Skip to main content

Measurement of the Mechanical Properties of Biological Tissues

  • Chapter
  • First Online:
Cardiovascular Biomechanics

Abstract

Knowledge of the mechanical behaviour of biological tissue is fundamental to understanding both health and disease, and this is particularly true in the cardiovascular system. For example, arterial tissue stiffens with age and the most conclusive way to measure stiffness is through mechanical testing. This chapter will describe some of the methods used to measure mechanical properties of cardiovascular tissue both in the laboratory and in vivo using medical imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adham M, Gournier JP, Favre JP, De La Roche E, Ducerf C, Baulieux J, Barral X, Pouyet M. Mechanical characteristics of fresh and frozen human descending thoracic aorta. J Surg Res. 1996;64:32–4.

    Article  CAS  PubMed  Google Scholar 

  • ASTM International. ASTM D412–06a. Standard test methods for vulcanized rubber and thermoplastic elastomers—tension. West Conshohocken: ASTM International; 2013.

    Google Scholar 

  • Bergel DH. The static elastic properties of the arterial wall. J Physiol London. 1961a;156:445–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bergel DH. The dynamic elastic properties of the arterial wall. J Physiol London. 1961b;156:458–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carli G. Blood pressure and heart rate in the rabbit during animal hypnosis. Electroencephalogr Clin Neurophysiol. 1974;37:231–7.

    Article  CAS  PubMed  Google Scholar 

  • Chuong CJ, Fung YC. Compressibility and constitutive equation of arterial wall in radial compression experiments. J Biomech. 1984;17:35–40.

    Article  CAS  PubMed  Google Scholar 

  • Claridge MW, Bate GR, Hoskins PR, Adam DJ, Bradbury AW, Wilmink AB. Measurement of arterial stiffness in patients with peripheral arterial disease: are changes in vessel wall more sensitive than intima-media thickness? Atherosclerosis. 2009;205:477–80.

    Article  CAS  PubMed  Google Scholar 

  • De Mey JG, Uitendaal MP, Boonen HC, Vrijdag MJ, Daemen MJ, Struyker-Boudier HA. Acute and long-term effects of tissue culture on contractile reactivity in renal arteries of the rat. Circ Res. 1989;65:1125–35.

    Article  PubMed  Google Scholar 

  • Delfino A, Stergiopulos N, Moore JE Jr, Meister JJ. Residual strain effects on the stress field in a thick wall finite element model of the human carotid bifurcation. J Biomech. 1997;30:777–86.

    Article  CAS  PubMed  Google Scholar 

  • Doyle BJ, Cloonan AJ, Walsh MT, Vorp DA, McGloughlin TM. Identification of rupture locations in patient-specific abdominal aortic aneurysms using experimental and computational techniques. J Biomech. 2010;43:1408–16.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dye WW, Gleason RL, Wilson E, Humphrey JD. Altered biomechanical properties of carotid arteries in two mouse models of muscular dystrophy. J Appl Physiol. 1985;2007(103):664–72.

    Google Scholar 

  • Elgeti T, Knebel F, Hättasch R, Hamm B, Braun J, Sack I. Shear-wave amplitudes measured with cardiac MR elastography for diagnosis of diastolic dysfunction. Radiology. 2014;271:681–7.

    Article  PubMed  Google Scholar 

  • Engelmayr GC Jr, Hildebrand DK, Sutherland FW, Mayer JE Jr, Sacks MS. A novel bioreactor for the dynamic flexural stimulation of tissue engineered heart valve biomaterials. Biomaterials. 2003;24:2523–32.

    Article  CAS  PubMed  Google Scholar 

  • Garrard JW, Ramnarine KV. Shear-wave elastography in carotid plaques: comparison with grayscale median and histological assessment in an interesting case. Ultraschall Med. 2014;35:1–3.

    Article  CAS  PubMed  Google Scholar 

  • Gleason RL, Gray SP, Wilson E, Humphrey JD. A multiaxial computer-controlled organ culture and biomechanical device for mouse carotid arteries. J Biomech Eng. 2004;126:787–95.

    Article  CAS  PubMed  Google Scholar 

  • Guinea GV, Atienza JM, Elices M, Aragoncillo P, Hayashi K. Thermo-mechanical behaviour of human carotid arteries in the passive state. Am J Physiol Heart Circulatory Physiol. 2005. doi:10.1152/ajpheart.01099.2004.

    Google Scholar 

  • Guo X, Kassab GS. Variation of mechanical properties along the length of the aorta in C57bl/6 mice. Am J Physiol Heart Circ Physiol. 2003;285:H2614–22.

    Article  CAS  PubMed  Google Scholar 

  • Han HC, Fung YC. Longitudinal strain of canine and porcine aortas. J Biomech. 1995;28:637–41.

    Article  CAS  PubMed  Google Scholar 

  • Han HC, Ku DN. Contractile responses in arteries subjected to hypertensive pressure in seven-day organ culture. Ann Biomed Eng. 2001;29:467–75.

    Article  CAS  PubMed  Google Scholar 

  • Hayashi K, Handa H, Nagasawa S, Okumura A, Moritake K. Stiffness and elastic behavior of human intra-cranial and extra-cranial arteries. J Biomech. 1980;13:175–85.

    Article  CAS  PubMed  Google Scholar 

  • Höglund K, HanÃ¥s S, Carnabuci C, Ljungvall I, Tidholm A, Häggström J. Blood pressure, heart rate, and urinary catecholamines in healthy dogs subjected to different clinical settings. J Vet Intern Med. 2012;26:1300–8.

    Article  PubMed  Google Scholar 

  • Holzapfel GA, Ogden RW. On planar biaxial tests for anisotropic nonlinearly elastic solids. A continuum mechanical framework. Math Mech Solids. 2009;14:474–89.

    Article  Google Scholar 

  • Holzapfel GA, Gasser T, Ogden R. A new constitutive framework for arterial wall mechanics and a comparative study of material models. J Elast Phys Sci Solids. 2000;61:1–48.

    Article  Google Scholar 

  • Hoskins PR, Bradbury AW. Wall motion analysis. In: Nicolaides A, Beach KW, Kyriakou E, Pattichis CS, editors. Ultrasound and carotid bifurcation atherosclerosis. Springer, 2012. pp. 325–339.

    Google Scholar 

  • Humphrey JD. Continuum thermomechanics and the clinical treatment of disease and injury. Appl Mech Rev. 2003;56:231–60.

    Article  Google Scholar 

  • Khir AW, O’Brien A, Gibbs JSR, Parker KH. Determination of wave speed and wave separation in the arteries. J Biomech. 2001;34:1145–55.

    Article  CAS  PubMed  Google Scholar 

  • Kolipaka A, Araoz PA, McGee KP, Manduca A, Ehman RL. In vivo cardiac MR elastography in a single breath hold. Proc Int Soc Magn Reson Med. 2010;18:591.

    Google Scholar 

  • Kolipaka A, Woodrum D, Araoz PA, Ehman RL. MR elastography of the in vivo abdominal aorta: a feasibility study for comparing aortic stiffness between hypertensives and normotensives. J Magn Reson Imaging. 2012;35:582–6.

    Article  PubMed  Google Scholar 

  • Learoyd BM, Taylor MG. Alterations with age in viscoelastic properties of human arterial walls. Circ Res. 1966;18:278–92.

    Article  CAS  PubMed  Google Scholar 

  • Lindqvist A, Nilsson BO, Hellstrand P. Inhibition of calcium entry preserves contractility of arterial smooth muscle in culture. J Vasc Res. 1997;34:103–8.

    Article  CAS  PubMed  Google Scholar 

  • Macrae RA, Miller K, Doyle BJ. Methods in mechanical testing of arterial tissue: a review. Strain. 2016;52:380–99.

    Google Scholar 

  • Matsumoto T, Okumura E, Miura Y, Sato M. Mechanical and dimensional adaptation of rabbit carotid artery cultured in vitro. Med Biol Eng Comput. 1999;37:252–6.

    Article  CAS  PubMed  Google Scholar 

  • McFetridge PS, Abe K, Horrocks M, Chaudhuri JB. Vascular tissue engineering: bioreactor design considerations for extended culture of primary human vascular smooth muscle cells. ASAIO J. 2007;53:623–30.

    Article  PubMed  Google Scholar 

  • Mésangeau D, Laude D, Elghozi JL. Early detection of cardiovascular autonomic neuropathy in diabetic pigs using blood pressure and heart rate variability. Cardiovasc Res. 2000;45:889–99.

    Article  PubMed  Google Scholar 

  • Mullins L. Softening of rubber by deformation. Rubber Chem Technol. 1969;42:339–62.

    Article  CAS  Google Scholar 

  • O’Leary SA, Doyle BJ, McGloughlin TM. Comparison of methods used to measure the thickness of soft tissues and their influence on the evaluation of tensile stress. J Biomech. 2013;46:1955–60.

    Article  PubMed  Google Scholar 

  • O’Leary SA, Doyle BJ, McGloughlin TM. The impact of long term freezing on the mechanical properties of porcine aortic tissue. J Mech Behav Biomed Mater. 2014a;37:165–73.

    Article  PubMed  Google Scholar 

  • O’Leary SA, Healey DA, Kavanagh EG, Walsh MT, McGloughlin TM, Doyle BJ. The biaxial biomechanical behavior of abdominal aortic aneurysm tissue. Ann Biomed Eng. 2014b;42:2440–50.

    Article  PubMed  Google Scholar 

  • O’Leary SA, Mulvihill JJ, Barrett HE, Kavanagh EG, Walsh MT, McGloughlin TM, Doyle BJ. Determining the influence of calcification on the failure properties of abdominal aortic aneurysm (AAA) tissue. J Mech Behav Biomed Mater. 2015;42:154–67.

    Article  PubMed  Google Scholar 

  • Peterson LH, Jensen RE, Parnell J. Mechanical properties of arteries in vivo. Circ Res. 1960;8:622–39.

    Article  Google Scholar 

  • Rabben SI, Stergiopulos N, Hellevik LR, Smiseth OA, Slørdahl S, Urheim S, Angelsen B. An ultrasound-based method for determining pulse wave velocity in superficial arteries. J Biomech. 2004;37:1615–22.

    Article  PubMed  Google Scholar 

  • Rachev A, Shazly T. A preliminary analysis of the data from an in vitro inflation-extension test can validate the assumption of arterial tissue elasticity. J Biomech Eng. 2013;135:84502. doi:10.1115/1.4024665.

    Article  PubMed  Google Scholar 

  • Rakebrandt F, Palombo C, Swampillai J, Schon F, Donald A, Kozakova M, Kato K, Fraser AG. Arterial wave intensity and ventricular-arterial coupling by vascular ultrasound: rationale and methods for the automated analysis of forwards and backwards running waves. Ultrasound Med Biol. 2009;35:266–77.

    Google Scholar 

  • Ramnarine KV, Garrard JW, Kanber B, Nduwayo S, Hartshorne TC, Robinson TG. Shear wave elastography imaging of carotid plaques: feasible, reproducible and of clinical potential. Cardiovasc Ultrasound. 2014;12:49.

    Article  PubMed  PubMed Central  Google Scholar 

  • Reece WO (ed). Duke’s physiology of domestic animals, 12th ed. Sage House, 512 East State Street, Ithaca, New York 14850, Cornell University Press. 2004.

    Google Scholar 

  • Shazly T, Rachev A, Lessner S, Argraves W, Ferdous J, Zhou B, Moreira AM, Sutton M. On the uniaxial ring test of tissue engineered constructs. Exp Mech. 2015;55:41–51.

    Article  CAS  Google Scholar 

  • Sommer G, Gasser TC, Regitnig P, Auer M, Holzapfel GA. Dissection properties of the human aortic media: an experimental study. J Biomech Eng. 2008;130:021007. doi:10.1115/1.2898733.

    Article  PubMed  Google Scholar 

  • Sun W, Sacks MS, Scott MJ. Effects of boundary conditions on the estimation of the planar biaxial mechanical properties of soft tissues. J Biomech Eng. 2005;127:709–15.

    Article  PubMed  Google Scholar 

  • Tondreau MY, Laterreur V, Gauvin R, Vallières K, Bourget JM, Lacroix D, Tremblay C, Germain L, Ruel J, Auger FA. Mechanical properties of endothelialized fibroblast-derived vascular scaffolds stimulated in a bioreactor. Acta Biomater. 2015;18:176–85.

    Article  CAS  PubMed  Google Scholar 

  • Wilson KA, Lee AJ, Lee AJ, Hoskins PR, Fowkes FG, Ruckley CV, Bradbury AW. The relationship between aortic wall distensibility and rupture of infrarenal abdominal aortic aneurysms. J Vasc Surg. 2003;37:112–7.

    Article  PubMed  Google Scholar 

  • Woodrum DA, Romano AJ, Lerman A, Pandya UH, Brosh D, Rossman PJ, Lerman LO, Ehman RL. Vascular wall elasticity measurement by magnetic resonance imaging. Magn Reson Med. 2006;56:593–600.

    Article  CAS  PubMed  Google Scholar 

  • Zambanini A, Cunningham SL, Parker KH, Khir AW. McG Thom SA, Hughes AD. Wave-energy patterns in carotid, brachial, and radial arteries: a noninvasive approach using wave-intensity analysis. Am J Physiol Heart Circulatory Physiol. 2005;289:H270–6.

    Article  CAS  Google Scholar 

  • Zaucha MT, Raykin J, Wan W, Gauvin R, Auger FA, Germain L, Michaels TE, Gleason RL Jr. A novel cylindrical biaxial computer-controlled bioreactor and biomechanical testing device for vascular tissue engineering. Tissue Eng Part A. 2009;15:3331–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang D, Arola DD. Applications of digital image correlation to biological tissues. J Biomed Opt. 2004;9:691–9.

    Article  PubMed  Google Scholar 

  • Zhang D, Eggleton C, Arola D. Evaluating the mechanical behavior of arterial tissue using digital image correlation. Exp Mech. 2002;42:409–16.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barry J. Doyle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Doyle, B.J., Macrae, R.A., Hoskins, P.R. (2017). Measurement of the Mechanical Properties of Biological Tissues. In: Hoskins, P., Lawford, P., Doyle, B. (eds) Cardiovascular Biomechanics. Springer, Cham. https://doi.org/10.1007/978-3-319-46407-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46407-7_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46405-3

  • Online ISBN: 978-3-319-46407-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics