Skip to main content

A Toolkit for Analysis of Deep Learning Experiments

  • Conference paper
  • First Online:
Book cover Advances in Intelligent Data Analysis XV (IDA 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9897))

Included in the following conference series:

Abstract

Learning experiments are complex procedures which generate high volumes of data due to the number of updates which occur during training and the number of trials necessary for hyper-parameter selection. Often during runtime, interim result data is purged as the experiment progresses. This purge makes rolling-back to interim experiments, restarting at a specific point or discovering trends and patterns in parameters, hyper-parameters or results almost impossible given a large experiment or experiment set. In this research, we present a data model which captures all aspects of a deep learning experiment and through an application programming interface provides a simple means of storing, retrieving and analysing parameter settings and interim results at any point in the experiment. This has the further benefit of a high level of interoperability and sharing across machine learning researchers who can use the model and its interface for data management.

Research funded by Science Foundation Ireland, grant number SFI/12/RC/2289.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. PFA: Portable format for analytics (version 0.8.1). Technical report, Data Mining Group - PFA Working Group (2015)

    Google Scholar 

  2. Azevedo, A., Santos, M.F.: KDD, SEMMA and CRISP-DM: a parallel overview. In: Proceedings of IADIS European Conference on Data Mining 2008, Amsterdam, The Netherlands, 24–26 July 2008, pp. 182–185 (2008)

    Google Scholar 

  3. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13, 281–305 (2012)

    MathSciNet  MATH  Google Scholar 

  4. Blockeel, H.: Experiment databases: a novel methodology for experimental research. In: Bonchi, F., Boulicaut, J.-F. (eds.) KDID 2005. LNCS, vol. 3933, pp. 72–85. Springer, Heidelberg (2006). doi:10.1007/11733492_5

    Chapter  Google Scholar 

  5. Blockeel, H., Vanschoren, J.: Experiment databases: towards an improved experimental methodology in machine learning. In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.) PKDD 2007. LNCS, vol. 4702, pp. 6–17. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74976-9_5

    Chapter  Google Scholar 

  6. Bottou, L.: Stochastic gradient learning in neural networks. In: Proceedings of Neuro-Nîmes. EC2 (1991)

    Google Scholar 

  7. Esteves, D., Moussallem, D., Neto, C.B., Soru, T., Usbeck, R., Ackermann, M., Lehmann, J.: MEX vocabulary: a lightweight interchange format for machine learning experiments. In: Proceedings of the 11th International Conference on Semantic Systems, pp. 169–176. ACM (2015)

    Google Scholar 

  8. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: International Conference on Artificial Intelligence and Statistics, pp. 249–256 (2010)

    Google Scholar 

  9. Grossman, R., Bailey, S., Ramu, A., Malhi, B., Hallstrom, P., Pulleyn, I., Qin, X.: The management and mining of multiple predictive models using the predictive modeling markup language. Inf. Softw. Technol. 41(9), 589–595 (1999)

    Article  Google Scholar 

  10. Keet, C., dAmato, C., Khan, Z., Lawrynowicz, A.: Exploring reasoning with the DMOP ontology. In: 3rd Workshop on Ontology Reasoner Evaluation (ORE 2014), vol. 1207, pp. 64–70 (2014)

    Google Scholar 

  11. Le, Q.V., Jaitly, N., Hinton, G.E.: A simple way to initialize recurrent networks of rectified linear units. arXiv preprint arXiv:1504.00941 (2015)

  12. Lebo, T., Sahoo, S., McGuinness, D., Belhajjame, K., Cheney, J., et al.: PROV-O: the prov ontology. w3c recommendation, 30 April 2013. World Wide Web Consortium (2013)

    Google Scholar 

  13. Nurseitov, N., Paulson, M., Reynolds, R., Izurieta, C.: Comparison of JSON and XML data interchange formats: a case study. In: Caine 2009, pp. 157–162 (2009)

    Google Scholar 

  14. O’Donoghue, J., Roantree, M., Cullen, B., Moyna, N., Sullivan, C.O., McCarren, A.: Anomaly and event detection for unsupervised athlete performance data. In: Proceedings of the LWA 2015 Workshops, Trier, Germany, 7–9 October 2015, pp. 205–217 (2015)

    Google Scholar 

  15. Prechelt, L.: Early stopping — but when? In: Montavon, G., Orr, G.B., Müller, K.-R. (eds.) Neural Networks: Tricks of the Trade. LNCS, vol. 7700, pp. 53–67. Springer, Heidelberg (2012). doi:10.1007/978-3-642-35289-8_5

    Chapter  Google Scholar 

  16. Vanschoren, J., Blockeel, H., Pfahringer, B., Holmes, G.: Experiment databases. Mach. Learn. 87(2), 127–158 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Vanschoren, J., van Rijn, J.N., Bischl, B.: Taking machine learning research online with OpenML. In: Proceedings of the 4th International Workshop on Big Data, Streams and Heterogeneous Source Mining: Algorithms, Systems, Programming Models and Applications, pp. 1–4 (2015)

    Google Scholar 

  18. Vanschoren, J., Soldatova, L.: Exposé: an ontology for data mining experiments. In: International Workshop on Third Generation Data Mining: Towards Service-Oriented Knowledge Discovery (SoKD 2010), pp. 31–46 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jim O’Donoghue .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

O’Donoghue, J., Roantree, M. (2016). A Toolkit for Analysis of Deep Learning Experiments. In: Boström, H., Knobbe, A., Soares, C., Papapetrou, P. (eds) Advances in Intelligent Data Analysis XV. IDA 2016. Lecture Notes in Computer Science(), vol 9897. Springer, Cham. https://doi.org/10.1007/978-3-319-46349-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46349-0_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46348-3

  • Online ISBN: 978-3-319-46349-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics