Advertisement

Inflammatory and Locally Advanced Breast Cancer

  • Tamer M. Fouad
  • Gabriel N. Hortobagyi
  • Naoto T. UenoEmail author
Chapter

Abstract

Despite the advances in early detection and treatment of breast cancer, a significant proportion of patients still present with locally advanced breast cancer (LABC). These advanced tumors include patients with stage IIB disease (T3N0) and stage IIIA to IIIC disease and are characterized by high relapse rates and poor prognosis. Multimodality management, which includes preoperative systemic therapy followed by surgery and radiation therapy, has had a tremendous impact on the outcome of patients presenting with LABC. Inflammatory breast cancer (IBC) is a particularly aggressive subtype of LABC, which progresses rapidly and is characterized by the presence of edema and erythema of the skin. This chapter reviews the epidemiology, staging, diagnosis, prognostic factors, molecular markers, and treatment approaches for these malignancies. IBC, although included in the definition of LABC, will have separate annotations due to its distinct clinical presentation and aggressive behavior.

Keywords

Breast cancer Locally advanced LABC Inflammatory breast cancer IBC 

References

  1. 1.
    Seidman H, Gelb SK, Silverberg E, LaVerda N, Lubera JA. Survival experience in the breast cancer detection demonstration project. CA Cancer J Clin. 1987;37(5):258–90.PubMedCrossRefGoogle Scholar
  2. 2.
    Eniu A, Carlson RW, Aziz Z, Bines J, Hortobagyi GN, Bese NS, et al. Breast cancer in limited-resource countries: treatment and allocation of resources. Breast J. 2006;12(Suppl 1):S38–53.PubMedCrossRefGoogle Scholar
  3. 3.
    Lee MC, Newman LA. Management of patients with locally advanced breast cancer. Surg Clin N Am. 2007;87(2):379–98, ix.Google Scholar
  4. 4.
    http://www.facs.org/cancer/publicncdb.html [Internet]. 2013 [cited 16 June 2016].
  5. 5.
    Hance KW, Anderson WF, Devesa SS, Young HA, Levine PH. Trends in inflammatory breast carcinoma incidence and survival: the surveillance, epidemiology, and end results program at the National Cancer Institute. J Natl Cancer Inst. 2005;97(13):966–75.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Anderson WF, Schairer C, Chen BE, Hance KW, Levine PH. Epidemiology of inflammatory breast cancer (IBC). Breast Dis. 2005;22:9–23.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Soliman AS, Banerjee M, Lo AC, Ismail K, Hablas A, Seifeldin IA, et al. High proportion of inflammatory breast cancer in the population-based Cancer Registry of Gharbiah, Egypt. Breast J. 2009;15(4):432–4.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Schairer C, Soliman AS, Omar S, Khaled H, Eissa S, Ayed FB, et al. Assessment of diagnosis of inflammatory breast cancer cases at two cancer centers in Egypt and Tunisia. Cancer Med. 2013;2(2):178–84.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Boussen H, Bouzaiene H, Ben Hassouna J, Gamoudi A, Benna F, Rahal K. Inflammatory breast cancer in Tunisia: reassessment of incidence and clinicopathological features. Semin Oncol. 2008;35(1):17–24.Google Scholar
  10. 10.
    Chang S, Buzdar AU, Hursting SD. Inflammatory breast cancer and body mass index. J Clin Oncol (Official Journal of the American Society of Clinical Oncology). 1998;16(12):3731–5.CrossRefGoogle Scholar
  11. 11.
    Cristofanilli M, Valero V, Buzdar AU, Kau SW, Broglio KR, Gonzalez-Angulo AM, et al. Inflammatory breast cancer (IBC) and patterns of recurrence: understanding the biology of a unique disease. Cancer. 2007;110(7):1436–44.PubMedCrossRefGoogle Scholar
  12. 12.
    Gonzalez-Angulo AM, Hennessy BT, Broglio K, Meric-Bernstam F, Cristofanilli M, Giordano SH, et al. Trends for inflammatory breast cancer: is survival improving? Oncologist. 2007;12(8):904–12.PubMedCrossRefGoogle Scholar
  13. 13.
    Fouad TM, Kogawa T, Liu DD, Shen Y, Masuda H, El-Zein R, et al. Overall survival differences between patients with inflammatory and noninflammatory breast cancer presenting with distant metastasis at diagnosis. Breast Cancer Res Treat. 2015.Google Scholar
  14. 14.
    Anderson WF, Chu KC, Chang S. Inflammatory breast carcinoma and noninflammatory locally advanced breast carcinoma: distinct clinicopathologic entities? J Clin Oncol (Official Journal of the American Society of Clinical Oncology). 2003;21(12):2254–9.CrossRefGoogle Scholar
  15. 15.
    Nadeem R, Chagla LS, Harris O, Desmond S, Thind R, Flavin A, et al. Tumour localisation with a metal coil before the administration of neo-adjuvant chemotherapy. Breast. 2005;14(5):403–7.PubMedCrossRefGoogle Scholar
  16. 16.
    Niikura N, Liu J, Costelloe CM, Palla SL, Madewell JE, Hayashi N, et al. Initial staging impact of fluorodeoxyglucose positron emission tomography/computed tomography in locally advanced breast cancer. Oncologist. 2011;16(6):772–82.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    National Comprehensive Cancer Network. NCCN guidelines, version 2.2016, invasive breast cancer 2016 [BINV-14]. Available from: http://www.nccn.org/professionals/physician_gls/pdf/breast.pdf.
  18. 18.
    Haagensen CD. Diseases of the female breast. Trans N Engl Obstet Gynecol Soc. 1956;10:141–56.PubMedGoogle Scholar
  19. 19.
    Robertson FM, Bondy M, Yang W, Yamauchi H, Wiggins S, Kamrudin S, et al. Inflammatory breast cancer: the disease, the biology, the treatment. CA Cancer J Clin. 2010;60(6):351–75.PubMedCrossRefGoogle Scholar
  20. 20.
    Jaiyesimi IA, Buzdar AU, Hortobagyi G. Inflammatory breast cancer: a review. J clin Oncol (Official Journal of the American Society of Clinical Oncology). 1992;10(6):1014–24.CrossRefGoogle Scholar
  21. 21.
    Singletary SE, Allred C, Ashley P, Bassett LW, Berry D, Bland KI, et al. Revision of the American Joint Committee on Cancer staging system for breast cancer. J Clin Oncol (Official Journal of the American Society of Clinical Oncology). 2002;20(17):3628–36.CrossRefGoogle Scholar
  22. 22.
    Yang WT, Le-Petross HT, Macapinlac H, Carkaci S, Gonzalez-Angulo AM, Dawood S, et al. Inflammatory breast cancer: PET/CT, MRI, mammography, and sonography findings. Breast Cancer Res Treat. 2008;109(3):417–26.PubMedCrossRefGoogle Scholar
  23. 23.
    National Comprehensive Cancer Network. NCCN guidelines, version 2.2016, invasive breast cancer 2016 [BINV-K]. Available from: http://www.nccn.org/professionals/physician_gls/pdf/breast.pdf.
  24. 24.
    De Lena M, Zucali R, Viganotti G, Valagussa P, Bonadonna G. Combined chemotherapy-radiotherapy approach in locally advanced (T3b-T4) breast cancer. Cancer Chemother Pharmacol. 1978;1(1):53–9.PubMedCrossRefGoogle Scholar
  25. 25.
    Rastogi P, Anderson SJ, Bear HD, Geyer CE, Kahlenberg MS, Robidoux A, et al. Preoperative chemotherapy: updates of national surgical adjuvant breast and bowel project protocols B-18 and B-27. J Clin Oncol (Official Journal of the American Society of Clinical Oncology). 2008;26(5):778–85.CrossRefGoogle Scholar
  26. 26.
    Mauri D, Pavlidis N, Ioannidis JP. Neoadjuvant versus adjuvant systemic treatment in breast cancer: a meta-analysis. J Natl Cancer Inst. 2005;97(3):188–94.PubMedCrossRefGoogle Scholar
  27. 27.
    Green MC, Buzdar AU, Smith T, Ibrahim NK, Valero V, Rosales MF, et al. Weekly paclitaxel improves pathologic complete remission in operable breast cancer when compared with paclitaxel once every 3 weeks. J Clin Oncol (Official Journal of the American Society of Clinical Oncology). 2005;23(25):5983–92.CrossRefGoogle Scholar
  28. 28.
    von Minckwitz G, Raab G, Caputo A, Schutte M, Hilfrich J, Blohmer JU, et al. Doxorubicin with cyclophosphamide followed by docetaxel every 21 days compared with doxorubicin and docetaxel every 14 days as preoperative treatment in operable breast cancer: the GEPARDUO study of the German Breast Group. J Clin Oncol (Official Journal of the American Society of Clinical Oncology). 2005;23(12):2676–85.CrossRefGoogle Scholar
  29. 29.
    von Minckwitz G, Schneeweiss A, Loibl S, Salat C, Denkert C, Rezai M, et al. Neoadjuvant carboplatin in patients with triple-negative and HER2-positive early breast cancer (GeparSixto; GBG 66): a randomised phase 2 trial. Lancet Oncol. 2014;15(7):747–56.CrossRefGoogle Scholar
  30. 30.
    Sikov WM, Berry DA, Perou CM, Singh B, Cirrincione CT, Tolaney SM, et al. Impact of the addition of carboplatin and/or bevacizumab to neoadjuvant once-per-week paclitaxel followed by dose-dense doxorubicin and cyclophosphamide on pathologic complete response rates in stage II to III triple-negative breast cancer: CALGB 40603 (Alliance). J Clin Oncol (Official Journal of the American Society of Clinical Oncology). 2015;33(1):13–21.CrossRefGoogle Scholar
  31. 31.
    Rugo HS, Olopade O, DeMichele A, van’t Veer L, Buxton M, Hylton N, et al., editors. Veliparib/carboplatin plus standard neoadjuvant therapy for high-risk breast cancer: first efficacy results from the I-SPY 2 TRIAL. The 36th annual San Antonio breast cancer symposium, San Antonio, TX, 10–14 Dec 2013.Google Scholar
  32. 32.
    von Minckwitz G, Kummel S, Vogel P, Hanusch C, Eidtmann H, Hilfrich J, et al. Neoadjuvant vinorelbine-capecitabine versus docetaxel-doxorubicin-cyclophosphamide in early nonresponsive breast cancer: phase III randomized GeparTrio trial. J Natl Cancer Inst. 2008;100(8):542–51.CrossRefGoogle Scholar
  33. 33.
    Heys SD, Hutcheon AW, Sarkar TK, Ogston KN, Miller ID, Payne S, et al. Neoadjuvant docetaxel in breast cancer: 3-year survival results from the Aberdeen trial. Clin Breast Cancer. 2002;3(Suppl 2):S69–74.PubMedCrossRefGoogle Scholar
  34. 34.
    Huober J, Fasching PA, Hanusch C, Rezai M, Eidtmann H, Kittel K, et al. Neoadjuvant chemotherapy with paclitaxel and everolimus in breast cancer patients with non-responsive tumours to epirubicin/cyclophosphamide (EC) ± bevacizumab - results of the randomised GeparQuinto study (GBG 44). Eur J Cancer. 2013;49(10):2284–93.PubMedCrossRefGoogle Scholar
  35. 35.
    Hurley J, Doliny P, Reis I, Silva O, Gomez-Fernandez C, Velez P, et al. Docetaxel, cisplatin, and trastuzumab as primary systemic therapy for human epidermal growth factor receptor 2-positive locally advanced breast cancer. J Clin Oncol (Official Journal of the American Society of Clinical Oncology). 2006;24(12):1831–8.CrossRefGoogle Scholar
  36. 36.
    Van Pelt AE, Mohsin S, Elledge RM, Hilsenbeck SG, Gutierrez MC, Lucci A Jr, et al. Neoadjuvant trastuzumab and docetaxel in breast cancer: preliminary results. Clin Breast Cancer. 2003;4(5):348–53.PubMedCrossRefGoogle Scholar
  37. 37.
    Gianni L, Eiermann W, Semiglazov V, Manikhas A, Lluch A, Tjulandin S, et al. Neoadjuvant chemotherapy with trastuzumab followed by adjuvant trastuzumab versus neoadjuvant chemotherapy alone, in patients with HER2-positive locally advanced breast cancer (the NOAH trial): a randomised controlled superiority trial with a parallel HER2-negative cohort. Lancet. 2010;375(9712):377–84.PubMedCrossRefGoogle Scholar
  38. 38.
    Gianni L, Eiermann W, Semiglazov V, Lluch A, Tjulandin S, Zambetti M, et al. Neoadjuvant and adjuvant trastuzumab in patients with HER2-positive locally advanced breast cancer (NOAH): follow-up of a randomised controlled superiority trial with a parallel HER2-negative cohort. Lancet Oncol. 2014;15(6):640–7.PubMedCrossRefGoogle Scholar
  39. 39.
    Buzdar AU, Valero V, Ibrahim NK, Francis D, Broglio KR, Theriault RL, et al. Neoadjuvant therapy with paclitaxel followed by 5-fluorouracil, epirubicin, and cyclophosphamide chemotherapy and concurrent trastuzumab in human epidermal growth factor receptor 2-positive operable breast cancer: an update of the initial randomized study population and data of additional patients treated with the same regimen. Clin Cancer Res (Official Journal of the American Association for Cancer Research). 2007;13(1):228–33.CrossRefGoogle Scholar
  40. 40.
    Petrelli F, Borgonovo K, Cabiddu M, Ghilardi M, Barni S. Neoadjuvant chemotherapy and concomitant trastuzumab in breast cancer: a pooled analysis of two randomized trials. Anticancer Drugs. 2011;22(2):128–35.PubMedCrossRefGoogle Scholar
  41. 41.
    Gianni L, Pienkowski T, Im YH, Roman L, Tseng LM, Liu MC, et al. Efficacy and safety of neoadjuvant pertuzumab and trastuzumab in women with locally advanced, inflammatory, or early HER2-positive breast cancer (NeoSphere): a randomised multicentre, open-label, phase 2 trial. Lancet Oncol. 2012;13(1):25–32.PubMedCrossRefGoogle Scholar
  42. 42.
    Gianni L, Pienkowski T, Im YH, Tseng LM, Liu MC, Lluch A, et al. 5-year analysis of neoadjuvant pertuzumab and trastuzumab in patients with locally advanced, inflammatory, or early-stage HER2-positive breast cancer (NeoSphere): a multicentre, open-label, phase 2 randomised trial. Lancet Oncol. 2016;17(6):791–800.PubMedCrossRefGoogle Scholar
  43. 43.
    Schneeweiss A, Chia S, Hickish T, Harvey V, Eniu A, Hegg R, et al. Pertuzumab plus trastuzumab in combination with standard neoadjuvant anthracycline-containing and anthracycline-free chemotherapy regimens in patients with HER2-positive early breast cancer: a randomized phase II cardiac safety study (TRYPHAENA). Ann Oncol (Official Journal of the European Society for Medical Oncology/ESMO). 2013;24(9):2278–84.CrossRefGoogle Scholar
  44. 44.
    Untch M, Loibl S, Bischoff J, Eidtmann H, Kaufmann M, Blohmer JU, et al. Lapatinib versus trastuzumab in combination with neoadjuvant anthracycline-taxane-based chemotherapy (GeparQuinto, GBG 44): a randomised phase 3 trial. Lancet Oncol. 2012;13(2):135–44.PubMedCrossRefGoogle Scholar
  45. 45.
    Baselga J, Bradbury I, Eidtmann H, Di Cosimo S, de Azambuja E, Aura C, et al. Lapatinib with trastuzumab for HER2-positive early breast cancer (NeoALTTO): a randomised, open-label, multicentre, phase 3 trial. Lancet. 2012;379(9816):633–40.PubMedCrossRefGoogle Scholar
  46. 46.
    Robidoux A, Tang G, Rastogi P, Geyer CE Jr, Azar CA, Atkins JN, et al. Lapatinib as a component of neoadjuvant therapy for HER2-positive operable breast cancer (NSABP protocol B-41): an open-label, randomised phase 3 trial. Lancet Oncol. 2013;14(12):1183–92.PubMedCrossRefGoogle Scholar
  47. 47.
    Carey LA, Berry DA, Cirrincione CT, Barry WT, Pitcher BN, Harris LN, et al. Molecular heterogeneity and response to neoadjuvant human epidermal growth factor receptor 2 targeting in CALGB 40601, a randomized phase III trial of paclitaxel plus trastuzumab with or without lapatinib. J Clin Oncol (Official Journal of the American Society of Clinical Oncology). 2016;34(6):542–9.CrossRefGoogle Scholar
  48. 48.
    de Azambuja E, Holmes AP, Piccart-Gebhart M, Holmes E, Di Cosimo S, Swaby RF, et al. Lapatinib with trastuzumab for HER2-positive early breast cancer (NeoALTTO): survival outcomes of a randomised, open-label, multicentre, phase 3 trial and their association with pathological complete response. Lancet Oncol. 2014;15(10):1137–46.PubMedCrossRefGoogle Scholar
  49. 49.
    Veronesi A, Frustaci S, Tirelli U, Galligioni E, Trovo MG, Crivellari D, et al. Tamoxifen therapy in postmenopausal advanced breast cancer: efficacy at the primary tumor site in 46 evaluable patients. Tumori. 1981;67(3):235–8.PubMedGoogle Scholar
  50. 50.
    Hoff PM, Valero V, Buzdar AU, Singletary SE, Theriault RL, Booser D, et al. Combined modality treatment of locally advanced breast carcinoma in elderly patients or patients with severe comorbid conditions using tamoxifen as the primary therapy. Cancer. 2000;88(9):2054–60.PubMedCrossRefGoogle Scholar
  51. 51.
    Alba E, Calvo L, Albanell J, De la Haba JR, Arcusa Lanza A, Chacon JI, et al. Chemotherapy (CT) and hormonotherapy (HT) as neoadjuvant treatment in luminal breast cancer patients: results from the GEICAM/2006-03, a multicenter, randomized, phase-II study. Ann Oncol (Official Journal of the European Society for Medical Oncology/ESMO). 2012;23(12):3069–74.CrossRefGoogle Scholar
  52. 52.
    Ellis MJ, Ma C. Letrozole in the neoadjuvant setting: the P024 trial. Breast Cancer Res Treat. 2007;105(Suppl 1):33–43.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Cataliotti L, Buzdar AU, Noguchi S, Bines J, Takatsuka Y, Petrakova K, et al. Comparison of anastrozole versus tamoxifen as preoperative therapy in postmenopausal women with hormone receptor-positive breast cancer: the Pre-Operative “Arimidex” Compared to Tamoxifen (PROACT) trial. Cancer. 2006;106(10):2095–103.PubMedCrossRefGoogle Scholar
  54. 54.
    Gerber B, von Minckwitz G, Eidtmann H, Rezai M, Fasching P, Tesch H, et al. Surgical outcome after neoadjuvant chemotherapy and bevacizumab: results from the GeparQuinto study (GBG 44). Ann Surg Oncol. 2014;21(8):2517–24.PubMedCrossRefGoogle Scholar
  55. 55.
    von Minckwitz G, Loibl S, Untch M, Eidtmann H, Rezai M, Fasching PA, et al. Survival after neoadjuvant chemotherapy with or without bevacizumab or everolimus for HER2-negative primary breast cancer (GBG 44-GeparQuinto) dagger. Ann Oncol (Official Journal of the European Society for Medical Oncology/ESMO). 2014;25(12):2363–72.CrossRefGoogle Scholar
  56. 56.
    Earl HM, Hiller L, Dunn JA, Blenkinsop C, Grybowicz L, Vallier AL, et al. Efficacy of neoadjuvant bevacizumab added to docetaxel followed by fluorouracil, epirubicin, and cyclophosphamide, for women with HER2-negative early breast cancer (ARTemis): an open-label, randomised, phase 3 trial. Lancet Oncol. 2015;16(6):656–66.PubMedCrossRefGoogle Scholar
  57. 57.
    Bear HD, Tang G, Rastogi P, Geyer CE Jr, Robidoux A, Atkins JN, et al. Bevacizumab added to neoadjuvant chemotherapy for breast cancer. N Engl J Med. 2012;366(4):310–20.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Bear HD, Tang G, Rastogi P, Geyer CE Jr, Liu Q, Robidoux A, et al. Neoadjuvant plus adjuvant bevacizumab in early breast cancer (NSABP B-40 [NRG Oncology]): secondary outcomes of a phase 3, randomised controlled trial. Lancet Oncol. 2015;16(9):1037–48.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Rugo HS, Olopade O, DeMichele A, van’t Veer L, Buxton M, Hylton N, et al. Veliparib/carboplatin plus standard neoadjuvant therapy for high-risk breast cancer: first efficacy results from the I-SPY 2 TRIAL. The San Antonio breast cancer symposium, San Antonio; 2013.Google Scholar
  60. 60.
    Goldhirsch A, Winer EP, Coates AS, Gelber RD, Piccart-Gebhart M, Thurlimann B, et al. Personalizing the treatment of women with early breast cancer: highlights of the St. Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2013. Ann Oncol (Official Journal of the European Society for Medical Oncology/ESMO). 2013;24(9):2206–23.CrossRefGoogle Scholar
  61. 61.
    National Comprehensive Cancer Network. NCCN guidelines, version 2.2016, invasive breast cancer 2016 [BINV-15]. Available from: http://www.nccn.org/professionals/physician_gls/pdf/breast.pdf.
  62. 62.
    Estevez LG, Cuevas JM, Anton A, Florian J, Lopez-Vega JM, Velasco A, et al. Weekly docetaxel as neoadjuvant chemotherapy for stage II and III breast cancer: efficacy and correlation with biological markers in a phase II, multicenter study. Clin Cancer Res (Official Journal of the American Association for Cancer Research). 2003;9(2):686–92.Google Scholar
  63. 63.
