Functional Dualism of Perinatal Stem Cells

  • Toshio MikiEmail author
  • Fabio Triolo
Part of the Stem Cell Biology and Regenerative Medicine book series (STEMCELL)


Stem cell-based therapies hold the potential of alleviating the burden of many serious diseases. These promising stem cell-based approaches for patients with unmet medical needs rely mainly on two unique properties of stem cells: their differentiation capability to all three germ layers (pluripotency) and their immunomodulatory function. The pluripotency makes the stem cells able to generate desired types of cells for cell replacement therapies. The immunomodulatory properties can be utilized to control immunoreaction and subsequent pathological events. Traditionally, pluripotency has been considered a character of embryonic stem cells, and immunomodulatory properties one of mesenchymal stem cells from adult somatic tissues. During the last decade, however, many studies revealed that some perinatal stem cells represent a novel class of stem cells with intermediate characteristics of both pluripotent/embryonic and adult stem cells, as they possess the pluripotent stem cell-like differentiation potential and immunomodulatory effects similar to mesenchymal stem cells in vitro and in vivo. In addition, these perinatal stem cells are as genetically stable as adult stem cells. These unique characteristics, together with the absence of ethical issues concerning their procurement, attract many researchers in search of practical stem cells for prompt clinical translation.


Amniotic epithelial cells Wharton’s Jelly Mesenchymal stem cells Placenta Perinatal Stem cell Immunomodulation 



This work was supported by California Institute for Regenerative Medicine (CIRM) grant TR3-05488 (TM).

Disclosure of Potential Conflicts of Interest. T.M. owns stock in Stemnion, LLC. The authors have received no payment for the preparation of this manuscript and state no other financial and non-financial conflict of interests.


  1. Akle CA, Adinolfi M, Welsh KI, Leibowitz S, McColl I (1981) Immunogenicity of human amniotic epithelial cells after transplantation into volunteers. Lancet 2:1003–1005. doi: 10.1016/S0140-6736(81)91212-5 PubMedCrossRefGoogle Scholar
  2. Amidi F, Ataie Nejad N, Agha Hoseini M, Nayernia K, Mazaheri Z, Yamini N, Saeednia S (2015) In vitro differentiation process of human Wharton’s jelly mesenchymal stem cells to male germ cells in the presence of gonadal and non-gonadal conditioned media with retinoic acid. In Vitro Cell Dev Biol Anim 51:1093–1101. doi: 10.1007/s11626-015-9929-4 PubMedCrossRefGoogle Scholar
  3. Anam K, Lazdun Y, Davis PM, Banas RA, Elster EA, Davis TA (2013) Amnion-derived multipotent progenitor cells support allograft tolerance induction. Am J Transplant 13:1416–1428. doi: 10.1111/ajt.12252 PubMedCrossRefGoogle Scholar
  4. Banas RA, Trumpower C, Bentlejewski C, Marshall V, Sing G, Zeevi A (2008) Immunogenicity and immunomodulatory effects of amnion-derived multipotent progenitor cells. Hum Immunol 69:321–328. doi: 10.1016/j.humimm.2008.04.007 PubMedCrossRefGoogle Scholar
  5. Bhandari DR, Seo KW, Sun B, Seo MS, Kim HS, Seo YJ, Marcin J, Forraz N, Le Roy H, Larry D, Colin M, Kang KS (2011) The simplest method for in vitro β-cell production from human adult stem cells. Differentiation 82:144–152. doi: 10.1016/j.diff.2011.06.003 PubMedCrossRefGoogle Scholar
  6. Buyl K, De Kock J, Najar M, Lagneaux L, Branson S, Rogiers V, Vanhaecke T (2014) Characterization of hepatic markers in human Wharton’s Jelly-derived mesenchymal stem cells. Toxicol In Vitro 28:113–119. doi: 10.1016/j.tiv.2013.06.014 PubMedCrossRefGoogle Scholar
  7. Campard D, Lysy PA, Najimi M, Sokal EM (2008) Native umbilical cord matrix stem cells express hepatic markers and differentiate into hepatocyte-like cells. Gastroenterology 134:833–848. doi: 10.1053/j.gastro.2007.12.024 PubMedCrossRefGoogle Scholar
