Skip to main content

Structural Design with Biological Methods: Optimality, Multi-functionality and Robustness

  • Chapter
  • First Online:
Biomimetic Research for Architecture and Building Construction

Part of the book series: Biologically-Inspired Systems ((BISY,volume 8))

Abstract

We present ideas and concepts towards defining a common framework unifying abstract metrics in order to quantify key features of technical load-bearing structures and biological systems. Our aim is to transfer biological concepts to technical systems at this abstract level rather than on the basis of their outward appearance or actual functionality. This means that the biological concept generators for load-bearing structures do not have to be load-bearing structures themselves but may instead achieve rather different functionalities. We intend to carry out this transference by generalizing graph-based abstractions of both technical and biological worlds to allow comparisons to be made at an abstract level. We focus in particular on the intrinsically competing aims of optimality versus multi-functionality and robustness. In this review, we present initial attempts towards defining suitable quantitative measures for robustness to serve as a common ground for studying technical systems and biological systems simultaneously. We discuss generic properties of a ubiquitous signalling network motif and potential relationships to a minimal model for a robust truss structure. These case studies suggest that topological complexity can serve as a common source for a design that is insensitive to perturbations and thus robust in the measures of both worlds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barkai N, Shilo B-Z (2007) Variability and robustness in biomolecular systems. Cell 28:755–760

    CAS  Google Scholar 

  • Batchelor E, Goulian M (2003) Robustness and the cycle of phosphorylation and dephosphorylation in a two-component regulatory system. Proc Natl Acad Sci U S A 100(2):691–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • BendsœMP, Sigmund O (2004) Topology optimization. Springer, Berlin/Heidelberg

    Google Scholar 

  • Beyer H-G, Sendhoff B (2007) Robust optimization – a comprehensive survey. Comput Method Appl M 196:3190–3218

    Article  Google Scholar 

  • Birtwistle MR, Rauch J, Kiyatkin A, Aksamitiene E, Dobrzynski M, Hoek JB, Kolch W, Ogunnaike BA, Kholodenko BN (2012) Emergence of bimodal cell population responses from the interplay between analog single-cell signaling and protein expression noise. BMC Syst Biol 6(109):1–12

    Google Scholar 

  • Blanchini F, Franco E (2011) Multistability and robustness of the MAPK pathway. In: Proceedings of 50st IEEE conference on decision and ctrl and European control conference, Orlando, pp 2214–19

    Google Scholar 

  • Bletzinger K-U, Ramm E (2014) Computational form finding and optimization. In: Adriaenssens S, Block P, Veenendaal D, Williams C (eds) Shell structures for architecture: form finding and optimization. Routledge, London/New York

    Google Scholar 

  • Blüthgen N, Legewie S (2013) Robustness of signal transduction pathways. Cell Mol Life Sci 70:2259–2269

    Article  PubMed  Google Scholar 

  • Brightman FA, Fell DA (2000) Differential feedback regulation of the MAPK cascade underlies the quantitative differences in EGF and NGF signalling in PC12 cells. FEBS Lett 482:169–174

    Article  CAS  PubMed  Google Scholar 

  • Caicedo-Casso A, Kang H-W, Lim S, Hong CI (2015) Robustness and period sensitivity analysis of minimal models for biochemical oscillators. Sci Rep 5(13161):1–13

    Google Scholar 

  • Clodong S, Dühring U, Kronk L, Wilde A, Axmann I, Herzel H, Kollmann M (2007) Functioning and robustness of a bacterial circadian clock. Mol Syst Biol 3(90):1–9

    Google Scholar 

  • Dexter JP, Gunawardena J (2012) Dimerization and bifunctionality confer robustness to the isocitrate dehydrogenase regulatory system in Escherichia coli. J Biol Chem 288(8):5770–5778

    Article  PubMed  PubMed Central  Google Scholar 

  • Dexter JP, Xu P, Gunawardena J, McClean M (2015) Robust network structure of the Sln1-Ypd1-Ssk1 three-component phospho-relay prevents unintended activation of the HOG MAPK pathway in Saccharomyces cerevisiae. BMC Syst Biol 9(17):1–15

    CAS  Google Scholar 

  • Emmert-Streib F, Dehmer M (2009) Information processing in the transcriptional regulatory network of yeast: functional robustness. BMC Syst Biol 3

    Google Scholar 

  • Fritsche-Guenther R, Witzel F, Sieber A, Herr R, Schmidt N, Braun S, Brummer T, Sers C, Blüthgen N (2011) Strong negative feedback from Erk to Raf confers robustness to MAPK signalling. Mol Syst Biol 7(489)

    Google Scholar 

  • Grieco L, Calzone L, Bernard-Pierrot I, Radvanyi F, Kahn-Perlés B, Thieffry D (2013) Integrative modelling of the influence of MAPK network on cancer cell fate decision. PLoS Comp Biol 9(10)

    Google Scholar 

  • Gunawardena J (2005) Multisite protein phosphorylation makes a good threshold but can be a poor switch. Proc Natl Acad Sci U S A 102(41):14617–14622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hart Y, Madar D, Yuan J, Bren A, Mayo AE, Rabinowitz JD, Alon U (2011) Robust control of nitrogen assimilation by a bifunctional enzyme in E. Coli. Mol Cell 41:117–127

    Article  CAS  PubMed  Google Scholar 

  • Hersen P, McClean MN, Mahadevan L, Ramanathan S (2008) Signal processing by the HOG MAP kinase pathway. Proc Natl Acad Sci U S A 105(20):7165–7170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kholodenko B (2000) Negative feedback and ultrasensitivity can bring about oscillations in the mitogen-activated protein kinase casacde. Eur J Biochem 267:1583–1588