    Buzdar AU, Singletary SE, Theriault RL, Booser DJ, Valero V, Ibrahim N, et al. Prospective evaluation of paclitaxel versus combination chemotherapy with fluorouracil, doxorubicin, and cyclophosphamide as neoadjuvant therapy in patients with operable breast cancer. J Clin Oncol (Official Journal of the American Society of Clinical Oncology). 1999;17(11):3412–7.CrossRefGoogle Scholar
  64. 64.
    Smith IC, Heys SD, Hutcheon AW, Miller ID, Payne S, Gilbert FJ, et al. Neoadjuvant chemotherapy in breast cancer: significantly enhanced response with docetaxel. J Clin Oncol (Official Journal of the American Society of Clinical Oncology). 2002;20(6):1456–66.CrossRefGoogle Scholar
  65. 65.
    Bear HD, Anderson S, Brown A, Smith R, Mamounas EP, Fisher B, et al. The effect on tumor response of adding sequential preoperative docetaxel to preoperative doxorubicin and cyclophosphamide: preliminary results from National Surgical Adjuvant Breast and Bowel Project Protocol B-27. J Clin Oncol (Official Journal of the American Society of Clinical Oncology). 2003;21(22):4165–74.CrossRefGoogle Scholar
  66. 66.
    Untch M, von Minckwitz G. Recent advances in systemic therapy: advances in neoadjuvant (primary) systemic therapy with cytotoxic agents. Breast Cancer Res BCR. 2009;11(2):203.PubMedCrossRefGoogle Scholar
  67. 67.
    Coudert BP, Largillier R, Arnould L, Chollet P, Campone M, Coeffic D, et al. Multicenter phase II trial of neoadjuvant therapy with trastuzumab, docetaxel, and carboplatin for human epidermal growth factor receptor-2-overexpressing stage II or III breast cancer: results of the GETN(A)-1 trial. J Clin Oncol (Official Journal of the American Society of Clinical Oncology). 2007;25(19):2678–84.CrossRefGoogle Scholar
  68. 68.
    Penault-Llorca F, Abrial C, Mouret-Reynier MA, Raoelfils I, Durando X, Leheurteur M, et al. Achieving higher pathological complete response rates in HER-2-positive patients with induction chemotherapy without trastuzumab in operable breast cancer. Oncologist. 2007;12(4):390–6.PubMedCrossRefGoogle Scholar
  69. 69.
    Bozzetti F, Saccozzi R, De Lena M, Salvadori B. Inflammatory cancer of the breast: analysis of 114 cases. J Surg Oncol. 1981;18(4):355–61.PubMedCrossRefGoogle Scholar
  70. 70.
    Shenkier T, Weir L, Levine M, Olivotto I, Whelan T, Reyno L, et al. Clinical practice guidelines for the care and treatment of breast cancer: 15. Treatment for women with stage III or locally advanced breast cancer. CMAJ. 2004;170(6):983–94.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Lee BJ, Tannenbaum NE. Inflammatory carcinoma of the breast. Surg Gynecol Obstet. 1924;39:580–95.Google Scholar
  72. 72.
    Atkins HL, Horrigan WD. Treatment of locally advanced carcinoma of the breast with roentgen therapy and simple mastectomy. Am J Roentgenol Radium Ther Nucl Med. 1961;85:860–4.PubMedGoogle Scholar
  73. 73.
    Toonkel LM, Fix I, Jacobson LH, Bamberg N, Wallach CB. Locally advanced breast carcinoma: results with combined regional therapy. Int J Radiat Oncol Biol Phys. 1986;12(9):1583–7.PubMedCrossRefGoogle Scholar
  74. 74.
    Perez CA, Graham ML, Taylor ME, Levy JF, Mortimer JE, Philpott GW, et al. Management of locally advanced carcinoma of the breast. I Noninflammatory. Cancer. 1994;74(1 Suppl):453–65.PubMedCrossRefGoogle Scholar
  75. 75.
    Bauer RL, Busch E, Levine E, Edge SB. Therapy for inflammatory breast cancer: impact of doxorubicin-based therapy. Ann Surg Oncol. 1995;2(4):288–94.PubMedCrossRefGoogle Scholar
  76. 76.
    Early Breast Cancer Trialists’ Collaborative G. Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet. 2005;365(9472):1687–717.CrossRefGoogle Scholar
  77. 77.
    Ueno NT, Buzdar AU, Singletary SE, Ames FC, McNeese MD, Holmes FA, et al. Combined-modality treatment of inflammatory breast carcinoma: twenty years of experience at MD Anderson Cancer Center. Cancer Chemother Pharmacol. 1997;40(4):321–9.PubMedCrossRefGoogle Scholar
  78. 78.
    Singletary SE, Ames FC, Buzdar AU. Management of inflammatory breast cancer. World J Surg. 1994;18(1):87–92.PubMedCrossRefGoogle Scholar
  79. 79.
    Buzdar AU, Singletary SE, Booser DJ, Frye DK, Wasaff B, Hortobagyi GN. Combined modality treatment of stage III and inflammatory breast cancer. M.D. Anderson Cancer Center experience. Surg Oncol Clin N Am. 1995;4(4):715–34.PubMedGoogle Scholar
  80. 80.
    Cristofanilli M, Buzdar AU, Sneige N, Smith T, Wasaff B, Ibrahim N, et al. Paclitaxel in the multimodality treatment for inflammatory breast carcinoma. Cancer. 2001;92(7):1775–82.PubMedCrossRefGoogle Scholar
  81. 81.
    Cristofanilli M, Gonzalez-Angulo AM, Buzdar AU, Kau SW, Frye DK, Hortobagyi GN. Paclitaxel improves the prognosis in estrogen receptor negative inflammatory breast cancer: the MD Anderson Cancer Center experience. Clin Breast Cancer. 2004;4(6):415–9.PubMedCrossRefGoogle Scholar
  82. 82.
    Romond EH, Perez EA, Bryant J, Suman VJ, Geyer CE Jr, Davidson NE, et al. Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N Engl J Med. 2005;353(16):1673–84.PubMedCrossRefGoogle Scholar
  83. 83.
    Piccart-Gebhart MJ, Procter M, Leyland-Jones B, Goldhirsch A, Untch M, Smith I, et al. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N Engl J Med. 2005;353(16):1659–72.PubMedCrossRefGoogle Scholar
  84. 84.
    Johnston S, Trudeau M, Kaufman B, Boussen H, Blackwell K, LoRusso P, et al. Phase II study of predictive biomarker profiles for response targeting human epidermal growth factor receptor 2 (HER-2) in advanced inflammatory breast cancer with lapatinib monotherapy. J Clin Oncol (Official Journal of the American Society of Clinical Oncology). 2008;26(7):1066–72.CrossRefGoogle Scholar
  85. 85.
    Boussen H, Cristofanilli M, Zaks T, DeSilvio M, Salazar V, Spector N. Phase II study to evaluate the efficacy and safety of neoadjuvant lapatinib plus paclitaxel in patients with inflammatory breast cancer. J Clin Oncol (Official Journal of the American Society of Clinical Oncology). 2010;28(20):3248–55.CrossRefGoogle Scholar
  86. 86.
    Arun B, Slack R, Gehan E, Spitzer T, Meehan KR. Survival after autologous hematopoietic stem cell transplantation for patients with inflammatory breast carcinoma. Cancer. 1999;85(1):93–9.PubMedCrossRefGoogle Scholar
  87. 87.
    Adkins D, Brown R, Trinkaus K, Maziarz R, Luedke S, Freytes C, et al. Outcomes of high-dose chemotherapy and autologous stem-cell transplantation in stage IIIB inflammatory breast cancer. J Clin Oncol (Official Journal of the American Society of Clinical Oncology). 1999;17(7):2006–14.CrossRefGoogle Scholar
  88. 88.
    Schwartzberg L, Weaver C, Lewkow L, McAneny B, Zhen B, Birch R, et al. High-dose chemotherapy with peripheral blood stem cell support for stage IIIB inflammatory carcinoma of the breast. Bone Marrow Transplant. 1999;24(9):981–7.PubMedCrossRefGoogle Scholar
  89. 89.
    Somlo G, Frankel P, Chow W, Leong L, Margolin K, Morgan R Jr, et al. Prognostic indicators and survival in patients with stage IIIB inflammatory breast carcinoma after dose-intense chemotherapy. J Clin Oncol (Official Journal of the American Society of Clinical Oncology). 2004;22(10):1839–48.CrossRefGoogle Scholar
  90. 90.
    Goncalves A, Pierga JY, Ferrero JM, Mouret-Reynier MA, Bachelot T, Delva R, et al. UNICANCER-PEGASE 07 study: a randomized phase III trial evaluating postoperative docetaxel-5FU regimen after neoadjuvant dose-intense chemotherapy for treatment of inflammatory breast cancer. Ann Oncol (Official Journal of the European Society for Medical Oncology/ESMO). 2015;26(8):1692–7.CrossRefGoogle Scholar
  91. 91.
    Van der Auwera I, Van Laere SJ, Van den Eynden GG, Benoy I, van Dam P, Colpaert CG, et al. Increased angiogenesis and lymphangiogenesis in inflammatory versus noninflammatory breast cancer by real-time reverse transcriptase-PCR gene expression quantification. Clin Cancer Res (Official Journal of the American Association for Cancer Research). 2004;10(23):7965–71.CrossRefGoogle Scholar
  92. 92.
    Wedam SB, Low JA, Yang SX, Chow CK, Choyke P, Danforth D, et al. Antiangiogenic and antitumor effects of bevacizumab in patients with inflammatory and locally advanced breast cancer. J Clin Oncol (Official Journal of the American Society of Clinical Oncology). 2006;24(5):769–77.CrossRefGoogle Scholar
  93. 93.
    Overmoyer B, Fu P, Hoppel C, Radivoyevitch T, Shenk R, Persons M, et al. Inflammatory breast cancer as a model disease to study tumor angiogenesis: results of a phase IB trial of combination SU5416 and doxorubicin. Clin Cancer Res (Official Journal of the American Association for Cancer Research). 2007;13(19):5862–8.CrossRefGoogle Scholar
  94. 94.
    Johnston SR, Hickish T, Ellis P, Houston S, Kelland L, Dowsett M, et al. Phase II study of the efficacy and tolerability of two dosing regimens of the farnesyl transferase inhibitor, R115777, in advanced breast cancer. J Clin Oncol (Official Journal of the American Society of Clinical Oncology). 2003;21(13):2492–9.CrossRefGoogle Scholar
  95. 95.
    Andreopoulou E, Vigoda IS, Valero V, Hershman DL, Raptis G, Vahdat LT, et al. Phase I-II study of the farnesyl transferase inhibitor tipifarnib plus sequential weekly paclitaxel and doxorubicin-cyclophosphamide in HER2/neu-negative inflammatory carcinoma and non-inflammatory estrogen receptor-positive breast carcinoma. Breast Cancer Res Treat. 2013;141(3):429–35.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Matsuda N, Wang X, Krishnamurthy S, Alvarez RH, Willey JS, Lim B, et al., editors. Phase II study of panitumumab, nab-paclitaxel, and carboplatin followed by FEC neoadjuvant chemotherapy for patients with primary HER2-negative inflammatory breast cancer. American Society of Clinical Oncology; 2016.Google Scholar
  97. 97.
    Fouad TM, Kogawa T, Reuben JM, Ueno NT. The role of inflammation in inflammatory breast cancer. Adv Exp Med Biol. 2014;816:53–73.PubMedCrossRefGoogle Scholar
  98. 98.
    Haagensen CD, Stout AP. Carcinoma of the breast. II-criteria of operability. Ann Surg. 1943;118(6):1032–51.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Baclesse F. Five-year results in 431 breast cancers treated solely by roentgen rays. Ann Surg. 1965;161:103–4.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Zucali R, Uslenghi C, Kenda R, Bonadonna G. Natural history and survival of inoperable breast cancer treated with radiotherapy and radiotherapy followed by radical mastectomy. Cancer. 1976;37(3):1422–31.PubMedCrossRefGoogle Scholar
  101. 101.
    Harris JR, Sawicka J, Gelman R, Hellman S. Management of locally advanced carcinoma of the breast by primary radiation therapy. Int J Radiat Oncol Biol Phys. 1983;9(3):345–9.PubMedCrossRefGoogle Scholar
  102. 102.
    Sheldon T, Hayes DF, Cady B, Parker L, Osteen R, Silver B, et al. Primary radiation therapy for locally advanced breast cancer. Cancer. 1987;60(6):1219–25.PubMedCrossRefGoogle Scholar
  103. 103.
    Fletcher GH, Montague ED. Radical irradiation of advanced breast cancer. Am J Roentgenol Radium Ther Nucl Med. 1965;93:573–84.PubMedGoogle Scholar
  104. 104.
    Spanos WJ Jr, Montague ED, Fletcher GH. Late complications of radiation only for advanced breast cancer. Int J Radiat Oncol Biol Phys. 1980;6(11):1473–6.PubMedCrossRefGoogle Scholar
  105. 105.
    Huang EH, Tucker SL, Strom EA, McNeese MD, Kuerer HM, Buzdar AU, et al. Postmastectomy radiation improves local-regional control and survival for selected patients with locally advanced breast cancer treated with neoadjuvant chemotherapy and mastectomy. J Clin Oncol (Official Journal of the American Society of Clinical Oncology). 2004;22(23):4691–9.CrossRefGoogle Scholar
  106. 106.
    Singletary SE, McNeese MD, Hortobagyi GN. Feasibility of breast-conservation surgery after induction chemotherapy for locally advanced breast carcinoma. Cancer. 1992;69(11):2849–52.PubMedCrossRefGoogle Scholar
  107. 107.
    Kuerer HM, Singletary SE, Buzdar AU, Ames FC, Valero V, Buchholz TA, et al. Surgical conservation planning after neoadjuvant chemotherapy for stage II and operable stage III breast carcinoma. Am J Surg. 2001;182(6):601–8.PubMedCrossRefGoogle Scholar
  108. 108.
    Calais G, Descamps P, Chapet S, Turgeon V, Reynaud-Bougnoux A, Lemarie E, et al. Primary chemotherapy and radiosurgical breast-conserving treatment for patients with locally advanced operable breast cancers. Int J Radiat Oncol Biol Phys. 1993;26(1):37–42.PubMedCrossRefGoogle Scholar
  109. 109.
    Conte PF, Alama A, Bertelli G, Canavese G, Carnino F, Catturich A, et al. Chemotherapy with estrogenic recruitment and surgery in locally advanced breast cancer: clinical and cytokinetic results. Int J Cancer. 1987;40(4):490–4.PubMedCrossRefGoogle Scholar
  110. 110.
    Hery M, Namer M, Moro M, Boublil JL, LaLanne CM. Conservative treatment (chemotherapy/radiotherapy) of locally advanced breast cancer. Cancer. 1986;57(9):1744–9.PubMedCrossRefGoogle Scholar
  111. 111.
    Perloff M, Lesnick GJ. Chemotherapy before and after mastectomy in stage III breast cancer. Arch Surg. 1982;117(7):879–81.PubMedCrossRefGoogle Scholar
  112. 112.
    Touboul E, Lefranc JP, Blondon J, Ozsahin M, Mauban S, Schwartz LH, et al. Multidisciplinary treatment approach to locally advanced non-inflammatory breast cancer using chemotherapy and radiotherapy with or without surgery. Radiother Oncol (Journal of the European Society for Therapeutic Radiology and Oncology). 1992;25(3):167–75.CrossRefGoogle Scholar
  113. 113.
    Bonadonna G, Veronesi U, Brambilla C, Ferrari L, Luini A, Greco M, et al. Primary chemotherapy to avoid mastectomy in tumors with diameters of three centimeters or more. J Natl Cancer Inst. 1990;82(19):1539–45.PubMedCrossRefGoogle Scholar
  114. 114.
    Schwartz GF, Birchansky CA, Komarnicky LT, Mansfield CM, Cantor RI, Biermann WA, et al. Induction chemotherapy followed by breast conservation for locally advanced carcinoma of the breast. Cancer. 1994;73(2):362–9.PubMedCrossRefGoogle Scholar
  115. 115.
    Powles TJ, Hickish TF, Makris A, Ashley SE, O’Brien ME, Tidy VA, et al. Randomized trial of chemoendocrine therapy started before or after surgery for treatment of primary breast cancer. J Clin Oncol (Official Journal of the American Society of Clinical Oncology). 1995;13(3):547–52.CrossRefGoogle Scholar
  116. 116.
    Mauriac L, MacGrogan G, Avril A, Durand M, Floquet A, Debled M, et al. Neoadjuvant chemotherapy for operable breast carcinoma larger than 3 cm: a unicentre randomized trial with a 124-month median follow-up. Institut Bergonie Bordeaux Groupe Sein (IBBGS). Ann Oncol (Official Journal of the European Society for Medical Oncology/ESMO). 1999;10(1):47–52.Google Scholar
  117. 117.
    Morrow M, Strom EA, Bassett LW, Dershaw DD, Fowble B, Giuliano A, et al. Standard for breast conservation therapy in the management of invasive breast carcinoma. CA Cancer J Clin. 2002;52(5):277–300.PubMedCrossRefGoogle Scholar
  118. 118.
    Scarth H, Cantin J, Levine M. Steering Committee on Clinical Practice Guidelines for the C, Treatment of Breast C. Clinical practice guidelines for the care and treatment of breast cancer: mastectomy or lumpectomy? The choice of operation for clinical stages I and II breast cancer (summary of the 2002 update). CMAJ. 2002;167(2):154–5.PubMedPubMedCentralGoogle Scholar
  119. 119.
    Lyman GH, Temin S, Edge SB, Newman LA, Turner RR, Weaver DL, et al. Sentinel lymph node biopsy for patients with early-stage breast cancer: American Society of Clinical Oncology clinical practice guideline update. J Clin Oncol (Official Journal of the American Society of Clinical Oncology). 2014;32(13):1365–83.CrossRefGoogle Scholar
  120. 120.
    Silverstein MJ, Skinner KA, Lomis TJ. Predicting axillary nodal positivity in 2282 patients with breast carcinoma. World J Surg. 2001;25(6):767–72.PubMedCrossRefGoogle Scholar
  121. 121.
    Chung MH, Ye W, Giuliano AE. Role for sentinel lymph node dissection in the management of large (> or =5 cm) invasive breast cancer. Ann Surg Oncol. 2001;8(9):688–92.PubMedGoogle Scholar
  122. 122.
    Wong SL, Chao C, Edwards MJ, Tuttle TM, Noyes RD, Carlson DJ, et al. Accuracy of sentinel lymph node biopsy for patients with T2 and T3 breast cancers. Am Surg. 2001;67(6):522–6; discussion 7–8.Google Scholar
  123. 123.
    Harris JR, Halpin-Murphy P, McNeese M, Mendenhall NP, Morrow M, Robert NJ. Consensus statement on postmastectomy radiation therapy. Int J Radiat Oncol Biol Phys. 1999;44(5):989–90.PubMedCrossRefGoogle Scholar
  124. 124.
    Buchholz TA, Tucker SL, Masullo L, Kuerer HM, Erwin J, Salas J, et al. Predictors of local-regional recurrence after neoadjuvant chemotherapy and mastectomy without radiation. J Clin Oncol (Official Journal of the American Society of Clinical Oncology). 2002;20(1):17–23.CrossRefGoogle Scholar
  125. 125.
    Buchholz TA, Strom EA, Perkins GH, McNeese MD. Controversies regarding the use of radiation after mastectomy in breast cancer. Oncologist. 2002;7(6):539–46.PubMedCrossRefGoogle Scholar
  126. 126.
    Buchholz TA, Hunt KK, Whitman GJ, Sahin AA, Hortobagyi GN. Neoadjuvant chemotherapy for breast carcinoma: multidisciplinary considerations of benefits and risks. Cancer. 2003;98(6):1150–60.PubMedCrossRefGoogle Scholar
  127. 127.
    Brun B, Otmezguine Y, Feuilhade F, Julien M, Lebourgeois JP, Calitchi E, et al. Treatment of inflammatory breast cancer with combination chemotherapy and mastectomy versus breast conservation. Cancer. 1988;61(6):1096–103.PubMedCrossRefGoogle Scholar
  128. 128.
    Fields JN, Perez CA, Kuske RR, Fineberg BB, Bartlett N. Inflammatory carcinoma of the breast: treatment results on 107 patients. Int J Radiat Oncol Biol Phys. 1989;17(2):249–55.PubMedCrossRefGoogle Scholar
  129. 129.
    Perez CA, Fields JN. Role of radiation therapy for locally advanced and inflammatory carcinoma of the breast. Oncology (Williston Park). 1987;1(1):81–94.Google Scholar
  130. 130.
    Attia-Sobol J, Ferriere JP, Cure H, Kwiatkowski F, Achard JL, Verrelle P, et al. Treatment results, survival and prognostic factors in 109 inflammatory breast cancers: univariate and multivariate analysis. Eur J Cancer. 1993;29A(8):1081–8.PubMedCrossRefGoogle Scholar
  131. 131.
    Barker JL, Montague ED, Peters LJ. Clinical experience with irradiation of inflammatory carcinoma of the breast with and without elective chemotherapy. Cancer. 1980;45(4):625–9.PubMedCrossRefGoogle Scholar
  132. 132.
    Chu AM, Wood WC, Doucette JA. Inflammatory breast carcinoma treated by radical radiotherapy. Cancer. 1980;45(11):2730–7.PubMedCrossRefGoogle Scholar
  133. 133.
    Kleer CG, van Golen KL, Merajver SD. Molecular biology of breast cancer metastasis. Inflammatory breast cancer: clinical syndrome and molecular determinants. Breast Cancer Res BCR. 2000;2(6):423–9.PubMedCrossRefGoogle Scholar
  134. 134.
    Turpin E, Bieche I, Bertheau P, Plassa LF, Lerebours F, de Roquancourt A, et al. Increased incidence of ERBB2 overexpression and TP53 mutation in inflammatory breast cancer. Oncogene. 2002;21(49):7593–7.PubMedCrossRefGoogle Scholar
  135. 135.
    Gruber G, Ciriolo M, Altermatt HJ, Aebi S, Berclaz G, Greiner RH. Prognosis of dermal lymphatic invasion with or without clinical signs of inflammatory breast cancer. Int J Cancer. 2004;109(1):144–8.PubMedCrossRefGoogle Scholar
  136. 136.
    Bertucci F, Finetti P, Colpaert C, Mamessier E, Parizel M, Dirix L, et al. PDL1 expression in inflammatory breast cancer is frequent and predicts for the pathological response to chemotherapy. Oncotarget. 2015;6(15):13506–19.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Van Laere SJ, Van den Eynden GG, Van der Auwera I, Vandenberghe M, van Dam P, Van Marck EA, et al. Identification of cell-of-origin breast tumor subtypes in inflammatory breast cancer by gene expression profiling. Breast Cancer Res Treat. 2006;95(3):243–55.PubMedCrossRefGoogle Scholar
  138. 138.
    Bertucci F, Finetti P, Rougemont J, Charafe-Jauffret E, Nasser V, Loriod B, et al. Gene expression profiling for molecular characterization of inflammatory breast cancer and prediction of response to chemotherapy. Cancer Res. 2004;64(23):8558–65.PubMedCrossRefGoogle Scholar
  139. 139.
    Bertucci F, Finetti P, Rougemont J, Charafe-Jauffret E, Cervera N, Tarpin C, et al. Gene expression profiling identifies molecular subtypes of inflammatory breast cancer. Cancer Res. 2005;65(6):2170–8.PubMedCrossRefGoogle Scholar
  140. 140.
    Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA. 2001;98(19):10869–74.PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Van Laere SJ, Ueno NT, Finetti P, Vermeulen P, Lucci A, Robertson FM, et al. Uncovering the molecular secrets of inflammatory breast cancer biology: an integrated analysis of three distinct affymetrix gene expression datasets. Clin Cancer Res (Official Journal of the American Association for Cancer Research). 2013;19(17):4685–96.CrossRefGoogle Scholar
  142. 142.
    Woodward WA, Krishnamurthy S, Yamauchi H, El-Zein R, Ogura D, Kitadai E, et al. Genomic and expression analysis of microdissected inflammatory breast cancer. Breast Cancer Res Treat. 2013;138(3):761–72.PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Masuda H, Baggerly KA, Wang Y, Iwamoto T, Brewer T, Pusztai L, et al. Comparison of molecular subtype distribution in triple-negative inflammatory and non-inflammatory breast cancers. Breast Cancer Res BCR. 2013;15(6):R112.PubMedCrossRefGoogle Scholar
  144. 144.
    Huo L, Wang Y, Gong Y, Krishnamurthy S, Wang J, Diao L, et al. MicroRNA expression profiling identifies decreased expression of miR-205 in inflammatory breast cancer. Mod Pathol (Official Journal of the United States and Canadian Academy of Pathology, Inc.). 2016;29(4):330–46.Google Scholar
  145. 145.
    Anfossi S, Giordano A, Gao H, Cohen EN, Tin S, Wu Q, et al. High serum miR-19a levels are associated with inflammatory breast cancer and are predictive of favorable clinical outcome in patients with metastatic HER2+ inflammatory breast cancer. PLoS ONE. 2014;9(1):e83113.PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Faille A, De Cremoux P, Extra JM, Linares G, Espie M, Bourstyn E, et al. p53 mutations and overexpression in locally advanced breast cancers. Br J Cancer. 1994;69(6):1145–50.PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Riou G, Le MG, Travagli JP, Levine AJ, Moll UM. Poor prognosis of p53 gene mutation and nuclear overexpression of p53 protein in inflammatory breast carcinoma. J Natl Cancer Inst. 1993;85(21):1765–7.PubMedCrossRefGoogle Scholar
  148. 148.
    Gonzalez-Angulo AM, Sneige N, Buzdar AU, Valero V, Kau SW, Broglio K, et al. p53 expression as a prognostic marker in inflammatory breast cancer. Clin Cancer Res (Official Journal of the American Association for Cancer Research). 2004;10(18 Pt 1):6215–21.CrossRefGoogle Scholar
  149. 149.
    Kleer CG, van Golen KL, Braun T, Merajver SD. Persistent E-cadherin expression in inflammatory breast cancer. Mod Pathol (Official Journal of the United States and Canadian Academy of Pathology, Inc.). 2001;14(5):458–64.Google Scholar
  150. 150.
    Tomlinson JS, Alpaugh ML, Barsky SH. An intact overexpressed E-cadherin/alpha, beta-catenin axis characterizes the lymphovascular emboli of inflammatory breast carcinoma. Cancer Res. 2001;61(13):5231–41.PubMedGoogle Scholar
  151. 151.
    Alpaugh ML, Tomlinson JS, Kasraeian S, Barsky SH. Cooperative role of E-cadherin and sialyl-Lewis X/A-deficient MUC1 in the passive dissemination of tumor emboli in inflammatory breast carcinoma. Oncogene. 2002;21(22):3631–43.PubMedCrossRefGoogle Scholar
  152. 152.
    Shirakawa K, Tsuda H, Heike Y, Kato K, Asada R, Inomata M, et al. Absence of endothelial cells, central necrosis, and fibrosis are associated with aggressive inflammatory breast cancer. Cancer Res. 2001;61(2):445–51.PubMedGoogle Scholar
  153. 153.
    Van der Auwera I, Van den Eynden GG, Colpaert CG, Van Laere SJ, van Dam P, Van Marck EA, et al. Tumor lymphangiogenesis in inflammatory breast carcinoma: a histomorphometric study. Clin Cancer Res (Official Journal of the American Association for Cancer Research). 2005;11(21):7637–42.CrossRefGoogle Scholar
  154. 154.
    Katayose Y, Kim M, Rakkar AN, Li Z, Cowan KH, Seth P. Promoting apoptosis: a novel activity associated with the cyclin-dependent kinase inhibitor p27. Cancer Res. 1997;57(24):5441–5.PubMedGoogle Scholar
  155. 155.
    Durand B, Gao FB, Raff M. Accumulation of the cyclin-dependent kinase inhibitor p27/Kip1 and the timing of oligodendrocyte differentiation. EMBO J. 1997;16(2):306–17.PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Gonzalez-Angulo AM, Guarneri V, Gong Y, Cristofanilli M, Morales-Vasquez F, Sneige N, et al. Downregulation of the cyclin-dependent kinase inhibitor p27kip1 might correlate with poor disease-free and overall survival in inflammatory breast cancer. Clin Breast Cancer. 2006;7(4):326–30.PubMedCrossRefGoogle Scholar
  157. 157.
    van Golen KL, Davies S, Wu ZF, Wang Y, Bucana CD, Root H, et al. A novel putative low-affinity insulin-like growth factor-binding protein, LIBC (lost in inflammatory breast cancer), and RhoC GTPase correlate with the inflammatory breast cancer phenotype. Clin Cancer Res (Official Journal of the American Association for Cancer Research). 1999;5(9):2511–9.Google Scholar
  158. 158.
    Ridley AJ. The GTP-binding protein Rho. Int J Biochem Cell Biol. 1997;29(11):1225–9.PubMedCrossRefGoogle Scholar
  159. 159.
    van Golen KL, Wu ZF, Qiao XT, Bao LW, Merajver SD. RhoC GTPase, a novel transforming oncogene for human mammary epithelial cells that partially recapitulates the inflammatory breast cancer phenotype. Cancer Res. 2000;60(20):5832–8.PubMedGoogle Scholar
  160. 160.
    van Golen KL, Wu ZF, Qiao XT, Bao L, Merajver SD. RhoC GTPase overexpression modulates induction of angiogenic factors in breast cells. Neoplasia. 2000;2(5):418–25.PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Kleer CG, Zhang Y, Pan Q, van Golen KL, Wu ZF, Livant D, et al. WISP3 is a novel tumor suppressor gene of inflammatory breast cancer. Oncogene. 2002;21(20):3172–80.PubMedCrossRefGoogle Scholar
  162. 162.
