Skip to main content

Umbilical Cord Tissue and Wharton’s Jelly Mesenchymal Stem Cells Properties and Therapeutic Potentials

  • Chapter
  • First Online:
Perinatal Tissue-Derived Stem Cells

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

Abstract

Umbilical cord (UC) tissue, which provides the fetus with nutrient-rich, oxygenated blood is one of the most promising sources of stem cells with several advantages. Mesenchymal stem cells (MSCs) isolate from different regions of UC such as Wharton’s jelly (WJ), amnion, perivascular area, arteries, and vein. WJ-derived MSCs have some advantages over other regions of UC. Larger numbers of MSCs could be harvested from WJ with a reduced amount of non-MSC contaminants and they retain their differentiation and proliferation abilities for long periods of time in culture conditions.

In this chapter, we give a brief review about, in vitro and preclinical studies and the potential therapeutic effects of WJ-MSCs for clinic applications through their homing, chemoattraction, survival, multilineage differentiation potential, immunomodulation, antiapoptotic, and anti-inflammatory abilities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agah E, Parivar K, Joghataei M (2013) Therapeutic effect of transplanted human Wharton’s Jelly stem cell-derived oligodendrocyte progenitor cells (hWJ-MSC-derived OPCs) in an animal model of multiple sclerosis. Mol Neurobiol 49:625–632

    Article  CAS  Google Scholar 

  • Amorin B, Alegretti A, Valim V et al (2014) Mesenchymal stem cell therapy and acute graft-versus-host disease: a review. Hum Cell 27(4):137–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Antoninus A, Widowati W, Wijaya L et al (2015) Human platelet lysate enhances the proliferation of Wharton’s jelly-derived mesenchymal stem cells. Biomark Genom Med 7:87–97

    Article  CAS  Google Scholar 

  • Arufe M, Fuente A, Mateos J et al (2011) Analysis of the chondrogenic potential and secretome of mesenchymal stem cells derived from human umbilical cord stroma. Stem Cells Dev 20:1199–1212

    Article  CAS  PubMed  Google Scholar 

  • Ayuzawa R, Doi C, Rachakatla R et al (2009) Naïve human umbilical cord matrix derived stem cells significantly attenuate growth of human breast cancer cells in vitro and in vivo. Cancer Lett 280:31–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bailey M, Wang L, Bode C et al (2007) A comparison of human umbilical cord matrix stem cells and temporomandibular joint condylar chondrocytes for tissue engineering temporomandibular joint condylar cartilage. Tissue Eng 13:2003–2010

    Article  CAS  PubMed  Google Scholar 

  • Baksh D, Yao R, Tuan R (2007) Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow. Stem Cells 25:1384–1392

    Article  CAS  PubMed  Google Scholar 

  • Balow J (2005) Clinical presentation and monitoring of lupus nephritis. Lupus 14:25–30

    Article  CAS  PubMed  Google Scholar 

  • Borhani-Haghighi M, Talaei-Khozani T, Ayatollahi M, Vojdani Z (2015) Wharton’s Jelly-derived mesenchymal stem cells can differentiate into hepatocyte-like cells by HepG2 cell line extract. Iran J Med Sci 40:143–151

    PubMed  PubMed Central  Google Scholar 

  • Broxmeyer H, Douglas G, Hangoc G et al (1989) Human umbilical cord blood as a potential source of transplantable hematopoietic stem/progenitor cells. Proc Natl Acad Sci 86:3828–3832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruno S, Grange C, Collino F et al (2012) Microvesicles derived from mesenchymal stem cells enhance survival in a lethal model of acute kidney injury. PLoS One 7(3):e33115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Can A, Karahuseyinoglu S (2007) Concise review: human umbilical cord stroma with regard to the source of fetus‐derived stem cells. Stem Cells 25:2886–2895

    Article  PubMed  Google Scholar 

  • Carlin R, Davis D, Weiss M et al (2006) Expression of early transcription factors Oct-4, Sox-2 and Nanog by porcine umbilical cord (PUC) matrix cells. Reprod Biol Endocrinol 4:8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen H, Zhang Y, Yang Z et al (2013) Human umbilical cord Wharton’s jelly-derived oligodendrocyte precursor-like cells for axon and myelin sheath regeneration. Neural Regen Res 8(10):890–899

    PubMed  PubMed Central  Google Scholar 

  • Conconi MT, Liddo LD, Tommasini M et al (2011) Phenotype and differentiation potential of stromal populations obtained from various zones of human umbilical cord: an overview. Open Tissue Eng Regen Med J 4:6–20

    Article  Google Scholar 

  • Corotchi M, Popa M, Remes A et al (2013) Isolation method and xeno-free culture conditions influence multipotent differentiation capacity of human Wharton’s jelly-derived mesenchymal stem cells. Stem Cell Res Amp Ther 4:81

    Article  CAS  Google Scholar 

  • Crewe N, Krause JS (2002) Spinal cord injuries. In: Brodwin MG, Tellez FA, Brodwin SK (eds) Medical, psychosocial, and vocational aspects of disability, 2nd edn. Athens, Elliott & Fitzpatrick, pp 279–291

    Google Scholar 

  • Dahlin R, Kinard L, Lam J et al (2014) Articular chondrocytes and mesenchymal stem cells seeded on biodegradable scaffolds for the repair of cartilage in a rat osteochondral defect model. Biomaterials 35:7460–7469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding DC, Chou HL, Chang YH et al (2015) Characterization of HLA-G and related immunosuppressive effects in human umbilical cord stroma derived stem cells. Cell Transplant 25:217–228

    Article  PubMed  Google Scholar 

  • Doi C, Maurya DK, Pyle MM et al (2010) Cytotherapy with naive rat umbilical cord matrix stem cells significantly attenuates growth of murine pancreatic cancer cells and increases survival in syngeneic mice. Cytotherapy 12(3):408–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doitsidou M, Reichman-Fried M, Stebler J et al (2002) Guidance of primordial germ cell migration by the chemokine SDF-1. Cell 111:647–659

    Article  CAS  PubMed  Google Scholar 

  • Dominici M, Blanc K, Mueller I et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317

    Article  CAS  PubMed  Google Scholar 

  • Dongmei H, Jing L, Mei X et al (2011) Clinical analysis of the treatment of spinocerebellar ataxia and multiple system atrophy-cerebellar type with umbilical cord mesenchymal stromal cells. Cytotherapy 13:913–917

    Article  PubMed  Google Scholar 

  • Falah M, Nierenberg G, Soudry M et al (2010) Treatment of articular cartilage lesions of the knee. Int Orthop 34:621–630

    Article  PubMed  PubMed Central  Google Scholar 

  • Fong C, Richards M, Manasi N et al (2007) Comparative growth behaviour and characterization of stem cells from human Wharton’s jelly. Reprod Biomed Online 15:708–718

    Article  CAS  PubMed  Google Scholar 

  • Fong C-Y, Chak L-L, Biswas A et al (2011) Human Wharton’s Jelly stem cells have unique transcriptome profiles compared to human embryonic stem cells and other mesenchymal stem cells. Stem Cell Rev 7:1–16

    Article  CAS  PubMed  Google Scholar 

  • Gauthaman K, Yee F, Cheyyatraivendran S et al (2012) Human umbilical cord wharton’s jelly stem cell (hWJSC) extracts inhibit cancer cell growth in vitro. J Cell Biochem 113:2027–2039

    Article  CAS  PubMed  Google Scholar 

  • Ghodke-Puranik Y, Niewold T (2015) Immunogenetics of systemic lupus erythematosus: a comprehensive review. J Autoimmun 64:125–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gluckman E, Rocha V (2005) History of the clinical use of umbilical cord blood hematopoietic cells. Cytotherapy 7:219–227

    Article  CAS  PubMed  Google Scholar 

  • Han Y, Chai J, Sun T et al (2011) Differentiation of human umbilical cord mesenchymal stem cells into dermal fibroblasts in vitro. Biochem Bioph Res Co 413:561–565

    Article  CAS  Google Scholar 

  • He H, Nagamura-Inoue T, Takahashi A et al (2015) Immunosuppressive properties of Wharton’s jelly-derived mesenchymal stromal cells in vitro. Int J Hematol 102(3):368–378

    Article  CAS  PubMed  Google Scholar 

  • Hentze H, Soong P, Wang S et al (2009) Teratoma formation by human embryonic stem cells: evaluation of essential parameters for future safety studies. Stem Cell Res 2:198–210

    Article  PubMed  Google Scholar 

  • Hoeben A, Landuyt B, Highley MS et al (2004) Vascular endothelial growth factor and angiogenesis. Pharmacol Rev 56(4):549–580

    Article  CAS  PubMed  Google Scholar 

  • Hoerstrup SP, Kadner A, Breymann C et al (2002) Living, autologous pulmonary artery conduits tissue engineered from umbilical cord cells. Ann Thorac Surg 74(1):46–52

    Article  PubMed  Google Scholar 

  • Hollweck T, Hartmann I, Eblenkamp M (2011) Cardiac differentiation of Human Wharton`s jelly stem cells—experimental comparison of protocols. Open Tissue Eng Regen Med J 4:95–102

    Article  Google Scholar 

  • Horuk R, Peiper S (1996) Chemokines: molecular double agents. Curr Biol 6:1581–1582

    Article  CAS  PubMed  Google Scholar 

  • Hu J, Yu X, Wang Z et al (2013) Long term effects of the implantation of Wharton’s jelly-derived mesenchymal stem cells from the umbilical cord for newly-onset type 1 diabetes mellitus. Endocr J 60(3):347–357

    Article  CAS  PubMed  Google Scholar 

  • Jacobs SA, Roobrouck VD, Verfaillie CM et al (2013) Immunological characteristics of human mesenchymal stem cells and multipotent adult progenitor cells. Immunol Cell Biol 91(1):32–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jieanu CF, Ungureanu BS, Săndulescu DL et al (2015) Quantification of liver fibrosis in chronic hepatitis B virus infection. J Med Life 8(3):285–290

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jin JL, Liu Z, Lu ZJ et al (2013) Safety and efficacy of umbilical cord mesenchymal stem cell therapy in hereditary spinocerebellar ataxia. Curr Neurovasc Res 10(1):11–20

    Article  CAS  PubMed  Google Scholar 

  • Jonsdottir-Buch S, Lieder R, Sigurjonsson O (2013) Platelet lysates produced from expired platelet concentrates support growth and osteogenic differentiation of mesenchymal stem cells. PLoS One 8(7):e68984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalaszczynska I, Ferdyn K (2015) Wharton’s jelly derived mesenchymal stem cells: future of regenerative medicine? Recent findings and clinical significance. Biomed Res Int 2015:430847

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kanehira M, Xin H, Hoshino K et al (2007) Targeted delivery of NK4 to multiple lung tumors by bone marrow-derived mesenchymal stem cells. Cancer Gene Ther 14:894–903

    Article  CAS  PubMed  Google Scholar 

  • Kao SY, Shyu JF, Wang HS et al (2015) Comparisons of differentiation potential in human mesenchymal stem cells from Wharton’s jelly, bone marrow, and pancreatic tissues. Stem Cells Int 2015:306158

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaveh M, Mehdi A, Farid A et al (2013) Restoration of heart function using transplantation of human umbilical cord matrix-derived cardiomyocytes and vascular endothelial growth factor. Open Tissue Eng Regen Med J 6:26–36

    Article  CAS  Google Scholar 

  • Khakoo A, Pati S, Anderson S et al (2006) Human mesenchymal stem cells exert potent antitumorigenic effects in a model of Kaposi’s sarcoma. J Exp Med 203:1235–1247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kholodenko IV, Konieva AA, Kholodenko RV et al (2013) Molecular mechanisms of migration and homing of intravenously transplanted mesenchymal stem cells. J Regen Med 2:4

    Google Scholar 

  • Killat J, Reimers K, Choi C et al (2013) Cultivation of keratinocytes and fibroblasts in a three-dimensional bovine collagen-elastin matrix (Matriderm®) and application for full thickness wound coverage in vivo. Int J Mol Sci 14(7):14460–14474

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim H-S, Choi D-Y, Yun S et al (2012) Proteomic analysis of microvesicles derived from human mesenchymal stem cells. J Proteome Res 11:839–849

    Article  CAS  PubMed  Google Scholar 

  • Klyushnenkova E, Mosca J, Zernetkina V et al (2005) T cell responses to allogeneic human mesenchymal stem cells: immunogenicity, tolerance, and suppression. J Biomed Sci 12:47–57

    Article  CAS  PubMed  Google Scholar 

  • Knudtzon S (1974) In vitro growth of granulocytic colonies from circulating cells in human cord blood. Blood 43(3):357–361

    CAS  PubMed  Google Scholar 

  • Kohanim S, Palioura S, Saeed HN (2016) Stevens-Johnson syndrome/toxic epidermal necrolysis - a comprehensive review and guide to therapy. I. Systemic Disease. Ocul Surf 14(1):2–19

    Article  PubMed  Google Scholar 

  • Kurtzberg J, Prockop S, Teira P et al (2014) Allogeneic human mesenchymal stem cell therapy (Remestemcel-L, Prochymal) as a rescue agent for severe refractory acute graft-versus-host disease in pediatric patients. Biol Blood Marrow Transplant 20:229–235

    Article  PubMed  Google Scholar 

  • Lai R, Chen T, Lim S (2011) Mesenchymal stem cell exosome: a novel stem cell-based therapy for cardiovascular disease. Regen Med 6:481–492

    Article  PubMed  Google Scholar 

  • Latifpour M, Nematollahi-Mahani SN, Deilamy M et al (2011) Improvement in cardiac function following transplantation of human umbilical cord matrix-derived mesenchymal cells. Cardiology 120:9–18

    PubMed  Google Scholar 

  • Le Blanc K, Rasmusson I, Sundberg B et al (2004) Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet 363(9419):1439–1441

    Article  PubMed  Google Scholar 

  • Lee U, Friedman S (2011) Mechanisms of hepatic fibrogenesis. Best Pract Res Clin Gastroenterol 25:195–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee H, Lee J, Lee H et al (2010) The therapeutic potential of human umbilical cord blood-derived mesenchymal stem cells in Alzheimer’s disease. Neurosci Lett 481:30–35

    Article  CAS  PubMed  Google Scholar 

  • Leite C, Silva NT, Mendes S et al (2014) Differentiation of human umbilical cord matrix mesenchymal stem cells into neural-like progenitor cells and maturation into an oligodendroglial-like lineage. PLoS One 9(10):e111059

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Leng X, Zhang Q, Zhai X, Chen Z (2012) Local transplant of human umbilical cord matrix stem cells improves skin flap survival in a mouse model. Tohoku J Exp Med 227:191–197

    Article  PubMed  Google Scholar 

  • Li Z, He C, Xiao J, Chen Z (2013a) Treating end-stage liver diseases with mesenchymal stem cells: an oak is not felled at one stroke. Oa Tissue Eng 1(1):3

    Article  Google Scholar 

  • Li X, Wang D, Lu Z et al (2013b) Umbilical cord mesenchymal stem cell transplantation in drug-induced Stevens—Johnson syndrome. J Eur Acad Dermatol Venereol 27:659–661

    Article  CAS  PubMed  Google Scholar 

  • Li T, Yan Y, Wang B et al (2013c) Exosomes Derived from Human Umbilical Cord Mesenchymal Stem Cells Alleviate Liver Fibrosis. Stem Cells Dev 22:845–854

    Article  CAS  PubMed  Google Scholar 

  • Liang J, Gu F, Wang H et al (2010) Mesenchymal stem cell transplantation for diffuse alveolar hemorrhage in SLE. Nat Rev Rheumatol 6:486–489

    Article  PubMed  Google Scholar 

  • Lila N, Carpentier A, Amrein C et al (2000) Implication of HLA-G molecule in heart-graft acceptance. Lancet Lond Engl 355:2138

    Article  CAS  Google Scholar 

  • Lin S-Z, Chang Y-J, Liu J-W et al (2010) Transplantation of human Wharton’s jelly-derived stem cells alleviates chemically induced liver fibrosis in rats. Cell Transplant 19:1451–1463

    Article  PubMed  Google Scholar 

  • Liu S, Hou K, Yuan M et al (2014a) Characteristics of mesenchymal stem cells derived from Wharton’s jelly of human umbilical cord and for fabrication of non-scaffold tissue-engineered cartilage. J Biosci Bioeng 117:229–235

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Zheng P, Wang X et al (2014b) A preliminary evaluation of efficacy and safety of Wharton’s jelly mesenchymal stem cell transplantation in patients with type 2 diabetes mellitus. Stem Cell Res Ther 5:57

    Article  PubMed  PubMed Central  Google Scholar 

  • Lv Y-T, Zhang Y, Liu M et al (2013) Transplantation of human cord blood mononuclear cells and umbilical cord-derived mesenchymal stem cells in autism. J Transl Med 11:196

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Magenau J, Reddy P (2014) Next generation treatment of acute graft-versus-host disease. Leukemia 28:2283–2291

    Article  CAS  PubMed  Google Scholar 

  • Matsuzuka T, Rachakatla R, Doi C et al (2010) Human umbilical cord matrix-derived stem cells expressing interferon-β gene significantly attenuate bronchioloalveolar carcinoma xenografts in SCID mice. Lung Cancer 70:28–36

    Article  PubMed  PubMed Central  Google Scholar 

  • McElreavey KD, Irvine AI, Ennis KT et al (1991) Isolation, culture and characterisation of fibroblast-like cells derived from the Wharton's jelly portion of human umbilical cord. Biochem Soc Trans 19(1):29S

    Article  CAS  PubMed  Google Scholar 

  • Mennan C, Wright K, Bhattacharjee A et al (2013) Isolation and characterisation of mesenchymal stem cells from different regions of the human umbilical cord. Biomed Res Int 2013:916136

    Article  PubMed  PubMed Central  Google Scholar 

  • Mohamadnejad M, Alimoghaddam K, Mohyeddin-Bonab M et al (2007) Phase 1 trial of autologous bone marrow mesenchymal stem cell transplantation in patients with decompensated liver cirrhosis. Arch Iran Med 10:459–466

    CAS  PubMed  Google Scholar 

  • Mortezaee K, Minaii B, Sabbaghziarani F et al (2015) Retinoic acid as the stimulating factor for differentiation of Wharton’s jelly-mesenchymal stem cells into hepatocyte-like cells. Avicenna J Med Biotechnol 7:106–112

    PubMed  PubMed Central  Google Scholar 

  • Myers SM, Johnson CP (2007) Management of children with autism spectrum disorders. Pediatrics 120(5):1162–1182

    Article  PubMed  Google Scholar 

  • Nagamura-Inoue T, He H (2014) Umbilical cord-derived mesenchymal stem cells: their advantages and potential clinical utility. World J Stem Cells 6:195

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakamizo A, Marini F, Amano T et al (2005) Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas. Cancer Res 65:3307–3318

    CAS  PubMed  Google Scholar 

  • Nasef A, Mathieu N, Chapel A et al (2007) Immunosuppressive effects of mesenchymal stem cells: involvement of HLA-G. Transplantation 84:231–237

    Article  CAS  PubMed  Google Scholar 

  • Nekanti U, Rao V, Bahirvani A et al (2010) Long-term expansion and pluripotent marker array analysis of Wharton’s jelly-derived mesenchymal stem cells. Stem Cells Dev 19:117–130

    Article  CAS  PubMed  Google Scholar 

  • Nicola M, Carlo-Stella C, Magni M et al (2002) Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 99:3838–3843

    Article  PubMed  Google Scholar 

  • Parry EW (1970) Some electron microscope observations on the mesenchymal structures of full-term umbilical cord. J Anat 107(Pt 3):505–518

    CAS  PubMed  PubMed Central  Google Scholar 

  • Patel S, Meyer J, Greco S et al (2010) Mesenchymal stem cells protect breast cancer cells through regulatory T cells: role of mesenchymal stem cell-derived TGF-β. J Immunol 184:5885–5894

    Article  CAS  PubMed  Google Scholar 

  • Prasad V, Lucas K, Kleiner G et al (2011) Efficacy and safety of ex vivo cultured adult human mesenchymal stem cells (Prochymal™) in pediatric patients with severe refractory acute graft-versus-host disease in a compassionate use study. Biol Blood Marrow Transplant 17:534–541

    Article  CAS  PubMed  Google Scholar 

  • Qian L, Wu Z, Shen J (2013) Advances in the treatment of acute graft‐versus‐host disease. J Cell Mol Med 17:966–975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiao L, Xu Z, Zhao T et al (2008) Suppression of tumorigenesis by human mesenchymal stem cells in a hepatoma model. Cell Res 18:500–507

    Article  CAS  PubMed  Google Scholar 

  • Rachakatla R, Marini F, Weiss M et al (2007) Development of human umbilical cord matrix stem cell-based gene therapy for experimental lung tumors. Cancer Gene Ther 14:828–835

    Article  CAS  PubMed  Google Scholar 

  • Ramasamy R, Lam E, Soeiro I et al (2006) Mesenchymal stem cells inhibit proliferation and apoptosis of tumor cells: impact on in vivo tumor growth. Leukemia 21:304–310

    Article  PubMed  CAS  Google Scholar 

  • Ren C, Kumar S, Chanda D et al (2008) Therapeutic potential of mesenchymal stem cells producing interferon-alpha in a mouse melanoma lung metastasis model. Stem Cells 26(9):2332–2338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rockey D, Friedman SL (2006) Hepatic fibrosis and cirrhosis. In: Section I: Pathophysiology of the liver. Elsevier, Amsterdam, pp 87–109

    Google Scholar 

  • Salehinejad P, Alitheen N, Ali A et al (2012) Comparison of different methods for the isolation of mesenchymal stem cells from human umbilical cord Wharton’s jelly. In Vitro Cell Dev Biol Anim 48:75–83

    Article  PubMed  Google Scholar 

  • Sariboyaci AE, Demircan PC, Gacar G et al (2014) Immunomodulatory properties of pancreatic islet-derived stem cells co-cultured with T cells: does it contribute to the pathogenesis of type 1 diabetes? Exp Clin Endocrinol Diabetes 122(3):179–189

    Article  CAS  PubMed  Google Scholar 

  • Scheers I, Lombard C, Paganelli M et al (2013) Human umbilical cord matrix stem cells maintain multilineage differentiation abilities and do not transform during long-term culture. PLoS One 8(8):e71374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt D, Mol A, Breymann C et al (2006a) Living autologous heart valves engineered from human prenatally harvested progenitors. Circulation 114:I125–I131

    Article  PubMed  Google Scholar 

  • Schmidt D, Asmis L, Odermatt B et al (2006b) Engineered living blood vessels: functional endothelia generated from human TM umbilical cord-derived progenitors. Ann Thorac Surg 82:1465–1471; discussion 1471

    Article  PubMed  Google Scholar 

  • Shrestha C, Zhao L, Chen K, et al (2013) Enhanced healing of diabetic wounds by subcutaneous administration of human umbilical cord derived stem cells and their conditioned media. Int J Endocrinol 2013, Article ID 592454, 10 pages

    Google Scholar 

  • Sohni A, Verfaillie C (2013) Mesenchymal stem cells migration homing and tracking. Stem Cells Int 2013, Article ID 130763, 8 pages

    Google Scholar 

  • Song C, Li G (2011) CXCR4 and matrix metalloproteinase-2 are involved in mesenchymal stromal cell homing and engraftment to tumors. Cytotherapy 13:549–561

    Article  CAS  PubMed  Google Scholar 

  • Stevens A, Johnson F (1922) A new eruptive fever associated with stomatitis and ophthalmia: report of two cases in children. Am J Dis Child 24:526–533

    Article  Google Scholar 

  • Strassburg S, Hodson N, Hill P et al (2012) Bi-directional exchange of membrane components occurs during co-culture of mesenchymal stem cells and nucleus pulposus cells. PLoS One 7(3):e33739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Subramanian A, Fong C-Y, Biswas A, Bongso A (2015) Comparative characterization of cells from the various compartments of the human umbilical cord shows that the Wharton’s jelly compartment provides the best source of clinically utilizable mesenchymal stem cells. PLoS One 10(6):e0127992

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sun L, Wang D, Liang J et al (2010) Umbilical cord mesenchymal stem cell transplantation in severe and refractory systemic lupus erythematosus. Arthritis Rheum 62:2467–2475

    Article  CAS  PubMed  Google Scholar 

  • Sung A, Chao N (2013) Acute graft-versus-host disease: are we close to bringing the bench to the bedside? Best Pract Res Clin Haematol 26:285–292

    Article  PubMed  Google Scholar 

  • Terai S, Ishikawa T, Omori K et al (2006) Improved liver function in patients with liver cirrhosis after autologous bone marrow cell infusion therapy. Stem Cells 24:2292–2298

    Article  CAS  PubMed  Google Scholar 

  • Trépo C, Chan H, Lok A (2014) Hepatitis B virus infection. Lancet 384:2053–2063

    Article  PubMed  CAS  Google Scholar 

  • Trivanović D, Kocić J, Mojsilović S et al (2013) Mesenchymal stem cells isolated from peripheral blood and umbilical cord Wharton’s jelly. Srp Ark Celok Lek 141:178–186

    Article  Google Scholar 

  • Tsai P, Fu T, Chen Y et al (2009) The therapeutic potential of human umbilical mesenchymal stem cells from Wharton’s jelly in the treatment of rat liver fibrosis. Liver Transpl 15:484–495

    Article  PubMed  Google Scholar 

  • Underwood B, Rubinsztein D (2008) Spinocerebellar ataxias caused by polyglutamine expansions: a review of therapeutic strategies. Cerebellum 7:215–221

    Article  CAS  PubMed  Google Scholar 

  • Walczak P, Zhang J, Gilad A et al (2008) Dual-modality monitoring of targeted intraarterial delivery of mesenchymal stem cells after transient ischemia. Stroke 39:1569–1574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Hung S, Peng S et al (2004) Mesenchymal stem cells in the Wharton’s jelly of the human umbilical cord. Stem Cells 22:1330–1337

    Article  PubMed  Google Scholar 

  • Wang L, Tran I, Seshareddy K et al (2009) A comparison of human bone marrow-derived mesenchymal stem cells and human umbilical cord-derived mesenchymal stromal cells for cartilage tissue engineering. Tissue Eng Part A 15:2259–2266

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Dormer N, Bonewald L, Detamore M (2010) Osteogenic differentiation of human umbilical cord mesenchymal stromal cells in polyglycolic acid scaffolds. Tissue Eng Part A 16:1937–1948

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Fan H, Zhou B et al (2011) Fusion of human umbilical cord mesenchymal stem cells with esophageal carcinoma cells inhibits the tumorigenicity of esophageal carcinoma cells. Int J Oncol 40:370–377

    CAS  PubMed  Google Scholar 

  • Weiss M, Medicetty S, Bledsoe A et al (2006) Human umbilical cord matrix stem cells: preliminary characterization and effect of transplantation in a rodent model of Parkinson’s disease. Stem Cells 24:781–792

    Article  CAS  PubMed  Google Scholar 

  • Weiss M, Anderson C, Medicetty S et al (2008) Immune properties of human umbilical cord Wharton’s jelly-derived cells. Stem Cells 26:2865–2874

    Article  CAS  PubMed  Google Scholar 

  • Wetzig A, Alaiya A, Al-Alwan M et al (2013) Differential marker expression by cultures rich in mesenchymal stem cells. BMC Cell Biol 14:54

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu Y, Chen L, Scott P, Tredget E (2007) Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis. Stem Cells 25:2648–2659

    Article  CAS  PubMed  Google Scholar 

  • Wu K-H, Chan C-K, Tsai C et al (2011) Effective treatment of severe steroid-resistant acute graft-versus-host disease with umbilical cord-derived mesenchymal stem cells. Transplantation 91:1412

    Article  PubMed  Google Scholar 

  • Xu G, Zhang L, Ren G et al (2007) Immunosuppressive properties of cloned bone marrow mesenchymal stem cells. Cell Res 17:240–248

    CAS  PubMed  Google Scholar 

  • Yang C-C, Shih Y-H, Ko M-H et al (2008) Transplantation of human umbilical mesenchymal stem cells from Wharton’s jelly after complete transection of the rat spinal cord. PLoS One 3:e3336

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yeo R, Chai R, Hian K, Kiang S (2013) Exosome: a novel and safer therapeutic refinement of mesenchymal stem cell. Exosomes Microvesicles 1:1–12

    Article  Google Scholar 

  • Yoo K, Jang I, Lee M et al (2009) Comparison of immunomodulatory properties of mesenchymal stem cells derived from adult human tissues. Cell Immunol 259:150–156

    Article  CAS  PubMed  Google Scholar 

  • Yu B, Zhang X, Li X (2014) Exosomes derived from mesenchymal stem cells. Int J Mol Sci 15(3):4142–4157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Lin H, Shi M et al (2012) Human umbilical cord mesenchymal stem cells improve liver function and ascites in decompensated liver cirrhosis patients. J Gastroen Hepatol 27:112–120

    Article  CAS  Google Scholar 

  • Zheng G, Liu Y, Jing Q, Zhang L (2015) Differentiation of human umbilical cord-derived mesenchymal stem cells into hepatocytes in vitro. Biomed Mater Eng 25(1 Suppl):145–157

    PubMed  Google Scholar 

  • Zhou Y, Xu H, Xu W et al (2013) Exosomes released by human umbilical cord mesenchymal stem cells protect against cisplatin-induced renal oxidative stress and apoptosis in vivo and in vitro. Stem Cell Res Amp Ther 4:34

    Article  CAS  Google Scholar 

  • Zhuang H, Zhang R, Zhang S et al (2015) Altered expression of microRNAs in the neuronal differentiation of human Wharton’s Jelly mesenchymal stem cells. Neurosci Lett 600:69–74

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank AyberkAkat, M.Sc. for his contributions in the writing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erdal Karaöz Ph.D .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Karaöz, E., İnci, Ç. (2016). Umbilical Cord Tissue and Wharton’s Jelly Mesenchymal Stem Cells Properties and Therapeutic Potentials. In: Arjmand, B. (eds) Perinatal Tissue-Derived Stem Cells. Stem Cell Biology and Regenerative Medicine. Humana Press, Cham. https://doi.org/10.1007/978-3-319-46410-7_3

Download citation

Publish with us

Policies and ethics