arch Ophthalmol 116:431–441

    Article  CAS  PubMed  Google Scholar 

  • Van Vranken BE, Rippon HJ, Samadikuchaksaraei A, Trounson AO, Bishop AE (2007) The differentiation of distal lung epithelium from embryonic stem cells. Curr Protoc Stem Cell Biol Chapter 1, Unit 1G 1

    Google Scholar 

  • Werner S, Grose R (2003) Regulation of wound healing by growth factors and cytokines. Physiol Rev 83:835–870

    CAS  PubMed  Google Scholar 

  • Wilshaw S-P, Kearney JN, Fisher J, Ingham E (2006) Production of an acellular amniotic membrane matrix for use in tissue engineering. Tissue Eng 12:2117–2129

    Article  CAS  PubMed  Google Scholar 

  • Wolbank S, Hildner F, Redl H, VAN Griensven M, Gabriel C, Hennerbichler S (2009) Impact of human amniotic membrane preparation on release of angiogenic factors. J Tissue Eng Regen Med 3:651–654

    Article  CAS  PubMed  Google Scholar 

  • Wolf HJ, Schmidt W, Drenckhahn D (1991) Immunocytochemical analysis of the cytoskeleton of the human amniotic epithelium. Cell Tissue Res 266:385–389

    Article  CAS  PubMed  Google Scholar 

  • Yildirimer L, Thanh NT, Seifalian AM (2012) Skin regeneration scaffolds: a multimodal bottom-up approach. Trends Biotechnol 30:638–648

    Article  CAS  PubMed  Google Scholar 

  • Yoon BS, Moon J-H, Jun EK, Kim J, Maeng I, Kim JS, Lee JH, Baik CS, Kim A, Cho KS (2009) Secretory profiles and wound healing effects of human amniotic fluid–derived mesenchymal stem cells. Stem Cells Dev 19:887–902

    Article  CAS  Google Scholar 

  • Yu SJ, Soncini M, Kaneko Y, Hess DC, Parolini O, Borlongan CV (2009) Amnion: a potent graft source for cell therapy in stroke. Cell Transplant 18:111–118

    Article  PubMed  Google Scholar 

  • Zhang T, Yam GH-F, Riau AK, Poh R, Allen JC, Peh GS, Beuerman RW, Tan DT, Mehta JS (2013) The effect of amniotic membrane de-epithelialization method on its biological properties and ability to promote limbal epithelial cell culture the effect of amniotic membrane denudation methods. Invest Ophthalmol Vis Sci 54:3072–3081

    Article  CAS  PubMed  Google Scholar 

  • Zheng Y-B, Gao Z-L, Xie C, Zhu H-P, Peng L, Chen J-H, Chong YT (2008) Characterization and hepatogenic differentiation of mesenchymal stem cells from human amniotic fluid and human bone marrow: a comparative study. Cell Biol Int 32:1439–1448

    Article  CAS  PubMed  Google Scholar 

  • Zheng Y-B, Zhang X-H, Huang Z-L, Lin C-S, Lai J, Gu Y-R, Lin B-L, Xie D-Y, Xie S-B, Peng L (2012) Amniotic-fluid–derived mesenchymal stem cells overexpressing interleukin-1 receptor antagonist improve fulminant hepatic failure. PLoS One 7(7):e41392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Samadikuchaksaraei M.D., Ph.D., D.I.C., F.R.S.P.H. .

Editor information

Editors and Affiliations

Additional information

Author Contributions

Designed: Samadikuchaksaraei. Wrote the manuscript: Gholipourmalekabadi, Chauhan, Farhadihosseinabad. Commented and finalized: Samadikuchaksaraei.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gholipourmalekabadi, M., Chauhan, N.P.S., Farhadihosseinabad, B., Samadikuchaksaraei, A. (2016). Human Amniotic Membrane as a Biological Source for Regenerative Medicine. In: Arjmand, B. (eds) Perinatal Tissue-Derived Stem Cells. Stem Cell Biology and Regenerative Medicine. Humana Press, Cham. https://doi.org/10.1007/978-3-319-46410-7_5

Download citation

Publish with us

Policies and ethics