Skip to main content

Perinatal Tissue-Derived Endothelial Progenitor Cells

  • Chapter
  • First Online:

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

Abstract

Endothelial progenitor cells (EPC) have been proposed as a cell population with de novo vessel formation potential for cardiovascular disease treatment, through improving neovascularization in ischemic tissues. Although initially the bone marrow was considered as the main source, EPC have been isolated from other tissues, including perinatal sources: umbilical cord blood and placenta. Perinatal EPC demonstrated similar phenotypic characteristics to other sources; however, they harbor advanced EPC quantity with improved proliferative potential. In vivo experiments also confirmed de novo vessel formation upon perinatal EPC transplantation and enhanced blood perfusion in engraftment areas. Altogether, the fetal EPC have been isolated and characterized from perinatal tissues with improved vascularization potential and at clinically relevant quantities. In this chapter, we will first review vascularization processes in the human placenta and then highlight strategies which have been conducted to harvest EPC from the human term placenta.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abumaree M, Al Jumah M, Kalionis B, Jawdat D, Al Khaldi A, AlTalabani A, Knawy B (2013) Phenotypic and functional characterization of mesenchymal stem cells from chorionic villi of human term placenta. Stem Cell Rev Rep 9(1):16–31

    Article  CAS  Google Scholar 

  • Aoki J, Serruys PW, van Beusekom H, Ong AT, McFadden EP, Sianos G, van der Giessen WJ, Regar E, de Feyter PJ, Davis HR (2005) Endothelial progenitor cell capture by stents coated with antibody against CD34: the HEALING-FIM (Healthy Endothelial Accelerated Lining Inhibits Neointimal Growth-First In Man) registry. J Am Coll Cardiol 45(10):1574–1579

    Article  CAS  PubMed  Google Scholar 

  • Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schatteman G, Isner JM (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275(5302):964–966

    Article  CAS  PubMed  Google Scholar 

  • Asahara T, Masuda H, Takahashi T, Kalka C, Pastore C, Silver M, Kearne M, Magner M, Isner JM (1999) Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res 85(3):221–228

    Article  CAS  PubMed  Google Scholar 

  • Awad O, Dedkov EI, Jiao C, Bloomer S, Tomanek RJ, Schatteman GC (2006) Differential healing activities of CD34+ and CD14+ endothelial cell progenitors. Arterioscler Thromb Vasc Biol 26(4):758–764

    Article  CAS  PubMed  Google Scholar 

  • Bailey AS, Jiang S, Afentoulis M, Baumann CI, Schroeder DA, Olson SB, Wong MH, Fleming WH (2004) Transplanted adult hematopoietic stems cells differentiate into functional endothelial cells. Blood 103(1):13–19

    Article  CAS  PubMed  Google Scholar 

  • Baldwin HS (1996) Early embryonic vascular development. Cardiovasc Res 31Spec No:E34–45

    Google Scholar 

  • Beck L Jr, D’Amore PA (1997) Vascular development: cellular and molecular regulation. FASEB J 11(5):365–373

    CAS  PubMed  Google Scholar 

  • Beck F, Erler T, Russell A, James R (1995) Expression of Cdx‐2 in the mouse embryo and placenta: possible role in patterning of the extra‐embryonic membranes. Dev Dyn 204(3):219–227

    Article  CAS  PubMed  Google Scholar 

  • Carmeliet P (2005) Angiogenesis in life, disease and medicine. Nature 438(7070):932–936

    Article  CAS  PubMed  Google Scholar 

  • Case J, Mead LE, Bessler WK, Prater D, White HA, Saadatzadeh MR, Bhavsar JR, Yoder MC, Haneline LS, Ingram DA (2007) Human CD34< sup>+ AC133< sup>+ VEGFR-2< sup>+ cells are not endothelial progenitor cells but distinct, primitive hematopoietic progenitors. Exp Hematol 35(7):1109–1118