    Kleer CG, Zhang Y, Pan Q, Gallagher G, Wu M, Wu ZF, et al. WISP3 and RhoC guanosine triphosphatase cooperate in the development of inflammatory breast cancer. Breast Cancer Res BCR. 2004;6(1):R110–5.PubMedCrossRefGoogle Scholar
  163. 163.
    Xiao Y, Ye Y, Yearsley K, Jones S, Barsky SH. The lymphovascular embolus of inflammatory breast cancer expresses a stem cell-like phenotype. Am J Pathol. 2008;173(2):561–74.PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Charafe-Jauffret E, Ginestier C, Iovino F, Tarpin C, Diebel M, Esterni B, et al. Aldehyde dehydrogenase 1-positive cancer stem cells mediate metastasis and poor clinical outcome in inflammatory breast cancer. Clin Cancer Res (Official Journal of the American Association for Cancer Research). 2010;16(1):45–55.CrossRefGoogle Scholar
  165. 165.
    von Minckwitz G, Untch M, Blohmer JU, Costa SD, Eidtmann H, Fasching PA, et al. Definition and impact of pathologic complete response on prognosis after neoadjuvant chemotherapy in various intrinsic breast cancer subtypes. J Clin Oncol (Official Journal of the American Society of Clinical Oncology). 2012;30(15):1796–804.CrossRefGoogle Scholar
  166. 166.
    Chen AM, Meric-Bernstam F, Hunt KK, Thames HD, Oswald MJ, Outlaw ED, et al. Breast conservation after neoadjuvant chemotherapy: the MD Anderson Cancer Center experience. J Clin Oncol (Official Journal of the American Society of Clinical Oncology). 2004;22(12):2303–12.CrossRefGoogle Scholar
  167. 167.
    Cortazar P, Zhang L, Untch M, Mehta K, Costantino JP, Wolmark N, et al. Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis. Lancet. 2014;384(9938):164–72.PubMedCrossRefGoogle Scholar
  168. 168.
    Piccart-Gebhart M, Holmes E, Baselga J, de Azambuja E, Dueck AC, Viale G, et al. Adjuvant lapatinib and trastuzumab for early human epidermal growth factor receptor 2-positive breast cancer: results from the randomized phase III adjuvant lapatinib and/or trastuzumab treatment optimization trial. J Clin Oncol (Official Journal of the American Society of Clinical Oncology). 2016;34(10):1034–42.CrossRefGoogle Scholar
  169. 169.
    Berruti A, Amoroso V, Gallo F, Bertaglia V, Simoncini E, Pedersini R, et al. Pathologic complete response as a potential surrogate for the clinical outcome in patients with breast cancer after neoadjuvant therapy: a meta-regression of 29 randomized prospective studies. J Clin Oncol (Official Journal of the American Society of Clinical Oncology). 2014;32(34):3883–91.CrossRefGoogle Scholar
  170. 170.
    Mathieu MC, Mazouni C, Kesty NC, Zhang Y, Scott V, Passeron J, et al. Breast Cancer index predicts pathological complete response and eligibility for breast conserving surgery in breast cancer patients treated with neoadjuvant chemotherapy. Ann Oncol (Official Journal of the European Society for Medical Oncology/ESMO). 2012;23(8):2046–52.CrossRefGoogle Scholar
  171. 171.
    Jeruss JS, Mittendorf EA, Tucker SL, Gonzalez-Angulo AM, Buchholz TA, Sahin AA, et al. Combined use of clinical and pathologic staging variables to define outcomes for breast cancer patients treated with neoadjuvant therapy. J Clin Oncol (Official Journal of the American Society of Clinical Oncology). 2008;26(2):246–52.CrossRefGoogle Scholar
  172. 172.
    Mittendorf EA, Jeruss JS, Tucker SL, Kolli A, Newman LA, Gonzalez-Angulo AM, et al. Validation of a novel staging system for disease-specific survival in patients with breast cancer treated with neoadjuvant chemotherapy. J Clin Oncol (Official Journal of the American Society of Clinical Oncology). 2011;29(15):1956–62.CrossRefGoogle Scholar
  173. 173.
    Symmans WF, Peintinger F, Hatzis C, Rajan R, Kuerer H, Valero V, et al. Measurement of residual breast cancer burden to predict survival after neoadjuvant chemotherapy. J Clin Oncol (Official Journal of the American Society of Clinical Oncology). 2007;25(28):4414–22.CrossRefGoogle Scholar
  174. 174.
    Jones RL, Salter J, A’Hern R, Nerurkar A, Parton M, Reis-Filho JS, et al. The prognostic significance of Ki67 before and after neoadjuvant chemotherapy in breast cancer. Breast Cancer Res Treat. 2009;116(1):53–68.PubMedCrossRefGoogle Scholar
  175. 175.
    Sheri A, Smith IE, Johnston SR, A’Hern R, Nerurkar A, Jones RL, et al. Residual proliferative cancer burden to predict long-term outcome following neoadjuvant chemotherapy. Ann Oncol (Official Journal of the European Society for Medical Oncology/ESMO). 2015;26(1):75–80.CrossRefGoogle Scholar
  176. 176.
    Low JA, Berman AW, Steinberg SM, Danforth DN, Lippman ME, Swain SM. Long-term follow-up for locally advanced and inflammatory breast cancer patients treated with multimodality therapy. J Clin Oncology (Official Journal of the American Society of Clinical Oncology). 2004;22(20):4067–74.CrossRefGoogle Scholar
  177. 177.
    Schlichting JA, Soliman AS, Schairer C, Schottenfeld D, Merajver SD. Inflammatory and non-inflammatory breast cancer survival by socioeconomic position in the Surveillance, Epidemiology, and End Results database, 1990–2008. Breast Cancer Res Treat. 2012;134(3):1257–68.PubMedPubMedCentralCrossRefGoogle Scholar
  178. 178.
    Dawood S, Ueno NT, Valero V, Woodward WA, Buchholz TA, Hortobagyi GN, et al. Differences in survival among women with stage III inflammatory and noninflammatory locally advanced breast cancer appear early: a large population-based study. Cancer. 2011;117(9):1819–26.PubMedCrossRefGoogle Scholar
  179. 179.
    Panades M, Olivotto IA, Speers CH, Shenkier T, Olivotto TA, Weir L, et al. Evolving treatment strategies for inflammatory breast cancer: a population-based survival analysis. J Clin Oncol (Official Journal of the American Society of Clinical Oncology). 2005;23(9):1941–50.CrossRefGoogle Scholar
  180. 180.
    Rueth NM, Lin HY, Bedrosian I, Shaitelman SF, Ueno NT, Shen Y, et al. Underuse of trimodality treatment affects survival for patients with inflammatory breast cancer: an analysis of treatment and survival trends from the National Cancer Database. J Clin Oncol (Official Journal of the American Society of Clinical Oncology). 2014;32(19):2018–24.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Tamer M. Fouad
    • 1
  • Gabriel N. Hortobagyi
    • 1
  • Naoto T. Ueno
    • 1
    Email author
  1. 1.Department of Breast Medical OncologyThe University of Texas MD Anderson Cancer CenterHoustonUSA

Personalised recommendations