  8. Castrechini NM, Murthi P, Gude NM, Erwich JJHM, Gronthos S, Zannettino A, Brennecke SP, Kalionis B (2010) Mesenchymal stem cells in human placental chorionic villi reside in a vascular Niche. Placenta 31:203–212. doi: 10.1016/j.placenta.2009.12.006 PubMedCrossRefGoogle Scholar
  9. Cetrulo CL, Cetrulo KJ (2009) Perinatal stem cells. Wiley, New YorkCrossRefGoogle Scholar
  10. Chao KC, Chao KF, Fu YS, Liu SH (2008) Islet-like clusters derived from mesenchymal stem cells in Wharton’s jelly of the human umbilical cord for transplantation to control type 1 diabetes. PLoS One. doi: 10.1371/journal.pone.0001451 Google Scholar
  11. Chen H, Zhang N, Li T, Guo J, Wang Z, Yang M, Gao L (2012) Human umbilical cord Wharton’s jelly stem cells: immune property genes assay and effect of transplantation on the immune cells of heart failure patients. Cell Immunol 276:83–90. doi: 10.1016/j.cellimm.2012.03.012 PubMedCrossRefGoogle Scholar
  12. Cho PS, Messina DJ, Hirsh EL, Chi N, Goldman SN, Lo DP, Harris IR, Popma SH, Sachs DH, Huang CA (2008) Immunogenicity of umbilical cord tissue derived cells. Blood 111:430–438. doi: 10.1182/blood-2007-03-078774 PubMedCrossRefGoogle Scholar
  13. Christodoulou I, Kolisis FN, Papaevangeliou D, Zoumpourlis V (2013) Comparative evaluation of human mesenchymal stem cells of fetal (Wharton’s Jelly) and adult (adipose tissue) origin during prolonged in vitro expansion: considerations for cytotherapy. Stem Cells Int. doi: 10.1155/2013/246134 PubMedPubMedCentralGoogle Scholar
  14. Conconi MT, Burra P, Di Liddo R, Calore C, Turetta M, Bellini S, Bo P, Nussdorfer GG, Parnigotto PP (2006) CD105(+) cells from Wharton’s jelly show in vitro and in vivo myogenic differentiative potential. Int J Mol Med 18:1089–1096PubMedGoogle Scholar
  15. Conconi MT, Di Liddo R, Tommasini M, Calore C, Parnigotto PP (2011) Phenotype and differentiation potential of stromal populations obtained from various zones of human umbilical cord: an overview. Open Tissue Eng Regen Med J 4:6–20. doi: 10.2174/1875043501104010006 CrossRefGoogle Scholar
  16. Crew MD, Cannon MJ, Phanavanh B, Garcia-Borges CN (2005) An HLA-E single chain trimer inhibits human NK cell reactivity towards porcine cells. Mol Immunol 42:1205–1214. doi: 10.1016/j.molimm.2004.11.013 PubMedCrossRefGoogle Scholar
  17. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317. doi: 10.1080/14653240600855905 PubMedCrossRefGoogle Scholar
  18. Dongmei H, Jing L, Mei X, Ling Z, Hongmin Y, Zhidong W, Li D, Zikuan G, Hengxiang W (2011) Clinical analysis of the treatment of spinocerebellar ataxia and multiple system atrophy-cerebellar type with umbilical cord mesenchymal stromal cells. Cytotherapy 13:913–917. doi: 10.3109/14653249.2011.579958 PubMedCrossRefGoogle Scholar
  19. Donnelly L, Campling G (2014) Functions of the placenta. Anaesth Intensive Care Med 15:136–139. doi: 10.1016/j.mpaic.2014.01.004 CrossRefGoogle Scholar
  20. Fanchin R, Gallot V, Rouas-Freiss N, Frydman R, Carosella ED (2007) Implication of HLA-G in human embryo implantation. Hum Immunol 68:259–263. doi: 10.1016/j.humimm.2006.11.002 PubMedCrossRefGoogle Scholar
  21. Fong CY, Richards M, Manasi N, Biswas A, Bongso A (2007) Comparative growth behaviour and characterization of stem cells from human Wharton’s jelly. Reprod Biomed Online 15:708–718. doi: 10.1016/S1472-6483(10)60539-1 PubMedCrossRefGoogle Scholar
  22. Fong CY, Chak LL, Biswas A, Tan JH, Gauthaman K, Chan WK, Bongso A (2011) Human Wharton’s jelly stem cells have unique transcriptome profiles compared to human embryonic stem cells and other mesenchymal stem cells. Stem Cell Rev 7:1–16. doi: 10.1007/s12015-010-9166-x PubMedCrossRefGoogle Scholar
  23. Fong CY, Tam K, Cheyyatraivendran S, Gan SU, Gauthaman K, Armugam A, Jeyaseelan K, Choolani M, Biswas A, Bongso A (2014) Human Wharton’s jelly stem cells and its conditioned medium enhance healing of excisional and diabetic wounds. J Cell Biochem 115:290–302. doi: 10.1002/jcb.24661 PubMedCrossRefGoogle Scholar
  24. Gao LR, Zhang NK, Ding QA, Chen HY, Hu X, Jiang S, Li TC, Chen Y, Wang ZG, Ye Y, Zhu ZM (2013) Common expression of stemness molecular markers and early cardiac transcription factors in human Wharton’s jelly-derived mesenchymal stem cells and embryonic stem cells. Cell Transpl 22:1883–1900. doi: 10.3727/096368912X662444 CrossRefGoogle Scholar
  25. Gao LR, Chen Y, Zhang NK, Yang XL, Liu HL, Wang ZG, Yan XY, Wang Y, Zhu ZM, Li TC, Wang LH, Chen HY, Chen YD, Huang CL, Qu P, Yao C, Wang B, Chen GH, Wang ZM, Xu ZY, Bai J, Lu D, Shen YH, Guo F, Liu MY, Yang Y, Ding YC, Yang Y, Tian HT, Ding QA, Li LN, Yang XC, Hu X (2015) Intracoronary infusion of Wharton’s jelly-derived mesenchymal stem cells in acute myocardial infarction: double-blind, randomized controlled trial. BMC Med 13:162. doi: 10.1186/s12916-015-0399-z PubMedPubMedCentralCrossRefGoogle Scholar
  26. Greco SJ, Liu K, Rameshwar P (2007) Functional similarities among genes regulated by OCT4 in human mesenchymal and embryonic stem cells. Stem Cells 25:3143–3154. doi: 10.1634/stemcells.2007-0351 PubMedCrossRefGoogle Scholar
  27. Hammam OA, Elkhafif N, Attia YM, Mansour MT, Elmazar MM, Abdelsalam RM, Kenawy SA, El-Khatib AS (2016) Wharton’s jelly-derived mesenchymal stem cells combined with praziquantel as a potential therapy for Schistosoma mansoni-induced liver fibrosis. Sci Rep 6:21005. doi: 10.1038/srep21005 PubMedPubMedCentralCrossRefGoogle Scholar
  28. Hsieh J, Fu Y, Chang S, Tsuang Y, Wang H (2010) Functional module analysis reveals differential osteogenic and stemness potentials in human mesenchymal stem cells from bone marrow and Wharton’s jelly of umbilical cord. Stem Cells Dev 19:1895–1910. doi: 10.1089/scd.2009.0485 PubMedCrossRefGoogle Scholar
  29. Hu J, Yu X, Wang Z, Wang F, Wang L, Gao H, Chen Y, Zhao W, Jia Z, Yan S, Wang Y (2013) Long term effects of the implantation of Wharton’s jelly-derived mesenchymal stem cells from the umbilical cord for newly-onset type 1 diabetes mellitus. Endocr J 60:347–357. doi: 10.1507/endocrj.EJ12-0343 PubMedCrossRefGoogle Scholar
  30. Hu J, Wang Y, Wang F, Wang L, Yu X, Sun R, Wang Z, Wang L, Gao H, Fu Z, Zhao W, Yan S (2014) Effect and mechanisms of human Wharton’s jelly-derived mesenchymal stem cells on type 1 diabetes in NOD model. Endocrine 48:124–134. doi: 10.1007/s12020-014-0219-9 PubMedCrossRefGoogle Scholar
  31. Hunt JS, Petroff MG, McIntire RH, Ober C (2005) HLA-G and immune tolerance in pregnancy. FASEB J 19:681–693. doi: 10.1096/fj.04-2078rev PubMedCrossRefGoogle Scholar
  32. Igura K, Zhang X, Takahashi K, Mitsuru A, Yamaguchi S, Takashi TA (2004) Isolation and characterization of mesenchymal progenitor cells from chorionic villi of human placenta. Cytotherapy 6:543–553. doi: 10.1080/14653240410005366 PubMedCrossRefGoogle Scholar
  33. Ilancheran S, Michalska A, Peh G, Wallace EM, Pera M, Manuelpillai U (2007) Stem cells derived from human fetal membranes display multilineage differentiation potential. Biol Reprod 77:577–588. doi: 10.1095/biolreprod.106.055244 PubMedCrossRefGoogle Scholar
  34. Kalaszczynska I, Ferdyn K (2015) Wharton’s jelly derived mesenchymal stem cells: future of regenerative medicine? Recent findings and clinical significance. Biomed Res Int. doi: 10.1155/2015/430847 PubMedPubMedCentralGoogle Scholar
  35. Kara RJ, Bolli P, Karakikes I, Matsunaga I, Tripodi J, Tanweer O, Altman P, Shachter NS, Nakano A, Najfeld V, Chaudhry HW (2012) Fetal cells traffic to injured maternal myocardium and undergo cardiac differentiation. Circ Res 110:82–93. doi: 10.1161/CIRCRESAHA.111.249037 PubMedCrossRefGoogle Scholar
  36. Khodabandeh Z, Vojdani Z, Talaei-Khozani T, Jaberipour M, Hosseini A, Bahmanpour S (2016) Comparison of the expression of hepatic genes by human Wharton’s Jelly Mesenchymal stem cells cultured in 2D and 3D Collagen culture systems. Iran J Med Sci 41:28–36PubMedGoogle Scholar
  37. Khosrotehrani K, Bianchi DW (2005) Multi-lineage potential of fetal cells in maternal tissue: a legacy in reverse. J Cell Sci 118:1559–1563. doi: 10.1242/jcs.02332 PubMedCrossRefGoogle Scholar
  38. Kim MJ, Shin KS, Jeon JH, Lee DR, Shim SH, Kim JK, Cha DH, Yoon TK, Kim GJ (2011) Human chorionic-plate-derived mesenchymal stem cells and Wharton’s jelly-derived mesenchymal stem cells: a comparative analysis of their potential as placenta-derived stem cells. Cell Tissue Res 346:53–64. doi: 10.1007/s00441-011-1249-8 PubMedCrossRefGoogle Scholar
  39. Koliakos I, Tsagias N, Karagiannis V (2011) Mesenchymal cells isolation from Wharton’s jelly, in perspective to clinical applications. J Biol Res 16:194–201Google Scholar
  40. Kranz A, Wagner D-C, Kamprad M, Scholz M, Schmidt UR, Nitzsche F, Aberman Z, Emmrich F, Riegelsberger U-M, Boltze J (2010) Transplantation of placenta-derived mesenchymal stromal cells upon experimental stroke in rats. Brain Res 1315:128–136. doi: 10.1016/j.brainres.2009.12.001 PubMedCrossRefGoogle Scholar
  41. La Rocca G, Corrao S, Lo Iacono M, Corsello T, Farina F, Anzalone R (2012) Novel immunomodulatory markers expressed by human WJ-MSC: an updated review in regenerative and reparative medicine. Open Tissue Eng Regen Med J 5:50–58. doi: 10.2174/1875043501205010050 CrossRefGoogle Scholar
  42. Lange-Consiglio A, Tassan S, Corradetti B, Meucci A, Perego R, Bizzaro D, Cremonesi F (2013) Investigating the efficacy of amnion-derived compared with bone marrow-derived mesenchymal stromal cells in equine tendon and ligament injuries. Cytotherapy 15:1011–1020. doi: 10.1016/j.jcyt.2013.03.002 PubMedCrossRefGoogle Scholar
  43. Lanuti P, Serafini F, Pierdomenico L, Simeone P, Bologna G, Ercolino E, Di Silvestre S, Guarnieri S, Canosa C, Impicciatore GG, Chiarini S, Magnacca F, Mariggiò MA, Pandolfi A, Marchisio M, Di Giammarco G, Miscia S (2015) Human mesenchymal stem cells reendothelialize porcine heart valve scaffolds: novel perspectives in heart valve tissue engineering. Biores Open Access 4:288–297. doi: 10.1089/biores.2015.0019 PubMedPubMedCentralCrossRefGoogle Scholar
  44. Li DR, Cai JH (2012) Methods of isolation, expansion, differentiating induction and preservation of human umbilical cord mesenchymal stem cells. Chin Med J (Engl) 125:4504–4510. doi: 10.3760/cma.j.issn.0366-6999.2012.24.032 Google Scholar
  45. Lin YL, Chen CP, Lo CM, Wang HS (2016) Stiffness-controlled three-dimensional collagen scaffolds for differentiation of human Wharton’s jelly mesenchymal stem cells into cardiac progenitor cells. J Biomed Mater Res A. doi: 10.1002/jbm.a.35762 Google Scholar
  46. Liu T, Wu J, Huang Q, Hou Y, Jiang Z, Zang S, Guo L (2008) Human amniotic epithelial cells ameliorate behavioral dysfunction and reduce infarct size in the rat middle cerebral artery occlusion model. Shock 29:603–611. doi: 10.1097/SHK.0b013e318157e845 PubMedCrossRefGoogle Scholar
  47. Liu X, Zheng P, Wang X, Dai G, Cheng H, Zhang Z, Hua R, Niu X, Shi J, An Y (2014) A preliminary evaluation of efficacy and safety of Wharton’s jelly mesenchymal stem cell transplantation in patients with type 2 diabetes mellitus. Stem Cell Res Ther 5:57. doi: 10.1186/scrt446 PubMedPubMedCentralCrossRefGoogle Scholar
  48. Lu LL, Liu YJ, Yang SG, Zhao QJ, Wang X, Gong W, Han ZB, Xu ZS, Lu YX, Liu D, Chen ZZ, Han ZC (2006) Isolation and characterization of human umbilical cord mesenchymal stem cells with hematopoiesis-supportive function and other potentials. Haematologica 91:1017–1026PubMedGoogle Scholar
  49. Lupu M, Khalil M, Andrei E, Iordache F, Pfannkuche K, Neef K, Georgescu A, Buzila C, Brockmeier K, Maniu H, Hescheler J (2011) Integration properties of Wharton’s jelly-derived novel mesenchymal stem cells into ventricular slices of murine hearts. Cell Physiol Biochem 28:63–76. doi: 10.1159/000331714 PubMedCrossRefGoogle Scholar
  50. Magatti M, De Munari S, Vertua E, Gibelli L, Wengler GS (2008) Human amnion mesenchyme harbors cells with allogeneic T-cell suppression and stimulation capabilities. Stem Cells 26:182–192. doi: 10.1634/stemcells.2007-0491 PubMedCrossRefGoogle Scholar
  51. Magatti M, De Munari S, Vertua E, Nassauto C, Albertini A, Wengler GS, Parolini O (2009) Amniotic mesenchymal tissue cells inhibit dendritic cell differentiation of peripheral blood and amnion resident monocytes. Cell Transplant 18:899–914. doi: 10.3727/096368909X471314 PubMedCrossRefGoogle Scholar
  52. Manuelpillai U, Tchongue J, Lourensz D, Vaghjiani V, Samuel CS, Liu A, Williams ED, Sievert W (2010) Transplantation of human amnion epithelial cells reduces hepatic fibrosis in immunocompetent CCl4-treated mice. Cell Transplant 19:1157–1168. doi: 10.3727/096368910X504496 PubMedCrossRefGoogle Scholar
  53. Marcus AJ, Coyne TM, Black IB, Woodbury D (2008) Fate of amnion-derived stem cells transplanted to the fetal rat brain: migration, survival and differentiation. J Cell Mol Med 12:1256–1264. doi: 10.1111/j.1582-4934.2008.00180.x PubMedPubMedCentralCrossRefGoogle Scholar
  54. Marongiu F, Gramignoli R, Sun Q, Tahan V, Miki T, Dorko K, Ellis E, Strom SC (2010) Isolation of amniotic mesenchymal stem cells. Curr Protoc Stem Cell Biol Chapter 1:Unit 1E.5. doi: 10.1002/9780470151808.sc01e05s12
  55. Marongiu F, Gramignoli R, Dorko K, Miki T, Ranade AR, Paola Serra M, Doratiotto S, Sini M, Sharma S, Mitamura K, Sellaro TL, Tahan V, Skvorak KJ, Ellis ECS, Badylak SF, Davila JC, Hines R, Laconi E, Strom SC (2011) Hepatic differentiation of amniotic epithelial cells. Hepatology 53:1719–1729. doi: 10.1002/hep.24255 PubMedPubMedCentralCrossRefGoogle Scholar
  56. Matsuzuka T, Rachakatla RS, Doi C, Maurya DK, Ohta N, Kawabata A, Pyle MM, Pickel L, Reischman J, Marini F, Troyer D, Tamura M (2010) Human umbilical cord matrix-derived stem cells expressing interferon-β gene significantly attenuate bronchioloalveolar carcinoma xenografts in SCID mice. Lung Cancer 70:28–36. doi: 10.1016/j.lungcan.2010.01.003 PubMedPubMedCentralCrossRefGoogle Scholar
  57. McDonald C, Siatskas C, Bernard CAC (2011) The emergence of amnion epithelial stem cells for the treatment of Multiple Sclerosis. Inflamm Regen 31:256–271. doi: 10.2492/inflammregen.31.256 CrossRefGoogle Scholar
  58. McElreavey KD, Irvine AI, Ennis KT, McLean WH (1991) Isolation, culture and characterisation of fibroblast-like cells derived from the Wharton’s jelly portion of human umbilical cord. Biochem Soc Trans 19:29SPubMedCrossRefGoogle Scholar
  59. Miki T (2011) Amnion-derived stem cells: in quest of clinical applications. Stem Cell Res Ther 2:25. doi: 10.1186/scrt66 PubMedPubMedCentralCrossRefGoogle Scholar
  60. Miki T (2016) A rational strategy for the use of amniotic epithelial stem cell therapy for liver diseases. Stem Cells Transl Med 5:405–409. doi: 10.5966/sctm.2015-0304 PubMedCrossRefGoogle Scholar
  61. Miki T, Strom SC (2006) Amnion-derived pluripotent/multipotent stem cells. Stem Cell Rev 2:133–142. doi: 10.1385/SCR:2:2:133 PubMedCrossRefGoogle Scholar
  62. Miki T, Lehmann T, Cai H, Stolz DB, Strom SC (2005) Stem cell characteristics of amniotic epithelial cells. Stem Cells 23:1549–1559. doi: 10.1634/stemcells.2004-0357 PubMedCrossRefGoogle Scholar
  63. Mitchell KE, Weiss ML, Mitchell BM, Martin P, Davis D, Morales L, Helwig B, Beerenstrauch M, Abou-Easa K, Hildreth T, Troyer D, Medicetty S (2003) Matrix cells from Wharton’s jelly form neurons and glia. Stem Cells 21:50–60. doi: 10.1634/stemcells.21-1-50 PubMedCrossRefGoogle Scholar
  64. Moodley Y, Vaghjiani V, Chan J, Baltic S, Ryan M, Tchongue J, Samuel CS, Murthi P, Parolini O, Manuelpillai U (2013) Anti-inflammatory effects of adult stem cells in sustained lung injury: a comparative study. PLoS One 8:e69299. doi: 10.1371/journal.pone.0069299 PubMedPubMedCentralCrossRefGoogle Scholar
  65. Murphy SV, Lim R, Heraud P, Cholewa M, Le Gros M, de Jonge MD, Howard DL, Paterson D, McDonald C, Atala A, Jenkin G, Wallace EM (2012) Human amnion epithelial cells induced to express functional cystic fibrosis transmembrane conductance regulator. PLoS One. doi: 10.1371/journal.pone.0046533 Google Scholar
  66. Musialek P, Mazurek A, Jarocha D, Tekieli L, Szot W, Kostkiewicz M, Banys RP, Urbanczyk M, Kadzielski A, Trystula M, Kijowski J, Zmudka K, Podolec P, Majka M (2015) Myocardial regeneration strategy using Wharton’s jelly mesenchymal stem cells as an off-the-shelf “unlimited” therapeutic agent: results from the Acute Myocardial Infarction First-in-Man Study. Postepy Kardiol Interwencyjnej 11:100–107. doi: 10.5114/pwki.2015.52282 PubMedPubMedCentralGoogle Scholar
  67. Nakajima T, Enosawa S, Mitani T, Li XK, Suzuki S, Amemiya H, Koiwai O, Sakuragawa N (2001) Cytological examination of rat amniotic epithelial cells and cell transplantation to the liver. Cell Transplant 10:423–427PubMedGoogle Scholar
  68. Nartprayut K, U-Pratya Y, Kheolamai P, Manochantr S, Chayosumrit M, Issaragrisil S, Supokawej A (2013) Cardiomyocyte differentiation of perinatally-derived mesenchymal stem cells. Mol Med Rep 7:1465–1469. doi: 10.3892/mmr.2013.1356 PubMedGoogle Scholar
  69. Nguyen Huu S, Dubernard G, Aractingi S, Khosrotehrani K (2006) Feto-maternal cell trafficking: a transfer of pregnancy associated progenitor cells. Stem Cell Rev 2:111–116. doi: 10.1385/SCR:2:2:111 PubMedGoogle Scholar
  70. O’Donoghue K, Choolani M, Chan J, de la Fuente J, Kumar S, Campagnoli C, Bennett PR, Roberts IAG, Fisk NM (2003) Identification of fetal mesenchymal stem cells in maternal blood: implications for non-invasive prenatal diagnosis. Mol Hum Reprod 9:497–502. doi: 10.1093/molehr/gag063 PubMedCrossRefGoogle Scholar
  71. Okawa H, Okuda O, Arai H, Sakuragawa N, Sato K (2001) Amniotic epithelial cells transform into neuron-like cells in the ischemic brain. Neuroreport 12:4003–4007PubMedCrossRefGoogle Scholar
  72. Paz-Rodriguez J (2016) Feasibility Study of Umbilical Cord Tissue Derived Mesenchymal Stem Cells (UC-MSC) in Disease Modifying Anti-Rheumatic Drugs (DMARD) Resistant Rheumatoid Arthritis. Identifier: NCT01985464Google Scholar
  73. Prasanna SJ, Jahnavi VS (2011) Wharton’s jelly mesenchymal stem cells as off-the-shelf cellular therapeutics: a closer look into their regenerative and immunomodulatory properties. Open Tissue Eng Regen Med J 4:28–38. doi: 10.2174/1875043501104010028 CrossRefGoogle Scholar
  74. Ribeiro J, Gartner A, Pereira T, Gomes R, Lopes MA, Gonçalves C, Varejão A, Luís AL, Maurício AC (2013) Perspectives of employing mesenchymal stem cells from the Wharton’s jelly of the umbilical cord for peripheral nerve repair. Int Rev Neurobiol 108:79–119. doi: 10.1016/B978-0-12-410499-0.00004-6 PubMedCrossRefGoogle Scholar
  75. Rouas-Freiss N, Gonçalves RM, Menier C, Dausset J, Carosella ED (1997) Direct evidence to support the role of HLA-G in protecting the fetus from maternal uterine natural killer cytolysis. Proc Natl Acad Sci U S A 94:11520–11525. doi: 10.1073/pnas.94.21.11520 PubMedPubMedCentralCrossRefGoogle Scholar
  76. Ruan D, Zhang Y, Wang D, Zhang C, Wu J, Wang C, Shi Z, Xin H, Xu C, Li H, He Q (2012) Differentiation of human Wharton’s jelly cells toward nucleus pulposus-like cells after coculture with nucleus pulposus cells in vitro. Tissue Eng Part A 18:167–175. doi: 10.1089/ten.TEA.2011.0186 PubMedCrossRefGoogle Scholar
  77. Sankar V, Muthusamy R (2003) Role of human amniotic epithelial cell transplantation in spinal cord injury repair research. Neuroscience 118:11–17. doi: 10.1016/S0306-4522(02)00929-6 PubMedCrossRefGoogle Scholar
  78. Saulnier N, Viguier E, Perrier-Groult E, Chenu C, Pillet E, Roger T, Maddens S, Boulocher C (2015) Intra-articular administration of xenogeneic neonatal Mesenchymal Stromal Cells early after meniscal injury down-regulates metalloproteinase gene expression in synovium and prevents cartilage degradation in a rabbit model of osteoarthritis. Osteoarthr Cartil 23:122–133. doi: 10.1016/j.joca.2014.09.007 PubMedCrossRefGoogle Scholar
  79. Schugar RC, Chirieleison SM, Wescoe KE, Schmidt BT, Askew Y, Nance JJ, Evron JM, Peault B, Deasy BM (2009) High harvest yield, high expansion, and phenotype stability of CD146 mesenchymal stromal cells from whole primitive human umbilical cord tissue. J Biomed Biotechnol. doi: 10.1155/2009/789526 PubMedPubMedCentralGoogle Scholar
  80. Semenov OV, Breymann C (2011) Mesenchymal stem cells derived from Wharton’s Jelly and their potential for cardio-vascular tissue engineering. Open Tissue Eng Regen Med J 4:64–71. doi: 10.2174/1875043501104010064 CrossRefGoogle Scholar
  81. Seshareddy K, Troyer D, Weiss ML (2008) Method to isolate mesenchymal-like cells from wharton’s jelly of umbilical cord. Methods Cell Biol 86:101–119. doi: 10.1016/S0091-679X(08)00006-X PubMedCrossRefGoogle Scholar
  82. Shi M, Zhang Z, Xu R, Lin H, Fu J, Zou Z, Zhang A, Shi J, Chen L, Lv S, He W, Geng H, Jin L, Liu Z, Wang FS (2012) Human mesenchymal stem cell transfusion is safe and improves liver function in acute-on-chronic liver failure patients. Stem Cells Transl Med 1:725–731. doi: 10.5966/sctm.2012-0034 PubMedPubMedCentralCrossRefGoogle Scholar
  83. Taghizadeh RR, Cetrulo KJ, Cetrulo CL (2011) Wharton’s Jelly stem cells: future clinical applications. Placenta. doi: 10.1016/j.placenta.2011.06.010 PubMedGoogle Scholar
  84. Takahashi N, Enosawa S, Mitani T, Lu H, Suzuki S, Amemiya H, Amano T, Sakuragawa N (2002) Transplantation of amniotic epithelial cells into fetal rat liver by in utero manipulation. Cell Transplant 11:443–449PubMedGoogle Scholar
  85. Takashima S, Ise H, Zhao P, Akaike T, Nikaido T (2004) Human amniotic epithelial cells possess hepatocyte-like characteristics and functions. Cell Struct Funct 29:73–84. doi: 10.1247/csf.29.73 PubMedCrossRefGoogle Scholar
  86. Tamagawa T, Ishiwata I, Ishikawa H, Nakamura Y (2008) Induced in-vitro differentiation of neural-like cells from human amnion-derived fibroblast-like cells. Hum Cell 21:38–45. doi: 10.1111/j.1749-0774.2008.00049.x PubMedCrossRefGoogle Scholar
  87. Tamagawa T, Ishiwata I, Sato K, Nakamura Y (2009) Induced in vitro differentiation of pancreatic-like cells from human amnion-derived fibroblast-like cells. Hum Cell 22:55–63. doi: 10.1111/j.1749-0774.2009.00069.x PubMedCrossRefGoogle Scholar
  88. Tipnis S, Viswanathan C, Majumdar AS (2010) Immunosuppressive properties of human umbilical cord-derived mesenchymal stem cells: role of B7-H1 and IDO. Immunol Cell Biol 88:795–806. doi: 10.1038/icb.2010.47 PubMedCrossRefGoogle Scholar
  89. Tong CK, Vellasamy S, Tan BC, Abdullah M, Vidyadaran S, Seow HF, Ramasamy R (2011) Generation of mesenchymal stem cell from human umbilical cord tissue using a combination enzymatic and mechanical disassociation method. Cell Biol Int 35:221–226. doi: 10.1042/CBI20100326 PubMedCrossRefGoogle Scholar
  90. Troyer DL, Weiss ML (2008) Wharton’s jelly-derived cells are a primitive stromal cell population. Stem Cells 26:591–599. doi: 10.1634/stemcells.2007-0439 PubMedCrossRefGoogle Scholar
  91. Tsai PC, Fu TW, Chen YMA, Ko TL, Chen TH, Shih YH, Hung SC, Fu YS (2009) The therapeutic potential of human umbilical mesenchymal stem cells from Wharton’s jelly in the treatment of rat liver fibrosis. Liver Transpl 15:484–495. doi: 10.1002/lt.21715 PubMedCrossRefGoogle Scholar
  92. Tsai PJ, Wang HS, Lin GJ, Chou SC, Chu TH, Chuan WT, Lu YJ, Weng ZC, Su CH, Hsieh PS, Sytwu HK, Lin CH, Chen TH, Shyu JF (2015) Undifferentiated Wharton's jelly mesenchymal stem cell transplantation induces insulin-producing cell differentiation and suppression of T-cell-mediated autoimmunity in nonobese diabetic mice. Cell Transplant 24:1555–1570. doi: 10.3727/096368914X683016 PubMedCrossRefGoogle Scholar
  93. Wang H-S, Hung S-C, Peng S-T, Huang C-C, Wei H-M, Guo Y-J, Fu Y-S, Lai M-C, Chen C-C (2004) Mesenchymal stem cells in the Wharton’s jelly of the human umbilical cord. Stem Cells 22:1330–1337. doi: 10.1634/stemcells.2004-0013 PubMedCrossRefGoogle Scholar
  94. Wang L, Zhao L, Detamore MS (2011) Human umbilical cord mesenchymal stromal cells in a sandwich approach for osteochondral tissue engineering. J Tissue Eng Regen Med 5:712–721. doi: 10.1002/term.370 PubMedCrossRefGoogle Scholar
  95. Wang L, Li J, Liu H, Li Y, Fu J, Sun Y, Xu R, Lin H, Wang S, Lv S, Chen L, Zou Z, Li B, Shi M, Zhang Z, Wang FS (2013) A pilot study of umbilical cord-derived mesenchymal stem cell transfusion in patients with primary biliary cirrhosis. J Gastroenterol Hepatol 28(Suppl 1):85–92. doi: 10.1111/jgh.12029 PubMedCrossRefGoogle Scholar
  96. Wang A, Brown EG, Lankford L, Keller BA, Pivetti CD, Sitkin NA, Beattie MS, Bresnahan JC, Farmer DL (2015) Placental mesenchymal stromal cells rescue ambulation in ovine myelomeningocele. Stem Cells Transl Med 4:659–669. doi: 10.5966/sctm.2014-0296 PubMedPubMedCentralCrossRefGoogle Scholar
  97. Wei JP, Zhang TS, Kawa S, Aizawa T, Ota M, Akaike T, Kato K, Konishi I, Nikaido T (2003) Human amnion-isolated cells normalize blood glucose in streptozotocin-induced diabetic mice. Cell Transplant 12:545–552PubMedCrossRefGoogle Scholar
  98. Wharton T (1656) Adenographia: sive glandularum totius corporis descriptio. Typis J.G. Impensis Authoris, LondiniGoogle Scholar
  99. Wu Z, Hui G, Lu Y, Wu X, Guo L (2006) Transplantation of human amniotic epithelial cells improves hindlimb function in rats with spinal cord injury. Chin Med J (Engl) 119:2101–2107Google Scholar
  100. Xue S, Chen C, Dong W, Hui G, Liu T, Guo L (2012) Therapeutic effects of human amniotic epithelial cell transplantation on double-transgenic mice co-expressing APPswe and PS1ΔE9-deleted genes. Sci China Life Sci 55:132–140. doi: 10.1007/s11427-012-4283-1 PubMedCrossRefGoogle Scholar
  101. Yang CC, Shih YH, Ko MH, Hsu SY, Cheng H, Fu YS (2008) Transplantation of human umbilical mesenchymal stem cells from Wharton’s jelly after complete transection of the rat spinal cord. PLoS One. doi: 10.1371/journal.pone.0003336 Google Scholar
  102. Yu YB, Bian JM, Gu DH (2015) Transplantation of insulin-producing cells to treat diabetic rats after 90% pancreatectomy. World J Gastroenterol 21:6582–6590PubMedPubMedCentralCrossRefGoogle Scholar
  103. Zhang HT, Fan J, Cai YQ, Zhao SJ, Xue S, Lin JH, Jiang XD, Xu RX (2010) Human Wharton’s jelly cells can be induced to differentiate into growth factor-secreting oligodendrocyte progenitor-like cells. Differentiation 79:15–20. doi: 10.1016/j.diff.2009.09.002 PubMedCrossRefGoogle Scholar
  104. Zhang Z, Lin H, Shi M, Xu R, Fu J, Lv J, Chen L, Lv S, Li Y, Yu S, Geng H, Jin L, Lau GKK, Wang FS (2012) Human umbilical cord mesenchymal stem cells improve liver function and ascites in decompensated liver cirrhosis patients. J Gastroenterol Hepatol 27(suppl 2):112–120. doi: 10.1111/j.1440-1746.2011.07024.x PubMedCrossRefGoogle Scholar
  105. Zhang W, Liu XC, Yang L, Zhu DL, Zhang YD, Chen Y, Zhang HY (2013) Wharton’s jelly-derived mesenchymal stem cells promote myocardial regeneration and cardiac repair after miniswine acute myocardial infarction. Coron Artery Dis 24:549–558. doi: 10.1097/MCA.0b013e3283640f00 PubMedCrossRefGoogle Scholar
  106. Zhang Y, Tao H, Gu T, Zhou M, Jia Z, Jiang G, Chen C, Han Z, Xu C, Wang D, He Q, Ruan D (2015) The effects of human Wharton’s jelly cell transplantation on the intervertebral disc in a canine disc degeneration model. Stem Cell Res Ther 6:154. doi: 10.1186/s13287-015-0132-z PubMedPubMedCentralCrossRefGoogle Scholar
  107. Zhao P, Ise H, Hongo M, Ota M, Konishi I, Nikaido T (2005) Human amniotic mesenchymal cells have some characteristics of cardiomyocytes. Transplantation 79:528–535PubMedCrossRefGoogle Scholar
  108. Zhao Q, Ren H, Li X, Chen Z, Zhang X, Gong W, Liu Y, Pang T, Han ZC (2009) Differentiation of human umbilical cord mesenchymal stromal cells into low immunogenic hepatocyte-like cells. Cytotherapy 11:414–426. doi: 10.1080/14653240902849754 PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Biochemistry and Molecular Biology, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesUSA
  2. 2.Department of Pediatric Surgery, McGovern Medical SchoolUniversity of Texas Health Science Center at HoustonHoustonUSA

Personalised recommendations