    Google Scholar 

  • Caspi O, Lesman A, Basevitch Y, Gepstein A, Arbel G, Habib IHM, Gepstein L, Levenberg S (2007) Tissue engineering of vascularized cardiac muscle from human embryonic stem cells. Circ Res 100(2):263–272

    Article  CAS  PubMed  Google Scholar 

  • Castrechini N, Murthi P, Gude NM, Erwich JJ, Gronthos S, Zannettino A, Brennecke SP, Kalionis B (2010) Mesenchymal stem cells in human placental chorionic villi reside in a vascular Niche. Placenta 31(3):203–212

    Article  CAS  PubMed  Google Scholar 

  • Charnock-Jones D, Kaufmann P, Mayhew T (2004) Aspects of human fetoplacental vasculogenesis and angiogenesis. I. Molecular regulation. Placenta 25(2):103–113

    Article  CAS  PubMed  Google Scholar 

  • Choong CS, Hutmacher DW, Triffitt JT (2006) Co-culture of bone marrow fibroblasts and endothelial cells on modified polycaprolactone substrates for enhanced potentials in bone tissue engineering. Tissue Eng 12(9):2521–2531

    Article  CAS  PubMed  Google Scholar 

  • Demir R, Seval Y, Huppertz B (2007) Vasculogenesis and angiogenesis in the early human placenta. Acta Histochem 109(4):257–265

    Article  CAS  PubMed  Google Scholar 

  • Dimmeler S, Zeiher AM (2009) Cell therapy of acute myocardial infarction: open questions. Cardiology 113(3):155–160. doi:10.1159/000187652

    Article  PubMed  Google Scholar 

  • Duttenhoefer F, Lara de Freitas R, Meury T, Loibl M, Benneker LM, Richards RG, Alini M, Verrier S (2013) 3D scaffolds co-seeded with human endothelial progenitor and mesenchymal stem cells: evidence of prevascularisation within 7 days. Eur Cells Mater 26:49–65

    CAS  Google Scholar 

  • Eichmann A, Pardanaud L, Yuan L, Moyon D (2002) Vasculogenesis and the search for the hemangioblast. J Hematother Stem Cell Res 11(2):207–214

    Article  PubMed  Google Scholar 

  • Fadini GP, Losordo D, Dimmeler S (2012) Critical reevaluation of endothelial progenitor cell phenotypes for therapeutic and diagnostic use. Circ Res 110(4):624–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghabrial AS, Krasnow MA (2006) Social interactions among epithelial cells during tracheal branching morphogenesis. Nature 441(7094):746–749

    Article  CAS  PubMed  Google Scholar 

  • Golos TG (2011) Stem cells from the placenta. In: Kay HH, Michael Nelson D, Wang Y (eds) The placenta: from development to disease, from development to disease. Wiley, New York, pp 327–333

    Chapter  Google Scholar 

  • Grant MB, May WS, Caballero S, Brown GA, Guthrie SM, Mames RN, Byrne BJ, Vaught T, Spoerri PE, Peck AB (2002) Adult hematopoietic stem cells provide functional hemangioblast activity during retinal neovascularization. Nat Med 8(6):607–612

    Article  CAS  PubMed  Google Scholar 

  • Grellier M, Bordenave L, Amedee J (2009) Cell-to-cell communication between osteogenic and endothelial lineages: implications for tissue engineering. Trends Biotechnol 27(10):562–571

    Article  CAS  PubMed  Google Scholar 

  • He T, Smith LA, Harrington S, Nath KA, Caplice NM, Katusic ZS (2004) Transplantation of circulating endothelial progenitor cells restores endothelial function of denuded rabbit carotid arteries. Stroke 35(10):2378–2384

    Article  PubMed  Google Scholar 

  • Hill JM, Zalos G, Halcox JP, Schenke WH, Waclawiw MA, Quyyumi AA, Finkel T (2003) Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med 348(7):593–600. doi:10.1056/NEJMoa022287

    Article  PubMed  Google Scholar 

  • Hirata K, Li T-S, Nishida M, Ito H, Matsuzaki M, Kasaoka S, Hamano K (2003) Autologous bone marrow cell implantation as therapeutic angiogenesis for ischemic hindlimb in diabetic rat model. Am J Phys Heart Circ Phys 284(1):H66–H70

