Perinatal Tissue-Derived Stem Cells pp 21-39 | Cite as
Immunomodulatory Properties of Perinatal Tissue-Derived Mesenchymal Stem Cells
- 417 Downloads
Abstract
In recent years extraembryonic-derived mesenchymal stem cells have attracted a lot of attention because of their low immunogenicity and diverse immunomodulatory mechanisms that encourage their application in allogeneic cell transplantation and induction of immunosuppression. Different studies have designed to clarify the immunomodulatory properties of perinatal-isolated mesenchymal stem cells. In this review, we introduce the extraembryonic sources of MSCs including Wharton’s jelly, umbilical cord blood, amniotic membrane, amniotic fluid, and chorion-derived mesenchymal stem cells. Then the immunophenotype and immunogenic characteristic of each type of MSCs are explained. Finally, we address the cell membrane associated and secretory immunomodulatory molecules of perinatal tissue-derived MSCs that are responsible for their immunosuppressive properties in interaction with immune cells.
Keywords
Immunomodulatory properties Mesenchymal stem cells Perinatal stem cells Wharton’s jelly Amniotic membrane Umbilical cord blood stem cellsReferences
- Abumaree MH et al (2013) Phenotypic and functional characterization of mesenchymal stem cells from chorionic villi of human term placenta. Stem Cell Rev 9(1):16–31PubMedCrossRefGoogle Scholar
- Akiyama K et al (2012) Mesenchymal-stem-cell-induced immunoregulation involves FAS-ligand-/FAS-mediated T cell apoptosis. Cell Stem Cell 10:544–555PubMedPubMedCentralCrossRefGoogle Scholar
- Akle CA et al (1981) Immunogenicity of human amniotic epithelial cells after transplantation into volunteers. Lancet 318(8254):1003–1005CrossRefGoogle Scholar
- Alunno A et al (2014) In vitro immunomodulatory effects of microencapsulated umbilical cord Wharton jelly-derived mesenchymal stem cells in primary Sjögren’s syndrome. Rheumatology (United Kingdom) 54(1):163–168, http://www.rheumatology.oxfordjournals.org/cgi/doi/10.1093/rheumatology/keu292 CrossRefGoogle Scholar
- Alviano F et al (2007) Term Amniotic membrane is a high throughput source for multipotent Mesenchymal Stem Cells with the ability to differentiate into endothelial cells in vitro. BMC Dev Biol 7:11, http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1810523&tool=pmcentrez&rendertype=abstract PubMedPubMedCentralCrossRefGoogle Scholar
- Bailo M et al (2004) Engraftment potential of human amnion and chorion cells derived from term placenta. Transplantation 78(10):1439–1448, http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15599307 PubMedCrossRefGoogle Scholar
- Banas RA et al (2008) Immunogenicity and immunomodulatory effects of amnion-derived multipotent progenitor cells. Hum Immunol 69(6):321–328PubMedCrossRefGoogle Scholar
- Barcellos-Hoff MH, Dix TA (1996) Redox-mediated activation of latent transforming growth factor-beta 1. Mol Endocrinol (Baltimore, MD) 10(9):1077–1083Google Scholar
- Bieback K et al (2004) Critical parameters for the isolation of mesenchymal stem cells from umbilical cord blood. Stem Cells (Dayton, Ohio) 22(4):625–634, http://www.ncbi.nlm.nih.gov/pubmed/15277708. Accessed 22 Apr 2016CrossRefGoogle Scholar
- Bilic G et al (2004) In vitro lesion repair by human amnion epithelial and mesenchymal cells. Am J Obstet Gynecol 190(1):87–92PubMedCrossRefGoogle Scholar
- Bilic G et al (2008) Comparative characterization of cultured human term amnion epithelial and mesenchymal stromal cells for application in cell therapy. Cell Transplant 17(8):955–968PubMedCrossRefGoogle Scholar
- Bongso A, Fong C (2013) The therapeutic potential, challenges and future clinical directions of stem cells from the Wharton’s Jelly of the human umbilical cord. Stem Cell Rev Rep 9(2):226–240, http://link.springer.com/10.1007/s12015-012-9418-z CrossRefGoogle Scholar