    Article  CAS  PubMed  Google Scholar 

  • Klavins E (2014) Lightening the load in synthetic biology. Nat Biotechnol 32(12):1198–1200

    Article  CAS  PubMed  Google Scholar 

  • Kolch W (2005) Coordinating ERK/MAPK signalling through scaffolds and inhibitors. Nat Rev Mol Cell Biol 6:827–838

    Article  CAS  PubMed  Google Scholar 

  • Kolch W, Calder M, Gilbert D (2005) When kinases meet mathematics: the systems biology of MAPK signalling. FEBS Lett 579:1891–1895

    Article  CAS  PubMed  Google Scholar 

  • Krantz M, Ahmadpour D, Ottosson L-G, Warringer J, Waltermann C, Nordlander B, Klipp E, Blomberg A, Hohmann S, Kitano H (2009) Robustness and fragility in the yeast high osmolarity glycerol (HOG) signal transduction pathway. Mol Syst Biol 5(281):1–7

    Google Scholar 

  • Lapidus S, Han B, Wang J (2008) Intrinsic noise, dissipation cost, and robustness of cellular networks: the underlying energy landscape of MAPK signal transduction. Proc Natl Acad Sci U S A 105(16):6039–6044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Legewie S, Schoeberl B, Blüthgen N, Herzel H (2007) Competing docking interactions can bring about bistability in the MAPK cascade. Biophys J 93:2279–2288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma W, Trusina A, El-Samad H, Lim WA, Tang C (2009) Defining network topologies that can achieve biochemical adaptation. Cell 138:760–773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacBain KM, William RS (2009) Structural Optimization. Springer, Boston

    Book  Google Scholar 

  • Markevich NI, Hoek JB, Kholodenko BN (2004) Signaling switches and bistability arising from multisite phosphorylation in protein kinase cascades. J Cell Biol 164(3):353–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mishra D, Phillip MR, Allen L, Del Vecchio D, Weiss R (2014) A load driver device for engineering modularity in biological networks. Nat Biotechnol 32(12):1268–1275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Shaughnessy E, Palani S, Collins JJ, Sarkar CA (2011) Tunable signal processing in synthetic MAP kinase cascades. Cell 144(1):119–131

    Article  PubMed  PubMed Central  Google Scholar 

  • Ouldridge TE, ten Wolde PR (2014) The robustness of proofreading to crowding-induced pseudo-processivity in the MAPK pathway. Biophys J 107:2425–2435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiao L, Nachbar RB, Kevrekidis IG, Shvartsman SY (2007) Bistability and oscillations in the Huang-Ferrell model of MAPK signaling. PLoS Comput Biol 3(9):1819–1826

    Article  CAS  PubMed  Google Scholar 

  • Robinson TJ, Borror CM, Myers RH (2004) Robust parameter design: a review. Qual Reliab Eng Int 20(1):81–101. http://onlinelibrary.wiley.com/doi/10.1002/qre.602/abstract

    Article  Google Scholar 

  • Sandhu R, Georgiou T, Reznik E, Zhu L, Kolesov I, Senbabaoglu Y, Tannenbaum A (2015) Graph curvature for differentiating cancer networks. Sci Rep 5(12323)

    Google Scholar 

  • Santos SDM, Verveer PJ, Bastiaens PIH (2007) Growth factor-induced MAPK network topology shapes Erk response determining PC-12 cell fate. Nat Cell Biol 9(3)

    Google Scholar 

  • Shinar G, Feinberg M (2010) Structural sources of robustness in biochemical reaction networks. Science 327:1389–1391

    Article  CAS  PubMed  Google Scholar 

  • Shinar G, Feinberg M (2011) Design principles for robust biochemical reactiion networks: what works, what cannot work, and what might almost work. Math Biosci 231:39–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song H, Smolen P, Av-Ron E, Baxter DA, Byrne JH (2007) Dynamics of a minimal model of interlocked positive and negative feedback loops of transcriptional regulation by cAMP-response element binding proteins. Biophys J 92:3407–3424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stelling J, Sauer U, Szallasi Z, Doyle FJ, Doyle J (2004) Robustness of cellular functions. Cell 118:675–685

    Article  CAS  PubMed  Google Scholar 

  • Ströbel D (1995) Die Anwendung der Ausgleichungsrechnung auf elastomechanische Systeme, Ph.D. thesis Institut für Anwendungen der Geodäsie im Bauwesen, Universität Stuttgart

    Google Scholar 

  • von Scheven M, Ramm E, Bischoff M (2016, in preparation) Redundancy distribution in frame structures. J Eng Mech

    Google Scholar 

  • Wagner A (2005) Circuit topology and the evolution of robustness in two-gene circadian oscillators. Proc Natl Acad Sci U S A 102(33):11775–11780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong W, Ferrell JE (2003) A positive-feedback-based bistable memory module that governs cell fate decision. Nature 426:460–465

    Article  CAS  PubMed  Google Scholar 

  • Zhou T (2013) Encyclopedia of systems biology. Springer New York chapter Oscillation Amplitude, New York, pp 1616–1616

    Book  Google Scholar 

Download references

Acknowledgements

This work has been funded by the German Research Foundation (DFG) as part of the Transregional Collaborative Research Centre (SFB/Transregio) 141 “Biological Design and Integrative Structures”/project B05.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicole Radde .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Paul, D., Koohi Fayegh Dehkordi, L., von Scheven, M., Bischoff, M., Radde, N. (2016). Structural Design with Biological Methods: Optimality, Multi-functionality and Robustness. In: Knippers, J., Nickel, K., Speck, T. (eds) Biomimetic Research for Architecture and Building Construction. Biologically-Inspired Systems, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-319-46374-2_17

Download citation

Publish with us

Policies and ethics