    CAS  Google Scholar 

  • Hofmann A, Ritz U, Verrier S, Eglin D, Alini M, Fuchs S, Kirkpatrick CJ, Rommens PM (2008) The effect of human osteoblasts on proliferation and neo-vessel formation of human umbilical vein endothelial cells in a long-term 3D co-culture on polyurethane scaffolds. Biomaterials 29(31):4217–4226. doi:10.1016/j.biomaterials.2008.07.024

    Article  CAS  PubMed  Google Scholar 

  • Hofmann NA, Reinisch A, Strunk D (2009) Isolation and large scale expansion of adult human endothelial colony forming progenitor cells. Journal of visualized experiments: JoVE 32:1524

    Google Scholar 

  • Hristov M, Erl W, Weber PC (2003) Endothelial progenitor cells: mobilization, differentiation, and homing. Arterioscler Thromb Vasc Biol 23(7):1185–1189. doi:10.1161/01.ATV.0000073832.49290.B5

    Article  CAS  PubMed  Google Scholar 

  • Huppertz B, Peeters LL (2005) Vascular biology in implantation and placentation. Angiogenesis 8(2):157–167

    Article  PubMed  Google Scholar 

  • Hur J, Yoon C-H, Kim H-S, Choi J-H, Kang H-J, Hwang K-K, Oh B-H, Lee M-M, Park Y-B (2004) Characterization of two types of endothelial progenitor cells and their different contributions to neovasculogenesis. Arteriosclerosis, thrombosis, and vascular biology 24 (2):288–293

    Google Scholar 

  • Igura K, Zhang X, Takahashi K, Mitsuru A, Yamaguchi S, Takahashi T (2004) Isolation and characterization of mesenchymal progenitor cells from chorionic villi of human placenta. Cytotherapy 6(6):543–553

    Article  CAS  PubMed  Google Scholar 

  • Ingram DA, Mead LE, Tanaka H, Meade V, Fenoglio A, Mortell K, Pollok K, Ferkowicz MJ, Gilley D, Yoder MC (2004) Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood. Blood 104(9):2752–2760

    Article  CAS  PubMed  Google Scholar 

  • Iwasaki H, Kawamoto A, Ishikawa M, Oyamada A, Nakamori S, Nishimura H, Sadamoto K, Horii M, Matsumoto T, Murasawa S (2006) Dose-dependent contribution of CD34-positive cell transplantation to concurrent vasculogenesis and cardiomyogenesis for functional regenerative recovery after myocardial infarction. Circulation 113(10):1311–1325

    Article  CAS  PubMed  Google Scholar 

  • Jaffredo T, Gautier R, Eichmann A, Dieterlen-Lievre F (1998) Intraaortic hemopoietic cells are derived from endothelial cells during ontogeny. Development 125(22):4575–4583

    CAS  PubMed  Google Scholar 

  • Joe AW, Yi L, Natarajan A, Le Grand F, So L, Wang J, Rudnicki MA, Rossi FM (2010) Muscle injury activates resident fibro/adipogenic progenitors that facilitate myogenesis. Nat Cell Biol 12(2):153–163. doi:10.1038/ncb2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalka C, Masuda H, Takahashi T, Kalka-Moll WM, Silver M, Kearney M, Li T, Isner JM, Asahara T (2000) Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proc Natl Acad Sci U S A 97(7):3422–3427. doi:10.1073/pnas.070046397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kara RJ, Bolli P, Karakikes I, Matsunaga I, Tripodi J, Tanweer O, Altman P, Shachter NS, Nakano A, Najfeld V (2012) Fetal cells traffic to injured maternal myocardium and undergo cardiac differentiation. Circ Res 110(1):82–93

    Article  CAS  PubMed  Google Scholar 

  • Kawamoto A, Gwon HC, Iwaguro H, Yamaguchi JI, Uchida S, Masuda H, Silver M, Ma H, Kearney M, Isner JM, Asahara T (2001) Therapeutic potential of ex vivo expanded endothelial progenitor cells for myocardial ischemia. Circulation 103(5):634–637

    Article  CAS  PubMed  Google Scholar 

  • Kawamoto A, Tkebuchava T, Yamaguchi J, Nishimura H, Yoon YS, Milliken C, Uchida S, Masuo O, Iwaguro H, Ma H, Hanley A, Silver M, Kearney M, Losordo DW, Isner JM, Asahara T (2003) Intramyocardial transplantation of autologous endothelial progenitor cells for therapeutic neovascularization of myocardial ischemia. Circulation 107(3):461–468

    Article  PubMed  Google Scholar 

  • Kawamoto A, Katayama M, Handa N, Kinoshita M, Takano H, Horii M, Sadamoto K, Yokoyama A, Yamanaka T, Onodera R (2009) Intramuscular transplantation of G‐CSF‐mobilized CD34+ cells in patients with critical limb ischemia: a phase I/IIa, multicenter, single‐blinded, dose‐escalation clinical trial. Stem Cells 27(11):2857–2864

    Article  CAS  PubMed  Google Scholar 

  • Lee JM, Choe W, Kim B-K, Seo W-W, Lim W-H, Kang C-K, Kyeong S, Eom KD, Cho H-J, Kim Y-C (2012) Comparison of endothelialization and neointimal formation with stents coated with antibodies against CD34 and vascular endothelial-cadherin. Biomaterials 33(35):8917–8927

    Article  CAS  PubMed  Google Scholar 

  • Leeper NJ, Hunter AL, Cooke JP (2010) Stem cell therapy for vascular regeneration adult, embryonic, and induced pluripotent stem cells. Circulation 122(5):517–526

    Article  PubMed  PubMed Central  Google Scholar 

  • Leistner DM, Fischer-Rasokat U, Honold J, Seeger FH, Schächinger V, Lehmann R, Martin H, Burck I, Urbich C, Dimmeler S (2011) Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE-AMI): final 5-year results suggest long-term safety and efficacy. Clin Res Cardiol 100(10):925–934

    Article  PubMed  Google Scholar 

  • Levenberg S, Rouwkema J, Macdonald M, Garfein ES, Kohane DS, Darland DC, Marini R, van Blitterswijk CA, Mulligan RC, D’Amore PA (2005) Engineering vascularized skeletal muscle tissue. Nat Biotechnol 23(7):879–884

    Article  CAS  PubMed  Google Scholar 

  • Lim W-H, Seo W-W, Choe W, Kang C-K, Park J, Cho H-J, Kyeong S, Hur J, Yang H-M, Cho H-J (2011) Stent coated with antibody against vascular endothelial-cadherin captures endothelial progenitor cells, accelerates re-endothelialization, and reduces neointimal formation. Arterioscler Thromb Vasc Biol 31(12):2798–2805

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Teoh SH, Chong MS, Lee ES, Mattar CN, Randhawa NK, Zhang ZY, Medina RJ, Kamm RD, Fisk NM, Choolani M, Chan JK (2012) Vasculogenic and osteogenesis-enhancing potential of human umbilical cord blood endothelial colony-forming cells. Stem Cells 30(9):1911–1924. doi:10.1002/stem.1164

    Article  PubMed  Google Scholar 

  • Lucitti JL, Jones EA, Huang C, Chen J, Fraser SE, Dickinson ME (2007) Vascular remodeling of the mouse yolk sac requires hemodynamic force. Development 134(18):3317–3326. doi:10.1242/dev.02883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Markway BD, McCarty OJ, Marzec UM, Courtman DW, Hanson SR, Hinds MT (2008) Capture of flowing endothelial cells using surface-immobilized anti-kinase insert domain receptor antibody. Tissue Eng Part C Methods 14(2):97–105

    Article  CAS  PubMed  Google Scholar 

  • Masuda H, Alev C, Akimaru H, Ito R, Shizuno T, Kobori M, Horii M, Ishihara T, Isobe K, Isozaki M (2011) Methodological development of a clonogenic assay to determine endothelial progenitor cell potential. Circ Res 109(1):20–37

    Article  CAS  PubMed  Google Scholar 

  • Mathews S, Rao KL, Prasad KS, Kanakavalli M, Reddy AG, Raj TA, Thangaraj K, Pande G (2015) Propagation of pure fetal and maternal mesenchymal stromal cells from terminal chorionic villi of human term placenta. Sci Rep 5

    Google Scholar 

  • Matoba S, Tatsumi T, Murohara T, Imaizumi T, Katsuda Y, Ito M, Saito Y, Uemura S, Suzuki H, Fukumoto S (2008) Long-term clinical outcome after intramuscular implantation of bone marrow mononuclear cells (Therapeutic Angiogenesis by Cell Transplantation [TACT] trial) in patients with chronic limb ischemia. Am Heart J 156(5):1010–1018

    Article  PubMed  Google Scholar 

  • Mondrinos MJ, Koutzaki SH, Poblete HM, Crisanti MC, Lelkes PI, Finck CM (2008) In vivo pulmonary tissue engineering: contribution of donor-derived endothelial cells to construct vascularization. Tissue Eng A 14(3):361–368. doi:10.1089/tea.2007.0041

    Article  CAS  Google Scholar 

  • Murohara T, Ikeda H, Duan J, Shintani S, K-i S, Eguchi H, Onitsuka I, Matsui K, Imaizumi T (2000) Transplanted cord blood–derived endothelial precursor cells augment postnatal neovascularization. J Clin Investig 105(11):1527–1536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagano M, Yamashita T, Hamada H, Ohneda K, K-i K, Nakagawa T, Shibuya M, Yoshikawa H, Ohneda O (2007) Identification of functional endothelial progenitor cells suitable for the treatment of ischemic tissue using human umbilical cord blood. Blood 110(1):151–160

    Article  CAS  PubMed  Google Scholar 

  • Patel J, Seppanen E, Chong MS, Yeo JS, Teo EY, Chan JK, Fisk NM, Khosrotehrani K (2013) Prospective surface marker-based isolation and expansion of fetal endothelial colony-forming cells from human term placenta. Stem Cells Transl Med 2(11):839–847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel J, Shafiee A, Wang W, Fisk N, Khosrotehrani K (2014) Novel isolation strategy to deliver pure fetal-origin and maternal-origin mesenchymal stem cell (MSC) populations from human term placenta. Placenta 35(11):969–971

    Article  CAS  PubMed  Google Scholar 

  • Patel J, Wong HY, Wang W, Alexis J, Shafiee A, Stevenson AJ, Gabrielli B, Fisk NM, Khosrotehrani K (2016) Self‐renewal and high proliferative colony forming capacity of late‐outgrowth endothelial progenitors is regulated by cyclin‐dependent kinase inhibitors driven by notch signaling. Stem Cells 34(4):902–912

    Article  CAS  PubMed  Google Scholar 

  • Pelosi E, Valtieri M, Coppola S, Botta R, Gabbianelli M, Lulli V, Marziali G, Masella B, Müller R, Sgadari C (2002) Identification of the hemangioblast in postnatal life. Blood 100(9):3203–3208

    Article  CAS  PubMed  Google Scholar 

  • Rafii S, Lyden D (2003) Therapeutic stem and progenitor cell transplantation for organ vascularization and regeneration. Nat Med 9(6):702–712. doi:10.1038/nm0603-702

    Article  CAS  PubMed  Google Scholar 

  • Rafii S, Butler JM, Ding B-S (2016) Angiocrine functions of organ-specific endothelial cells. Nature 529(7586):316–325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rapp BM, Saadatzedeh MR, Ofstein RH, Bhavsar JR, Tempel ZS, Moreno O, Morone P, Booth DA, Traktuev DO, Dalsing MC (2012) Resident endothelial progenitor cells from human placenta have greater vasculogenic potential than circulating endothelial progenitor cells from umbilical cord blood. Cell Med 2(3):85–96

    PubMed  Google Scholar 

  • Red-Horse K, Crawford Y, Shojaei F, Ferrara N (2007) Endothelium-microenvironment interactions in the developing embryo and in the adult. Dev Cell 12(2):181–194

    Article  CAS  PubMed  Google Scholar 

  • Reinisch A, Hofmann NA, Obenauf AC, Kashofer K, Rohde E, Schallmoser K, Flicker K, Lanzer G, Linkesch W, Speicher MR (2009) Humanized large-scale expanded endothelial colony–forming cells function in vitro and in vivo. Blood 113 (26):6716–6725

    Google Scholar 

  • Reynolds LP, Redmer DA (2001) Angiogenesis in the placenta. Biol Reprod 64(4):1033–1040

    Article  CAS  PubMed  Google Scholar 

  • Reynolds LP, Grazul‐Bilska AT, Redmer DA (2002) Angiogenesis in the female reproductive organs: pathological implications. Int J Exp Pathol 83(4):151–164

    Article  PubMed  PubMed Central  Google Scholar 

  • Rhodes KE, Gekas C, Wang Y, Lux CT, Francis CS, Chan DN, Conway S, Orkin SH, Yoder MC, Mikkola HK (2008) The emergence of hematopoietic stem cells is initiated in the placental vasculature in the absence of circulation. Cell Stem Cell 2(3):252–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ribatti D, Vacca A, Nico B, Roncali L, Dammacco F (2001) Postnatal vasculogenesis. Mech Dev 100(2):157–163

    Article  CAS  PubMed  Google Scholar 

  • Robin C, Bollerot K, Mendes S, Haak E, Crisan M, Cerisoli F, Lauw I, Kaimakis P, Jorna R, Vermeulen M (2009) Human placenta is a potent hematopoietic niche containing hematopoietic stem and progenitor cells throughout development. Cell Stem Cell 5(4):385–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rouwkema J, Rivron NC, van Blitterswijk CA (2008) Vascularization in tissue engineering. Trends Biotechnol 26(8):434–441. doi:10.1016/j.tibtech.2008.04.009

    Article  CAS  PubMed  Google Scholar 

  • Santos MI, Unger RE, Sousa RA, Reis RL, Kirkpatrick CJ (2009) Crosstalk between osteoblasts and endothelial cells co-cultured on a polycaprolactone–starch scaffold and the< i> in vitro development of vascularization. Biomaterials 30(26):4407–4415

    Google Scholar 

  • Schatteman GC, Hanlon HD, Jiao C, Dodds SG, Christy BA (2000) Blood-derived angioblasts accelerate blood-flow restoration in diabetic mice. J Clin Invest 106(4):571–578. doi:10.1172/JCI9087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scheubel RJ, Zorn H, Silber R-E, Kuss O, Morawietz H, Holtz J, Simm A (2003) Age-dependent depression in circulating endothelial progenitor cells in patients undergoing coronary artery bypass grafting. J Am Coll Cardiol 42(12):2073–2080

    Article  PubMed  Google Scholar 

  • Schoenwolf GC (2009) Larsen’s human embryology. Churchill Livingstone, Philadelphia

    Google Scholar 

  • Sethi R, LEE CH (2012) Endothelial progenitor cell capture stent: safety and effectiveness. J Interv Cardiol 25(5):493–500

    Article  PubMed  Google Scholar 

  • Shafiee A, Fisk NM, Hutmacher DW, Khosrotehrani K, Patel J (2015) Fetal endothelial and mesenchymal progenitors from the human term placenta: potency and clinical potential. Stem Cells Transl Med 4(5):419–423

    Article  PubMed  PubMed Central  Google Scholar 

  • Shepherd BR, Enis DR, Wang F, Suarez Y, Pober JS, Schechner JS (2006) Vascularization and engraftment of a human skin substitute using circulating progenitor cell-derived endothelial cells. FASEB J 20(10):1739–1741

    Article  CAS  PubMed  Google Scholar 

  • Sukmawati D, Tanaka R (2015) Introduction to next generation of endothelial progenitor cell therapy: a promise in vascular medicine. Am J Transl Res 7(3):411–421

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka R, Wada M, Kwon SM, Masuda H, Carr J, Ito R, Miyasaka M, Warren SM, Asahara T, Tepper OM (2008) The effects of flap ischemia on normal and diabetic progenitor cell function. Plast Reconstr Surg 121(6):1929–1942

    Article  CAS  PubMed  Google Scholar 

  • Tanaka R, Masuda H, Kato S, Imagawa K, Kanabuchi K, Nakashioya C, Yoshiba F, Fukui T, Ito R, Kobori M (2014) Autologous G-CSF-mobilized peripheral blood CD34+ cell therapy for diabetic patients with chronic nonhealing ulcer. Cell Transplant 23(2):167–179

    Article  PubMed  Google Scholar 

  • Tateishi-Yuyama E, Matsubara H, Murohara T, Ikeda U, Shintani S, Masaki H, Amano K, Kishimoto Y, Yoshimoto K, Akashi H (2002) Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: a pilot study and a randomised controlled trial. Lancet 360(9331):427–435

    Article  PubMed  Google Scholar 

  • Tepper OM, Carr J, Allen RJ, Chang CC, Lin CD, Tanaka R, Gupta SM, Levine JP, Saadeh PB, Warren SM (2010) Decreased circulating progenitor cell number and failed mechanisms of stromal cell-derived factor-1α mediated bone marrow mobilization impair diabetic tissue repair. Diabetes 59(8):1974–1983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Timmermans F, Plum J, Yöder MC, Ingram DA, Vandekerckhove B, Case J (2009) Endothelial progenitor cells: identity defined? J Cell Mol Med 13(1):87–102

    Article  PubMed  Google Scholar 

  • Tremblay PL, Hudon V, Berthod F, Germain L, Auger FA (2005) Inosculation of tissue-engineered capillaries with the host’s vasculature in a reconstructed skin transplanted on mice. Am J Transplant 5(5):1002–1010. doi:10.1111/j.1600-6143.2005.00790.x

    Article  PubMed  Google Scholar 

  • Ulrich C, Rolauffs B, Abele H, Bonin M, Nieselt K, Hart ML, Aicher WK (2013) Low osteogenic differentiation potential of placenta-derived mesenchymal stromal cells correlates with low expression of the transcription factors Runx2 and Twist2. Stem Cells Dev 22(21):2859–2872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vasa M, Fichtlscherer S, Aicher A, Adler K, Urbich C, Martin H, Zeiher AM, Dimmeler S (2001) Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ Res 89(1):e1–e7

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Ii M, Kamei N, Alev C, Kwon S-M, Kawamoto A, Akimaru H, Masuda H, Sawa Y, Asahara T (2011) CD34+ cells represent highly functional endothelial progenitor cells in murine bone marrow. PLoS One 6(5):e20219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoder MC, Hiatt K, Mukherjee P (1997) In vivo repopulating hematopoietic stem cells are present in the murine yolk sac at day 9.0 postcoitus. Proc Natl Acad Sci 94(13):6776–6780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoder MC, Mead LE, Prater D, Krier TR, Mroueh KN, Li F, Krasich R, Temm CJ, Prchal JT, Ingram DA (2007) Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood 109(5):1801–1809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Health and Medical Research Council (Project Grant 1023368). K.K. was supported by the National Health and Medical Research Council Career Development Fellowship (Grant 1023371).

Conflict of Interest. The authors report no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiarash Khosrotehrani M.D., Ph.D., F.A.C.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Shafiee, A., Khosrotehrani, K. (2016). Perinatal Tissue-Derived Endothelial Progenitor Cells. In: Arjmand, B. (eds) Perinatal Tissue-Derived Stem Cells. Stem Cell Biology and Regenerative Medicine. Humana Press, Cham. https://doi.org/10.1007/978-3-319-46410-7_4

Download citation

Publish with us

Policies and ethics