- Campbell KS, Purdy AK (2011) Structure/function of human killer cell immunoglobulin-like receptors: lessons from polymorphisms, evolution, crystal structures and mutations. Immunology 132(3):315–325PubMedPubMedCentralCrossRefGoogle Scholar
- Cargnoni A et al (2009) Transplantation of allogeneic and xenogeneic placenta-derived cells reduces bleomycin-induced lung fibrosis. Cell Transplant 18(4):405–422PubMedCrossRefGoogle Scholar
- Cazac BB, Roes J (2000) TGF-β receptor controls B cell responsiveness and induction of IgA in vivo. Immunity 13(4):443–451, http://www.cell.com/article/S1074761300000443/fulltext PubMedCrossRefGoogle Scholar
- Chan WK et al (2008) MHC expression kinetics and immunogenicity of mesenchymal stromal cells after short-term IFN-γ challenge. Exp Hematol 36(11):1551–1561CrossRefGoogle Scholar
- Chang C-J et al (2006) Placenta-derived multipotent cells exhibit immunosuppressive properties that are enhanced in the presence of interferon-gamma. Stem Cells 24(11):2466–2477PubMedCrossRefGoogle Scholar
- Chang CM et al (2007) Placenta-derived multipotent stem cells induced to differentiate into insulin-positive cells. Biochem Biophys Res Commun 357(2):414–420PubMedCrossRefGoogle Scholar
- Chao KC et al (2008) Islet-like clusters derived from mesenchymal stem cells in Wharton’s jelly of the human umbilical cord for transplantation to control type 1 diabetes. PLoS One 3(1):e1451PubMedPubMedCentralCrossRefGoogle Scholar
- Chen K et al (2010) Human umbilical cord mesenchymal stem cells hUC-MSCs exert immunosuppressive activities through a PGE2-dependent mechanism. Clin Immunol 135(3):448–458, http://dx.doi.org/10.1016/j.clim.2010.01.015 PubMedCrossRefGoogle Scholar
- Chen P-M et al (2011a) Immunomodulatory properties of human adult and fetal multipotent mesenchymal stem cells. J Biomed Sci 18(1):49, http://www.jbiomedsci.com/content/18/1/49 PubMedPubMedCentralCrossRefGoogle Scholar
- Chen P-M et al (2011b) Immunomodulatory properties of human adult and fetal multipotent mesenchymal stem cells. J Biomed Sci 18(1):49, http://www.jbiomedsci.com/content/18/1/49 PubMedPubMedCentralCrossRefGoogle Scholar
- Choi M et al (2013a) Proangiogenic features of Wharton’s jelly-derived mesenchymal stromal/stem cells and their ability to form functional vessels. Int J Biochem Cell Biol 45(3):560–570, http://dx.doi.org/10.1016/j.biocel.2012.12.001 PubMedCrossRefGoogle Scholar
- Choi M et al (2013b) Proangiogenic features of Wharton’s jelly-derived mesenchymal stromal/stem cells and their ability to form functional vessels. Int J Biochem Cell Biol 45(3):560–570PubMedCrossRefGoogle Scholar
- Contini P et al (2003) Soluble HLA-A,-B,-C and -G molecules induce apoptosis in T and NK CD8+ cells and inhibit cytotoxic T cell activity through CD8 ligation. Eur J Immunol 33(1):125–134, http://www.ncbi.nlm.nih.gov/pubmed/12594841. Accessed 21 Jun 2016PubMedCrossRefGoogle Scholar
- Danforth D, Hull RW (1958) The microscopic anatomy of the fetal membranes with particular reference to the detailed structure of the amnion. Am J Obstet Gynecol 75(3):536–547, discussion 548–550. http://www.ncbi.nlm.nih.gov/pubmed/13508744. Accessed 17 Jun 2016PubMedCrossRefGoogle Scholar
- Darby IA, Hewitson TD (2007) Fibroblast differentiation in wound healing and fibrosis. Int Rev Cytol 257:143–179PubMedCrossRefGoogle Scholar
- Demeure CE et al (1997) Prostaglandin E2 primes naive T cells for the production of anti-inflammatory cytokines. Eur J Immunol 27:3526–3531PubMedCrossRefGoogle Scholar
- Deuse T et al (2011) Immunogenicity and immunomodulatory properties of umbilical cord lining mesenchymal stem cells. Cell Transplant 20(5):655–667PubMedCrossRefGoogle Scholar
- Donders R et al (2015) Human Wharton’s Jelly-derived stem cells display immunomodulatory properties and transiently improve rat experimental autoimmune encephalomyelitis. Cell Transplant 24(10):2077–2098, http://openurl.ingenta.com/content/xref?genre=article&issn=0963-6897&volume=24&issue=10&spage=2077 PubMedCrossRefGoogle Scholar
- Fan Y-P et al (2016) The therapeutic potential of human umbilical mesenchymal stem cells from Whartons Jelly in the treatment of rat peritoneal dialysis-induced fibrosis. Stem Cells Transl Med 5(2):235–247, http://stemcellstm.alphamedpress.org/cgi/doi/10.5966/sctm.2015-0001 PubMedCrossRefGoogle Scholar
- Flynn A, Barry F, O’Brien T (2007) UC blood-derived mesenchymal stromal cells: an overview. Cytotherapy 9(8):717–726, http://linkinghub.elsevier.com/retrieve/pii/S1465324907701408 PubMedCrossRefGoogle Scholar
- Fong CY et al (2007) Comparative growth behaviour and characterization of stem cells from human Wharton’s jelly. Reprod Biomed Online 15(6):708–718, http://linkinghub.elsevier.com/retrieve/pii/S1472648310605391 PubMedCrossRefGoogle Scholar
- Fukuchi Y et al (2004) Human placenta-derived cells have mesenchymal stem/progenitor cell potential. Stem Cells 22:649–658PubMedCrossRefGoogle Scholar
- Ganatra MA (2003) Amniotic membrane in surgery. J Pak Med Assoc 53(1):29–32PubMedGoogle Scholar
- Gong D et al (2012) TGFβ signaling plays a critical role in promoting alternative macrophage activation. BMC Immunol 13:31PubMedPubMedCentralCrossRefGoogle Scholar
- Gros F et al (2008) Soluble HLA-G molecules impair natural killer/dendritic cell crosstalk via inhibition of dendritic cells. Eur J Immunol 38(3):742–749PubMedCrossRefGoogle Scholar
- Hashemi SM et al (2013) Comparative immunomodulatory properties of adipose-derived mesenchymal stem cells conditioned media from BALB/c, C57BL/6, and DBA mouse strains. J Cell Biochem 114(4):955–965, http://www.ncbi.nlm.nih.gov/pubmed/23225199. Accessed 11 Aug 2014PubMedCrossRefGoogle Scholar
- Hass R et al (2011) Different populations and sources of human mesenchymal stem cells (MSC): a comparison of adult and neonatal tissue-derived MSC. Cell Commun Signal 9(1):12, http://www.biosignaling.com/content/9/1/12 PubMedPubMedCentralCrossRefGoogle Scholar
- Heo JS et al (2016) Comparison of molecular profiles of human mesenchymal stem cells derived from bone marrow, umbilical cord blood, placenta and adipose tissue. Int J Mol Med 37(1):115–125, http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4687432&tool=pmcentrez&rendertype=abstract PubMedGoogle Scholar
- Huang XP et al (2010) Differentiation of allogeneic mesenchymal stem cells induces immunogenicity and limits their long-term benefits for myocardial repair. Circulation 122(23):2419–2429PubMedCrossRefGoogle Scholar
- Huang PY et al (2015) Xenograft of human umbilical mesenchymal stem cells from Wharton’s jelly as a potential therapy for rat pilocarpine-induced epilepsy. Brain Behav Immun 54:45–58, http://dx.doi.org/10.1016/j.bbi.2015.12.021 PubMedCrossRefGoogle Scholar
- Hunt JS et al (2005) HLA-G and immune tolerance in pregnancy. FASEB J 19(7):681–693PubMedCrossRefGoogle Scholar
- Hunt JS et al (2006) The role of HLA-G in human pregnancy. Reprod Biol Endocrinol 4(Suppl 1):S10PubMedPubMedCentralCrossRefGoogle Scholar
- Hwang JH et al (2009) Comparison of cytokine expression in mesenchymal stem cells from human placenta, cord blood, and bone marrow. J Korean Med Sci 24(4):547–554, http://jkms.org/DOIx.php?id=10.3346/jkms.2009.24.4.547. Accessed 22 Apr 2016PubMedPubMedCentralCrossRefGoogle Scholar
- Ilancheran S et al (2007) Stem cells derived from human fetal membranes display multilineage differentiation potential. Biol Reprod 77(3):577–588, http://www.ncbi.nlm.nih.gov/pubmed/17494917 PubMedCrossRefGoogle Scholar
- Ilancheran S, Moodley Y, Manuelpillai U (2009) Human fetal membranes: a source of stem cells for tissue regeneration and repair? Placenta 30(1):2–10PubMedCrossRefGoogle Scholar
- In’t Anker PS et al (2004) Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem Cells (Dayton, Ohio) 22(7):1338–1345, http://www.ncbi.nlm.nih.gov/pubmed/15579651 CrossRefGoogle Scholar
- Insausti CL et al (2010) The amniotic membrane as a source of stem cells. Histol Histopathol 25(1):91–98PubMedGoogle Scholar
- Insausti CL et al (2014) Amniotic membrane-derived stem cells: immunomodulatory properties and potential clinical application. Stem Cells Cloning 7(1):53–63PubMedPubMedCentralGoogle Scholar
- Jones EA et al (2002) Isolation and characterization of bone marrow multipotential mesenchymal progenitor cells. Arthritis Rheum 46:3349–3360PubMedCrossRefGoogle Scholar
- Jones GN et al (2012) Ontological differences in first compared to third trimester human fetal placental chorionic stem cells. PLoS One 7(9):e43395PubMedPubMedCentralCrossRefGoogle Scholar
- Kalinski P (2012) Regulation of immune responses by prostaglandin E2. J Immunol (Baltimore, MD: 1950) 188(1):21–28, http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3249979&tool=pmcentrez&rendertype=abstract\http://www.jimmunol.org/content/188/1/21.short CrossRefGoogle Scholar
- Kang JW et al (2012) Immunomodulatory effects of human amniotic membrane-derived mesenchymal stem cells. J Vet Sci 13(1):23–31PubMedPubMedCentralCrossRefGoogle Scholar
- Karahuseyinoglu S et al (2007) Biology of stem cells in human umbilical cord stroma: in situ and in vitro surveys. Stem Cells 25(2):319–331, http://www.ncbi.nlm.nih.gov/pubmed/17053211 PubMedCrossRefGoogle Scholar
- Kubo M et al (2001) Immunogenicity of human amniotic membrane in experimental xenotransplantation. Investig Ophthalmol Vis Sci 42(7):1539–1546Google Scholar
- Lagasse E et al (2000) Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nat Med 6(11):1229–1234PubMedCrossRefGoogle Scholar
- Lee OK et al (2004) Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood 103(5):1669–1675, http://www.bloodjournal.org/content/103/5/1669.abstract. Accessed 22 Apr 2016PubMedCrossRefGoogle Scholar
- Lee M-J et al (2010) Anti-fibrotic effect of chorionic plate-derived mesenchymal stem cells isolated from human placenta in a rat model of CCl(4)-injured liver: potential application to the treatment of hepatic diseases. J Cell Biochem 111(6):1453–1463, http://www.ncbi.nlm.nih.gov/pubmed/20830742. Accessed 25 Jun 2016PubMedCrossRefGoogle Scholar
- Lee JM et al (2012) Comparison of immunomodulatory effects of placenta mesenchymal stem cells with bone marrow and adipose mesenchymal stem cells. Int Immunopharmacol 13(2):219–224, http://linkinghub.elsevier.com/retrieve/pii/S1567576912000975 PubMedCrossRefGoogle Scholar
- Lefebvre S et al (2000) Modulation of HLA-G expression in human thymic and amniotic epithelial cells. Hum Immunol 61(11):1095–1101PubMedCrossRefGoogle Scholar
- LeMaoult J et al (2007) Immune regulation by pretenders: cell-to-cell transfers of HLA-G make effector T cells act as regulatory cells. Blood 109(5):2040–2048PubMedCrossRefGoogle Scholar
- Li MO, Flavell RA (2008) TGF-??: a master of all T cell trades. Cell 134(3):392–404PubMedPubMedCentralCrossRefGoogle Scholar
- Li H et al (2005) Immunosuppressive factors secreted by human amniotic epithelial cells. Investig Ophthalmol Vis Sci 46(3):900–907CrossRefGoogle Scholar
- Li C et al (2007) Human-placenta-derived mesenchymal stem cells inhibit proliferation and function of allogeneic immune cells. Cell Tissue Res 330(3):437–446PubMedCrossRefGoogle Scholar
- Li Y et al (2014) Differentiation of human amniotic fluid-derived mesenchymal stem cells into type II alveolar epithelial cells in vitro. Int J Mol Med 33(6):1507–1513PubMedGoogle Scholar
- Li L et al (2015) Characteristics of human amniotic fluid mesenchymal stem cells and their tropism to human ovarian cancer. PLoS One 10(4):e0123350PubMedPubMedCentralCrossRefGoogle Scholar
- Lila N et al (2001) Soluble HLA-G protein secreted by allo-specific CD4+ T cells suppresses the allo-proliferative response: a CD4+ T cell regulatory mechanism. Proc Natl Acad Sci U S A 98(21):12150–12155PubMedPubMedCentralCrossRefGoogle Scholar
- Lisi A et al (2012) A combined synthetic-fibrin scaffold supports growth and cardiomyogenic commitment of human placental derived stem cells. PLoS One 7(4):e34284PubMedPubMedCentralCrossRefGoogle Scholar
- Liu CH, Hwang SM (2005) Cytokine interactions in mesenchymal stem cells from cord blood. Cytokine 32(6):270–279PubMedCrossRefGoogle Scholar
- Liu H et al (2009) Effects of different culture conditions on isolation and expansion of stem cells from second-trimester amniotic fluids. Zhonghua Fu Chan Ke Za Zhi 44(4):241–245PubMedGoogle Scholar
- Liu K-J et al (2011) Surface expression of HLA-G is involved in mediating immunomodulatory effects of placenta-derived multipotent cells (PDMCs) towards natural killer lymphocytes. Cell Transplant 20(11–12):1721–1730PubMedCrossRefGoogle Scholar
- Liu S et al (2012) Immune characterization of mesenchymal stem cells in human umbilical cord Wharton’s jelly and derived cartilage cells. Cell Immunol 278(1-2):35–44PubMedCrossRefGoogle Scholar
- López Y et al (2013) Wharton’s jelly or bone marrow mesenchymal stromal cells improve cardiac function following myocardial infarction for more than 32 weeks in a rat model: a preliminary report. Curr Stem Cell Res Ther 8:46–59, http://www.ncbi.nlm.nih.gov/pubmed/23270633\nC:\Users\Flo\AppData\Local\MendeleyLtd.\Mendeley Desktop\Downloaded\López et al. - 2013 - Wharton’s jelly or bone marrow mesenchymal stromal cells improve cardiac function following myocardial infarction.pdf PubMedCrossRefGoogle Scholar
- Lozito TP et al (2014) Human mesenchymal stem cells generate a distinct pericellular zone of MMP activities via binding of MMPs and secretion of high levels of TIMPs. Matrix Biol 34:132–143PubMedCrossRefGoogle Scholar
- Magatti M et al (2009) Amniotic mesenchymal tissue cells inhibit dendritic cell differentiation of peripheral blood and amnion resident monocytes. Cell Transplant 18(8):899–914PubMedCrossRefGoogle Scholar
- Mahic M et al (2006) FOXP3 + CD4 + CD25+ adaptive regulatory T cells express cyclooxygenase-2 and suppress effector T cells by a prostaglandin E2-dependent mechanism. J Immunol 177(1):246–254PubMedCrossRefGoogle Scholar
- Mamede A et al (2012) Amniotic membrane: from structure and functions to clinical applications. Cell Tissue Res 349(2):447–458PubMedCrossRefGoogle Scholar
- Manochantr S et al (2010) Isolation, characterization and neural differentiation potential of amnion derived mesenchymal stem cells. J Med Assoc Thai 93(Suppl 7):S183–S191, http://www.ncbi.nlm.nih.gov/pubmed/21294413 PubMedGoogle Scholar
- Mareschi K et al (2001) Isolation of human mesenchymal stem cells: bone marrow versus umbilical cord blood. Haematologica 86(10):1099–1100, http://www.ncbi.nlm.nih.gov/pubmed/11602418. Accessed 4 Mar 2016PubMedGoogle Scholar
- Mazar J et al (2009) Cytotoxicity mediated by the Fas ligand (FasL)-activated apoptotic pathway in stem cells. J Biol Chem 284(33):22022–22028PubMedPubMedCentralCrossRefGoogle Scholar
- Medicetty S et al (2004) Transplantation of pig stem cells into rat brain: proliferation during the first 8 weeks. Exp Neurol 190(1):32–41PubMedCrossRefGoogle Scholar
- Menier C et al (2010) Recent advances on the non-classical major histocompatibility complex class i HLA-G molecule. Tissue Antigens 75(3):201–206PubMedCrossRefGoogle Scholar
- Miki T (2011) Amnion-derived stem cells: in quest of clinical applications. Stem Cell Res Ther 2(3):25, http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3152995&tool=pmcentrez&rendertype=abstract PubMedPubMedCentralCrossRefGoogle Scholar
- Miki T, Strom SC (2006) Amnion-derived pluripotent/multipotent stem cells. Stem Cell Rev 2:133–142PubMedCrossRefGoogle Scholar
- Moorefield EC et al (2011) Cloned, CD117 selected human amniotic fluid stem cells are capable of modulating the immune response. PLoS One 6(10)Google Scholar
- Nurmenniemi S et al (2010) Toll-like receptor 9 ligands enhance mesenchymal stem cell invasion and expression of matrix metalloprotease-13. Exp Cell Res 316(16):2676–2682PubMedCrossRefGoogle Scholar
- Parolini O et al (2008) Concise review: isolation and characterization of cells from human term placenta: outcome of the first international Workshop on Placenta Derived Stem Cells. Stem Cells (Dayton, Ohio) 26(2):300–311, http://www.ncbi.nlm.nih.gov/pubmed/17975221 CrossRefGoogle Scholar
- Parolini O et al (2009) Amniotic membrane and amniotic fluid-derived cells: potential tools for regenerative medicine? Regen Med 4(2):275–291PubMedCrossRefGoogle Scholar
- Portmann-Lanz CB et al (2006) Placental mesenchymal stem cells as potential autologous graft for pre- and perinatal neuroregeneration. Am J Obstet Gynecol 194(3):664–673PubMedCrossRefGoogle Scholar
- Prasanna SJ et al (2010) Pro-inflammatory cytokines, IFNγ and TNFα, influence immune properties of human bone marrow and Wharton jelly mesenchymal stem cells differentially. PLoS One 5(2):e9016, http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2814860&tool=pmcentrez&rendertype=abstract PubMedPubMedCentralCrossRefGoogle Scholar
- Ren G et al (2010) Inflammatory cytokine-induced intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 in mesenchymal stem cells are critical for immunosuppression. J Immunol 184:2321–2328PubMedPubMedCentralCrossRefGoogle Scholar
- Rennie K et al (2012a) Applications of amniotic membrane and fluid in stem cell biology and regenerative medicine. Stem Cells Int 2012. Article ID 721538, 13 pagesGoogle Scholar
- Rennie K et al (2012b) Applications of amniotic membrane and fluid in stem cell biology and regenerative medicine. Stem Cells Int 2012. Article ID 721538, 13 pagesGoogle Scholar
- Ries C et al (2007) MMP-2, MT1-MMP, and TIMP-2 are essential for the invasive capacity of human mesenchymal stem cells: differential regulation by inflammatory cytokines. Blood 109(9):4055–4063PubMedCrossRefGoogle Scholar
- Roelen DL et al (2009) Differential immunomodulatory effects of fetal versus maternal multipotent stromal cells. Hum Immunol 70(1):16–23PubMedCrossRefGoogle Scholar
- Roubelakis MG, Trohatou O, Anagnou NP (2012) Amniotic fluid and amniotic membrane stem cells: marker discovery. Stem Cells Int 2012, Article ID 107836, 9 pagesGoogle Scholar
- Saeidi M et al (2013) Immunomodulatory effects of human umbilical cord Wharton’s jelly-derived mesenchymal stem cells on differentiation, maturation and endocytosis of monocyte-derived dendritic cells. Iran J Allergy Asthma Immunol 12(1):37–49, http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=23454777&retmode=ref&cmd=prlinks. Accessed 3 Jun 2016PubMedGoogle Scholar
- Schu S et al (2012) Immunogenicity of allogeneic mesenchymal stem cells. J Cell Mol Med 16(9):2094–2103PubMedPubMedCentralCrossRefGoogle Scholar
- Secco M et al (2008) Multipotent stem cells from umbilical cord: cord is richer than blood! Stem Cells 26(1):146–150PubMedCrossRefGoogle Scholar
- Sheppard KA et al (2004) PD-1 inhibits T-cell receptor induced phosphorylation of the ZAP70/CD3?? Signalosome and downstream signaling to PKC?? FEBS Lett 574(1-3):37–41PubMedCrossRefGoogle Scholar
- Shi Y et al (2012) How mesenchymal stem cells interact with tissue immune responses. Trends Immunol 33(3):136–143, http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3412175&tool=pmcentrez&rendertype=abstract. Accessed 4 Nov 2014PubMedPubMedCentralCrossRefGoogle Scholar
- Siegel N et al (2007) Stem cells in amniotic fluid as new tools to study human genetic diseases. Stem Cell Rev 3(4):256–264PubMedCrossRefGoogle Scholar
- Silini A et al (2013) Soluble factors of amnion-derived cells in treatment of inflammatory and fibrotic pathologies. Curr Stem Cell Res Ther 8(1):6–14, http://www.ncbi.nlm.nih.gov/pubmed/23270631 PubMedCrossRefGoogle Scholar
- Skardal A (2014) Amniotic fluid stem cells for wound healing. In: Atala A, Murphy SV (eds) Perinatal stem cells, vol XXIII. Springer, New York, pp 17–24Google Scholar
- Smith WL, Garavito RM, DeWitt DL (1996) Prostaglandin endoperoxide H synthases (cyclooxygenases)-1 and -2. J Biol Chem 271(52):33157–33160PubMedCrossRefGoogle Scholar
- Soncini M et al (2007) Isolation and characterization of mesenchymal cells from human fetal membranes. J Tissue Eng Regen Med 1(4):296–305PubMedCrossRefGoogle Scholar
- Sorrell JM, Caplan AI (2010) Topical delivery of mesenchymal stem cells and their function in wounds. Stem Cell Res Ther 1(4):30PubMedPubMedCentralCrossRefGoogle Scholar
- Spaggiari GM et al (2008) Mesenchymal stem cells inhibit natural killer-cell proliferation, cytotoxicity, and cytokine production: role of indoleamine 2,3-dioxygenase and prostaglandin E2. Blood 111:1327–1333PubMedCrossRefGoogle Scholar
- Spender LC et al (2009) TGF-beta induces apoptosis in human B cells by transcriptional regulation of BIK and BCL-XL. Cell Death Differ 16(4):593–602PubMedPubMedCentralCrossRefGoogle Scholar
- Sreeramkumar V, Fresno M, Cuesta N (2012) Prostaglandin E2 and T cells: friends or foes? Immunol Cell Biol 90(6):579–586, http://www.nature.com/doifinder/10.1038/icb.2011.75\http://www.ncbi.nlm.nih.gov/pubmed/21946663\http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3389798 PubMedCrossRefGoogle Scholar
- Stagg J et al (2006) Interferon-gamma-stimulated marrow stromal cells: a new type of nonhematopoietic antigen-presenting cell. Blood 107(6):2570–2577PubMedCrossRefGoogle Scholar
- Subramanian A et al (2015) Comparative characterization of cells from the various compartments of the human umbilical cord shows that the Wharton’s Jelly compartment provides the best source of clinically utilizable mesenchymal stem cells. PLoS One 10(6):e0127992, http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4464659&tool=pmcentrez&rendertype=abstract. Accessed 3 Jun 2016PubMedPubMedCentralCrossRefGoogle Scholar
- Sun L et al (2010) Umbilical cord mesenchymal stem cell transplantation in severe and refractory systemic lupus erythematosus. Arthritis Rheum 62(8):2467–2475PubMedCrossRefGoogle Scholar
- Taghizadeh RR, Cetrulo KJ, Cetrulo CL (2011) Wharton’s Jelly stem cells: future clinical applications. Placenta 32(Suppl 4):S311–S315PubMedCrossRefGoogle Scholar
- Tamagawa T, Ishiwata I, Saito S (2004) Establishment and characterization of a pluripotent stem cell line derived from human amniotic membranes and initiation of germ layers in vitro. Hum Cell 17(3):125–130PubMedCrossRefGoogle Scholar
- Tamagawa T et al (2007) Differentiation of mesenchymal cells derived from human amniotic membranes into hepatocyte-like cells in vitro. Hum Cell 20(3):77–84PubMedCrossRefGoogle Scholar
- Tipnis S, Viswanathan C, Majumdar AS (2010) Immunosuppressive properties of human umbilical cord-derived mesenchymal stem cells: role of B7–H1 and IDO. Immunol Cell Biol 88(8):795–806, http://dx.doi.org/10.1038/icb.2010.47 PubMedCrossRefGoogle Scholar
- Troyer DL, Weiss ML (2008) Concise review: Wharton’s Jelly-derived cells are a primitive stromal cell population. Stem Cells 26:591–599PubMedCrossRefGoogle Scholar
- Tsai MS et al (2004) Isolation of human multipotent mesenchymal stem cells from second-trimester amniotic fluid using a novel two-stage culture protocol. Hum Reprod 19(6):1450–1456PubMedCrossRefGoogle Scholar
- Tsai P et al (2009) The therapeutic potential of human umbilical mesenchymal stem cells from Wharton’s jelly in the treatment of rat liver fibrosis. Liver Transpl 15(5):484–495, http://www.ncbi.nlm.nih.gov/pubmed/19399744 PubMedCrossRefGoogle Scholar
- Ullah I, Baregundi Subbarao R, Rho G-J (2015) Human mesenchymal stem cells - current trends and future prospective. Biosci Rep 35(2):e00191, http://www.bioscirep.org/content/35/2/e00191.abstract PubMedPubMedCentralCrossRefGoogle Scholar
- Vivier E et al (2008) Functions of natural killer cells. Nat Immunol 9(5):503–510PubMedCrossRefGoogle Scholar
- Walker C et al (1983) Lymphokine regulation of activated (G1) lymphocytes. 1. Prostaglandin E2-induced inhibition of interleukin 2 production. J Immunol (Baltimore, MD : 1950) 130(4):1770–1773Google Scholar
- Wang HS et al (2004) Mesenchymal stem cells in the Wharton’s jelly of the human umbilical cord. Stem Cells 22(7):1330–1337PubMedCrossRefGoogle Scholar
- Wang D et al (2010a) CD14+ monocytes promote the immunosuppressive effect of human umbilical cord matrix stem cells. Exp Cell Res 316(15):2414–2423, http://dx.doi.org/10.1016/j.yexcr.2010.04.018 PubMedCrossRefGoogle Scholar
- Wang D et al (2010b) CD14+ monocytes promote the immunosuppressive effect of human umbilical cord matrix stem cells. Exp Cell Res 316(15):2414–2423PubMedCrossRefGoogle Scholar
- Wang J et al (2014) The subtype CD200-positive, chorionic mesenchymal stem cells from the placenta promote regeneration of human hepatocytes. Biotechnol Lett 36(6):1335–1341PubMedCrossRefGoogle Scholar
- Wei JP et al (2009) Human amniotic mesenchymal cells differentiate into chondrocytes. Cloning Stem Cells 11(1):19–26, http://www.ncbi.nlm.nih.gov/pubmed/19226212 PubMedCrossRefGoogle Scholar
- Weiss ML et al (2008) Immune properties of human umbilical cord Wharton’s jelly-derived cells. Stem Cells (Dayton, Ohio) 26(11):2865–2874, http://www.ncbi.nlm.nih.gov/pubmed/18703664 CrossRefGoogle Scholar
- Westgren M et al (1995) Cytokines in fetal blood and amniotic fluid in Rh-immunized pregnancies. Obstet Gynecol 86(2):209–213PubMedCrossRefGoogle Scholar
- Wexler SA et al (2003) Adult bone marrow is a rich source of human mesenchymal “stem” cells but umbilical cord and mobilized adult blood are not. Br J Haematol 121(2):368–374, http://www.ncbi.nlm.nih.gov/pubmed/12694261. Accessed 22 Apr 2016PubMedCrossRefGoogle Scholar
- Witkowska-Zimny M, Wrobel E (2011) Perinatal sources of mesenchymal stem cells: Wharton’s jelly, amnion and chorion. Cell Mol Biol Lett 16(3):493–514PubMedCrossRefGoogle Scholar
- Wu KH et al (2007) Therapeutic potential of human umbilical cord derived stem cells in a rat myocardial infarction model. Ann Thorac Surg 83(4):1491–1498, http://www.ncbi.nlm.nih.gov/pubmed/17383364 PubMedCrossRefGoogle Scholar
- Yamaguchi Y et al (2005) Bone marrow cells differentiate into wound myofibroblasts and accelerate the healing of wounds with exposed bones when combined with an occlusive dressing. Br J Dermatol 152(4):616–622PubMedCrossRefGoogle Scholar
- Yañez R et al (2010) Prostaglandin E2 plays a key role in the immunosuppressive properties of adipose and bone marrow tissue-derived mesenchymal stromal cells. Exp Cell Res 316(19):3109–3123PubMedCrossRefGoogle Scholar
- Yang CC et al (2008) Transplantation of human umbilical mesenchymal stem cells from Wharton’s jelly after complete transection of the rat spinal cord. PLoS One 3(10):e3336PubMedPubMedCentralCrossRefGoogle Scholar
- Yang S-H et al (2009) Soluble mediators from mesenchymal stem cells suppress T cell proliferation by inducing IL-10. Exp Mol Med 41:315–324PubMedPubMedCentralCrossRefGoogle Scholar
- Yang ZX et al (2013) CD106 identifies a subpopulation of mesenchymal stem cells with unique immunomodulatory properties. PLoS One 8(3):1–12Google Scholar
- Yousefi F et al (2016) In vivo immunomodulatory effects of adipose-derived mesenchymal stem cells conditioned medium in experimental autoimmune encephalomyelitis. Immunol Lett 172:94–105, http://www.sciencedirect.com/science/article/pii/S0165247816300256. Accessed 2 Mar 2016PubMedCrossRefGoogle Scholar
- Yu Q, Stamenkovic I (2000) Cell surface-localized matrix mealloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis. Genes Dev 14:163–176PubMedPubMedCentralGoogle Scholar
- Zhao RC (2015) Stem cells: basics and clinical translation. Springer, NetherlandsCrossRefGoogle Scholar
- Zheng Y-B et al (2008) Characterization and hepatogenic differentiation of mesenchymal stem cells from human amniotic fluid and human bone marrow: a comparative study. Cell Biol Int 32(11):1439–1448PubMedCrossRefGoogle Scholar
- Zhou C et al (2011) Immunomodulatory effect of human umbilical cord Wharton’s jelly-derived mesenchymal stem cells on lymphocytes. Cell Immunol 272(1):33–38, http://www.ncbi.nlm.nih.gov/pubmed/22004796 PubMedPubMedCentralCrossRefGoogle Scholar