Explainable and Efficient Link Prediction in Real-World Network Data

  • Jesper E. van Engelen
  • Hanjo D. Boekhout
  • Frank W. TakesEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9897)


Data that involves some sort of relationship or interaction can be represented, modelled and analyzed using the notion of a network. To understand the dynamics of networks, the link prediction problem is concerned with predicting the evolution of the topology of a network over time. Previous work in this direction has largely focussed on finding an extensive set of features capable of predicting the formation of a link, often within some domain-specific context. This sometimes results in a “black box” type of approach in which it is unclear how the (often computationally expensive) features contribute to the accuracy of the final predictor. This paper counters these problems by categorising the large set of proposed link prediction features based on their topological scope, and showing that the contribution of particular categories of features can actually be explained by simple structural properties of the network. An approach called the Efficient Feature Set is presented that uses a limited but explainable set of computationally efficient features that within each scope captures the essential network properties. Its performance is experimentally verified using a large number of diverse real-world network datasets. The result is a generic approach suitable for consistently predicting links with high accuracy.


Target Node Link Prediction Directed Network Short Path Length Node Feature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Adamic, L.A., Adar, E.: Friends and neighbors on the web. Soc. Netw. 25(3), 211–230 (2003)CrossRefGoogle Scholar
  2. 2.
    Al Hasan, M., Chaoji, V., Salem, S., Zaki, M.: Link prediction using supervised learning. In: Workshop on Link Analysis, Counter-Terrorism and Security (2006)Google Scholar
  3. 3.
    Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval, 2nd edn. Addison-Wesley, Boston (2011)Google Scholar
  4. 4.
    Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Caruana, R., Karampatziakis, N., Yessenalina, A.: An empirical evaluation of supervised learning in high dimensions. In: Proceedings ICDM, pp. 96–103 (2008)Google Scholar
  6. 6.
    Choudhury, M.D., Sundaram, H., John, A., Seligmann, D.D.: Social synchrony: predicting mimicry of user actions. In: Proceedings ICCSE, pp. 151–158 (2009)Google Scholar
  7. 7.
    Fire, M., Tenenboim-Chekina, L., Puzis, R., Lesser, O., Rokach, L., Elovici, Y.: Computationally efficient link prediction in a variety of social networks. ACM Trans. Intell. Syst. Technol. (TIST) 5(1), 10 (2013)Google Scholar
  8. 8.
    Gómez, V., Kaltenbrunner, A., López, V.: Statistical analysis of social network discussion threads in Slashdot. In: Proceedings WWW, pp. 645–654 (2008)Google Scholar
  9. 9.
    Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software. SIGKDD Explor. Newslett. 11(1), 10–18 (2009)CrossRefGoogle Scholar
  10. 10.
    Huang, Z., Li, X., Chen, H.: Link prediction approach to collaborative filtering. In: Proceedings DLT, pp. 141–142 (2005)Google Scholar
  11. 11.
    Isella, L., Stehlé, J., Barrat, A., Cattuto, C., Pinton, J.-F., den Broeck, W.V.: What’s in a crowd? Analysis of face-to-face behavioral networks. J. Theor. Biol. 271(1), 166–180 (2011)CrossRefGoogle Scholar
  12. 12.
    Katz, L.: A new status index derived from sociometric analysis. Psychometrika 18(1), 39–43 (1953)CrossRefzbMATHGoogle Scholar
  13. 13.
    Kleinberg, J.: The small-world phenomenon: an algorithmic perspective. In: Proceedings STOC, pp. 163–170 (2000)Google Scholar
  14. 14.
    KONECT. Linux mailing list replies network (2015).
  15. 15.
    Lewis, T.G.: Network Science: Theory and Applications. Wiley, New York (2011)Google Scholar
  16. 16.
    Liben-Nowell, D., Kleinberg, J.: The link prediction problem for social networks. In: Proceedings CIKM, pp. 556–559 (2003)Google Scholar
  17. 17.
    Lichtenwalter, R.N., Lussier, J.T., Chawla, N.V.: New perspectives and methods in link prediction. In: Proceedings KDD, pp. 243–252 (2010)Google Scholar
  18. 18.
    Lü, L., Zhou, T.: Link prediction in complex networks: a survey. Physica A Stat. Mech. Appl. 390(6), 1150–1170 (2011)CrossRefGoogle Scholar
  19. 19.
    O’Madadhain, J., Hutchins, J., Smyth, P.: Prediction and ranking algorithms for event-based network data. SIGKDD Explor. Newslett. 7(2), 23–30 (2005)CrossRefGoogle Scholar
  20. 20.
    Opsahl, T., Panzarasa, P.: Clustering in weighted networks. Soc. Netw. 31(2), 155–163 (2009)CrossRefGoogle Scholar
  21. 21.
    Popescul, A., Ungar, L.H.: Statistical relational learning for link prediction. In: IJCAI Workshop on Learning Statistical Models from Relational Data (2003)Google Scholar
  22. 22.
    Preusse, J., Kunegis, J., Thimm, M., Gottron, T., Staab, S.: Structural dynamics of knowledge networks. In: Proceedings ICWSM (2013)Google Scholar
  23. 23.
    Sarukkai, R.R.: Link prediction and path analysis using Markov chains. Comput. Netw. 33(1), 377–386 (2000)CrossRefGoogle Scholar
  24. 24.
    Scott, J.: Social Network Analysis. Sage, London (2012)Google Scholar
  25. 25.
    Takes, F.W.: Algorithms for analyzing and mining real-world graphs. Ph.D. thesis, Leiden University (2014)Google Scholar
  26. 26.
    Viswanath, B., Mislove, A., Cha, M., Gummadi, K.P.: On the evolution of user interaction in Facebook. In: Proceedings WOSN, pp. 37–42 (2009)Google Scholar
  27. 27.
    Zhang, B., Liu, R., Massey, D., Zhang, L.: Collecting the internet AS-level topology. SIGCOMM Comput. Commun. Rev. 35(1), 53–61 (2005)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Jesper E. van Engelen
    • 1
  • Hanjo D. Boekhout
    • 1
  • Frank W. Takes
    • 1
    • 2
    Email author
  1. 1.LIACSLeiden UniversityLeidenThe Netherlands
  2. 2.AISSRUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations