Skip to main content

Plant Stress Response: Hsp70 in the Spotlight

  • Chapter
  • First Online:
Heat Shock Proteins and Plants

Part of the book series: Heat Shock Proteins ((HESP,volume 10))

Abstract

Heat Shock Protein 70 (Hsp70) is an evolutionarily conserved family of proteins which carry out multiple cellular functions such as protein biogenesis, protection during stress, prevention of formation of protein aggregates, assistance in protein translocation and many others. Hsp70, being the major cytoprotective molecular chaperone, plays a crucial role in protecting against a stunning array of stresses and in the re-establishment of cellular homeostasis. This book chapter gives an overview of the multifaceted Hsp70s in plants, with special emphasis on their association with plant response to various stress conditions and eventually, stress acclimation. The contribution of plant stress-responsive proteomics studies towards putting Hsp in the spotlight has also been brought forth. The road ahead is to decipher the underlying mechanisms of Hsp70-mediated multiple cross tolerance, that is likely to lead to new strategies to enhance crop tolerance to environmental stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABA:

abscisic acid

ABRE:

ABA-responsive element

AREB:

ABRE binding protein

ABF:

ABRE binding factor

BiP:

binding protein, Hsp70 homolog

CDPKs:

calcium-dependent protein kinases

CHIP:

carboxy terminus of Hsc70-interacting protein

CNV:

cucumber necrosis virus

DREB:

dehydration-responsive element binding

ER:

endoplasmic reticulum

GAPDH:

glyceraldehyde-3-phosphate dehydrogenase

Hsc:

heat shock cognate

HSE:

heat shock element

Hsf:

heat shock factor

Hsp:

heat shock protein(s)

hsp :

heat shock protein gene

HSR:

heat shock response

H2O2 :

hydrogen peroxide

HM:

heavy metal

LEA:

late embryogenesis abundant proteins

MAPKs:

mitogen activated protein kinases

MgProto or MgProtoMe:

Mg-protoporphyrin IX or its monomethyl ester

NO:

nitric oxide

PCD:

programmed cell death

PSII:

photosystem II

ROS:

reactive oxygen species

UPR:

unfolded protein response

References

  • Agrawal GK, Yonekura M, Iwahashi Y, Iwahashi H, Rakwal R (2005) System, trends and perspectives of proteomics in dicot plants. Part I: technologies in proteome establishment. J Chromatogr B Analyt Technol Biomed Life Sci 815:109–123

    Article  CAS  PubMed  Google Scholar 

  • Ahsan N, Lee SH, Lee DG, Lee H, Lee SW, Bahk JD, Lee BH (2007) Physiological and protein profiles alternation of germinating rice seedlings exposed to acute cadmium toxicity. C R Biol 330:735–746

    Article  CAS  PubMed  Google Scholar 

  • Ahsan N, Donnart T, Nouri MZ, Komatsu S (2010) Tissue‐specific defense and thermo‐ adaptive mechanisms of soybean seedlings under heat stress revealed by proteomic approach. J Proteome Res 9:4189–4204

    Article  CAS  PubMed  Google Scholar 

  • Alam SB, Rochon D (2015) Cucumber necrosis virus recruits cellular heat shock protein 70 homologs at several stages of infection. J Virol 90(7):3302–3317

    Article  PubMed  Google Scholar 

  • Augustine SM, Cherian AV, Syamaladevi DP, Subramonian N (2015a) Erianthus arundinaceus HSP70 (EaHSP70) acts as a Key regulator in the formation of anisotropic interdigitation in sugarcane (Saccharum spp. Hybrid) in response to drought stress. Plant Cell Physiol 56:2368–2380

    Article  CAS  PubMed  Google Scholar 

  • Augustine SM, Narayan JA, Syamaladevi DP, Appunu C, Chakravarthi M, Ravichandran V, Subramonian N (2015b) Erianthus arundinaceus HSP70 (EaHSP70) overexpression increases drought and salinity tolerance in sugarcane (Saccharum spp. hybrid). Plant Sci 232:23–34

    Article  CAS  PubMed  Google Scholar 

  • Bae MS, Cho EJ, Choi EY, Park OK (2003) Analysis of the Arabidopsis nuclear proteome and its response to cold stress. Plant J 36:652–663

    Article  CAS  PubMed  Google Scholar 

  • Baginsky S (2009) Plant proteomics: concepts, applications, and novel strategies for data interpretation. Mass Spectrom Rev 28:93–120

    Article  CAS  PubMed  Google Scholar 

  • Baniwal SK, Bharti K, Chan KY, Fauth M, Ganguli A, Kotak S, Mishra SK, Nover L, Port M, Scharf KD, Tripp J, Weber C, Zielinski D, von Koskull‐Doring P (2004) Heat stress response in plants: a complex game with chaperones and more than twenty heat stress transcription factors. J Biosci 29:471–487

    Article  CAS  PubMed  Google Scholar 

  • Barah P, Jayavelu ND, Mundy J, Bones AM (2013) Genome scale transcriptional response diversity among ten ecotypes of Arabidopsis thaliana during heat stress. Front Plant Sci 4:532

    Article  PubMed  PubMed Central  Google Scholar 

  • Barkla BJ, Vera‐Estrella R, Pantoja O (2013) Progress and challenges for abiotic stress proteomics of crop plants. Proteomics 13:1801–1815

    Article  CAS  PubMed  Google Scholar 

  • Barros MD, Czarnecka E, Gurley WB (1992) Mutational analysis of a plant heat‐shock element. Plant Mol Biol 19:665–675

    Article  CAS  PubMed  Google Scholar 

  • Beck CF (2005) Signaling pathways from the chloroplast to the nucleus. Planta 222:743–756

    Article  CAS  PubMed  Google Scholar 

  • Bionda T, Gross LE, Becker T, Papasotiriou DG, Leisegang MS, Karas M, Schleiff E (2016) Eukaryotic Hsp70 chaperones in the intermembrane space of chloroplasts. Planta 243:733–747

    Article  CAS  PubMed  Google Scholar 

  • Bita CE, Gerats T (2013) Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress‐tolerant crops. Front Plant Sci 4:273

    Article  PubMed  PubMed Central  Google Scholar 

  • Bokszczanin KL, Fragkostefanakis S (2013) Perspectives on deciphering mechanisms underlying plant heat stress response and thermotolerance. Front Plant Sci 4:315

    Article  PubMed  PubMed Central  Google Scholar 

  • Bray EA (1997) Plant responses to water deficit. Trends Plant Sci 2:48–54

    Article  Google Scholar 

  • Cazale AC, Clement M, Chiarenza S, Roncato MA, Pochon N, Creff A, Marin E, Leonhardt N, Noel LD (2009) Altered expression of cytosolic/nuclear HSC70‐1 molecular chaperone affects development and abiotic stress tolerance in Arabidopsis thaliana. J Exp Bot 60:2653–2664

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Harmon AC (2006) Advances in plant proteomics. Proteomics 6:5504–5516

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Wang Y, Li J, Jiang A, Cheng Y, Zhang W (2009) Mitochondrial proteome during salt stress‐induced programmed cell death in rice. Plant Physiol Biochem 47:407–415

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Chen X, Wang H, Bao Y, Zhang W (2014) Examination of the leaf proteome during flooding stress and the induction of programmed cell death in maize. Proteome Sci 12:33

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chitteti BR, Peng Z (2007) Proteome and phosphoproteome differential expression under salinity stress in rice (Oryza sativa) roots. J Proteome Res 6:1718–1727

    Article  CAS  PubMed  Google Scholar 

  • Cho EK, Choi YJ (2009) A nuclear‐localized HSP70 confers thermoprotective activity and drought‐stress tolerance on plants. Biotechnol Lett 31:597–606

    Article  CAS  PubMed  Google Scholar 

  • Choudhary MK, Basu D, Datta A, Chakraborty N, Chakraborty S (2009) Dehydration‐responsive nuclear proteome of rice (Oryza sativa L.) illustrates protein network, novel regulators of cellular adaptation, and evolutionary perspective. Mol Cell Proteomics 8:1579–1598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui S, Huang F, Wang J, Ma X, Cheng Y, Liu J (2005) A proteomic analysis of cold stress responses in rice seedlings. Proteomics 5:3162–3172

    Article  CAS  PubMed  Google Scholar 

  • Degand H, Faber AM, Dauchot N, Mingeot D, Watillon B, Cutsem PV, Morsomme P, Boutry M (2009) Proteomic analysis of chicory root identifies proteins typically involved in cold acclimation. Proteomics 9:2903–2907

    Article  CAS  PubMed  Google Scholar 

  • Dong X, Yi H, Lee J, Nou IS, Han CT, Hur Y (2015) Global gene‐expression analysis to identify differentially expressed genes critical for the heat stress response in Brassica Rapa. PLoS One 10:e0130451

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Driedonks N, Xu J, Peters JL, Park S, Rieu I (2015) Multi‐level interactions between heat shock factors, heat shock proteins, and the redox system regulate acclimation to heat. Front Plant Sci 6:999

    Article  PubMed  PubMed Central  Google Scholar 

  • Fragkostefanakis S, Röth S, Schleiff E, Scharf KD (2015) Prospects of engineering thermotolerance in crops through modulation of heat stress transcription factor and heat shock protein networks. Plant Cell Environ 38:19

    Google Scholar 

  • Garrido C, Paul C, Seigneuric R, Kampinga HH (2012) The small heat shock proteins family: the long forgotten chaperones. Int J Biochem Cell Biol 44:1588–1592

    Article  CAS  PubMed  Google Scholar 

  • Ghosh D, Xu J (2014) Abiotic stress responses in plant roots: a proteomics perspective. Front Plant Sci 5:6

    Article  PubMed  PubMed Central  Google Scholar 

  • Giacomelli L, Rudella A, van Wijk KJ (2006) High light response of the thylakoid proteome in arabidopsis wild type and the ascorbate‐deficient mutant vtc2‐2. A comparative proteomics study. Plant Physiol 141:685–701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorovits R, Moshe A, Ghanim M, Czosnek H (2013) Recruitment of the host plant heat shock protein 70 by Tomato yellow leaf curl virus coat protein is required for virus infection. PLoS One 8:e70280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goswami A, Banerjee R, Raha S (2010) Mechanisms of plant adaptation/memory in rice seedlings under arsenic and heat stress: expression of heat‐shock protein gene HSP70. AoB Plants 2010, plq023

    Google Scholar 

  • Goswami A, Banerjee R, Raha S (2013) Drought resistance in rice seedlings conferred by seed priming: role of the anti‐oxidant defense mechanisms. Protoplasma 250:1115–1129

    Article  CAS  PubMed  Google Scholar 

  • Goyal K, Walton LJ, Tunnacliffe A (2005) LEA proteins prevent protein aggregation due to water stress. Biochem J 388:151–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grover A, Mittal D, Negi M, Lavania D (2013) Generating high temperature tolerant transgenic plants: achievements and challenges. Plant Sci 205–206:38–47

    Article  PubMed  CAS  Google Scholar 

  • Guy CL, Li QB (1998) The organization and evolution of the spinach stress 70 molecular chaperone gene family. Plant Cell 10:539–556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hahn A, Bublak D, Schleiff E, Scharf KD (2011) Crosstalk between Hsp90 and Hsp70 chaperones and heat stress transcription factors in tomato. Plant Cell 23:741–755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hashimoto M, Komatsu S (2007) Proteomic analysis of rice seedlings during cold stress. Proteomics 7:1293–1302

    Article  CAS  PubMed  Google Scholar 

  • He ZS, Xie R, Wang YZ, Zou HS, Zhu JB, Yu GQ (2008) Cloning and characterization of a heat shock protein 70 gene, MsHSP70‐1, in Medicago sativa. Acta Biochimica Et Biophysica Sinica 40:209–216

    Article  CAS  PubMed  Google Scholar 

  • Hedhly A, Hormaza JI, Herrero M (2009) Global warming and sexual plant reproduction. Trends Plant Sci 14:30–36

    Article  CAS  PubMed  Google Scholar 

  • Hossain Z, Lopez‐Climent MF, Arbona V, Perez‐Clemente RM, Gomez‐Cadenas A (2009) Modulation of the antioxidant system in citrus under water logging and subsequent drainage. J Plant Physiol 166:1391–1404

    Article  CAS  PubMed  Google Scholar 

  • Hossain Z, Hajika M, Komatsu S (2012) Comparative proteome analysis of high and low cadmium accumulating soybeans under cadmium stress. Amino Acids 43:2393–2416

    Article  CAS  PubMed  Google Scholar 

  • Hossain Z, Khatoon A, Komatsu S (2013) Soybean proteomics for unraveling abiotic stress response mechanism. J Proteome Res 12:4670–4684

    Article  CAS  PubMed  Google Scholar 

  • Hubel A, Schoffl F (1994) Arabidopsis heat‐shock factor ‐ isolation and characterization of the gene and the recombinant protein. Plant Mol Biol 26:353–362

    Article  CAS  PubMed  Google Scholar 

  • Hubel A, Lee JH, Wu C, Schoffl F (1995) Arabidopsis heat‐shock factor is constitutively active in drosophila and human‐cells. Mol Gen Genet 248:136–141

    Article  CAS  PubMed  Google Scholar 

  • Hubert DA, Tornero P, Belkhadir Y, Krishna P, Takahashi A, Shirasu K, Dangl JL (2003) Cytosolic HSP90 associates with and modulates the Arabidopsis RPM1 disease resistance protein. EMBO J 22:5679–5689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jelenska J, van Hal JA, Greenberg JT (2010) Pseudomonas syringae hijacks plant stress chaperone machinery for virulence. Proc Natl Acad Sci U S A 107:13177–13182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung KH, Gho HJ, Nguyen MX, Kim SR, An G (2013) Genome‐wide expression analysis of HSP70 family genes in rice and identification of a cytosolic HSP70 gene highly induced under heat stress. Funct Integr Genomics 13:391–402

    Article  CAS  PubMed  Google Scholar 

  • Kieffer P, Dommes J, Hoffmann L, Hausman JF, Renaut J (2008) Quantitative changes in protein expression of cadmium‐exposed poplar plants. Proteomics 8:2514–2530

    Article  CAS  PubMed  Google Scholar 

  • Kim SR, An G (2013) Rice chloroplast‐localized heat shock protein 70, OsHsp70CP1, is essential for chloroplast development under high‐temperature conditions. J Plant Physiol 170:854–863

    Article  CAS  PubMed  Google Scholar 

  • Komatsu S, Wada T, Abalea Y, Nouri MZ, Nanjo Y, Nakayama N, Shimamura S, Yamamoto R, Nakamura T, Furukawa K (2009) Analysis of plasma membrane proteome in soybean and application to flooding stress response. J Proteome Res 8:4487–4499

    Article  CAS  PubMed  Google Scholar 

  • Komatsu S, Makino T, Yasue H (2013) Proteomic and biochemical analyses of the cotyledon and root of flooding‐stressed soybean plants. PLoS One 8:e65301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kosova K, Vitamvas P, Prasil IT, Renaut J (2011) Plant proteome changes under abiotic stress‐‐contribution of proteomics studies to understanding plant stress response. J Proteomics 74:1301–1322

    Article  CAS  PubMed  Google Scholar 

  • Kotak S, Larkindale J, Lee U, von Koskull‐Doring P, Vierling E, Scharf KD (2007) Complexity of the heat stress response in plants. Curr Opin Plant Biol 10:310–316

    Article  CAS  PubMed  Google Scholar 

  • Kropat J, Oster U, Rudiger W, Beck CF (2000) Chloroplast signalling in the light induction of nuclear HSP70 genes requires the accumulation of chlorophyll precursors and their accessibility to cytoplasm/nucleus. Plant J 24:523–531

    Article  CAS  PubMed  Google Scholar 

  • Kubienova L, Sedlarova M, Viteckova‐Wunschova A, Piterkova J, Luhova L, Mieslerova B, Lebeda A, Navratil M, Petrivalsky M (2013) Effect of extreme temperatures on powdery mildew development and Hsp70 induction in tomato and wild Solanum spp. Plant Prot Sci 49:S41–S54

    Google Scholar 

  • Kuromori T, Mizoi J, Umezawa T, Yamaguchi‐Shinozaki K, Shinozaki K (2014) Drought stress signaling network. In: Howell SH (ed) Molecular biology. Springer, New York, pp 383–409

    Google Scholar 

  • Latijnhouwers M, Xu XM, Moller SG (2010) Arabidopsis stromal 70‐kDa heat shock proteins are essential for chloroplast development. Planta 232:567–578

    Article  CAS  PubMed  Google Scholar 

  • Lavania D, Dhingra A, Siddiqui MH, Al‐Whaibi MH, Grover A (2015) Current status of the production of high temperature tolerant transgenic crops for cultivation in warmer climates. Plant Physiol Biochem 86:100–108

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Lee DW, Lee Y, Mayer U, Stierhof YD, Jurgens G, Hwang I (2009) Heat shock protein cognate 70–4 and an E3 ubiquitin ligase, CHIP, mediate plastid‐destined precursor degradation through the ubiquitin‐26S proteasome system in Arabidopsis. Plant Cell 21:3984–4001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JH, Yun HS, Kwon C (2012) Molecular communications between plant heat shock responses and disease resistance. Mol Cells 34:109–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liao JL, Zhou HW, Zhang HY, Zhong PA, Huang YJ (2014) Comparative proteomic analysis of differentially expressed proteins in the early milky stage of rice grains during high temperature stress. J Exp Bot 65:655–671

    Article  CAS  PubMed  Google Scholar 

  • Lobell DB, Burke MB, Tebaldi C, Mastrandrea MD, Falcon WP, Naylor RL (2008) Prioritizing climate change adaptation needs for food security in 2030. Science 319:607–610

    Article  CAS  PubMed  Google Scholar 

  • Lubben TH, Donaldson GK, Viitanen PV, Gatenby AA (1989) Several proteins imported into chloroplasts form stable complexes with the GroEL‐related chloroplast molecular chaperone. Plant Cell 1:8

    Article  Google Scholar 

  • Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444:139–158

    Article  CAS  PubMed  Google Scholar 

  • Maruyama D, Endo T, Nishikawa S (2010) BiP‐mediated polar nuclei fusion is essential for the regulation of endosperm nuclei proliferation in Arabidopsis thaliana. Proc Natl Acad Sci U S A 107:1684–1689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maruyama D, Sugiyama T, Endo T, Nishikawa S (2014) Multiple BiP genes of Arabidopsis thaliana are required for male gametogenesis and pollen competitiveness. Plant Cell Physiol 55:801–810

    Article  CAS  PubMed  Google Scholar 

  • Mayer MP, Bukau B (2005) Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol Life Sci 62:670–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mittler R, Finka A, Goloubinoff P (2012) How do plants feel the heat? Trends Biochem Sci 37:118–125

    Article  CAS  PubMed  Google Scholar 

  • Montero‐Barrientos M, Hermosa R, Cardoza RE, Gutierrez S, Nicolas C, Monte E (2010) Transgenic expression of the Trichoderma harzianum hsp70 gene increases Arabidopsis resistance to heat and other abiotic stresses. J Plant Physiol 167:659–665

    Article  PubMed  CAS  Google Scholar 

  • Mutava RN, Prince SJ, Syed NH, Song L, Valliyodan B, Chen W, Nguyen HT (2015) Understanding abiotic stress tolerance mechanisms in soybean: a comparative evaluation of soybean response to drought and flooding stress. Plant Physiol Biochem 86:109–120

    Article  CAS  PubMed  Google Scholar 

  • Neuer A, Spandorfer SD, Giraldo P, Jeremias J, Dieterle S, Korneeva I, Liu HC, Rosenwaks Z, Witkin SS (1999) Heat shock protein expression during gametogenesis and embryogenesis. Infect Dis Obstet Gynecol 7:10–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ngara R, Ndimba BK (2014) Understanding the complex nature of salinity and drought‐stress response in cereals using proteomics technologies. Proteomics 14:611–621

    Article  CAS  PubMed  Google Scholar 

  • Ohta M, Wakasa Y, Takahashi H, Hayashi S, Kudo K, Takaiwa F (2013) Analysis of rice ER‐ resident J‐proteins reveals diversity and functional differentiation of the ER‐resident Hsp70 system in plants. J Exp Bot 64:5429–5441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ono K, Hibino T, Kohinata T, Suzuki S, Tanaka Y, Nakamura T, Takabe T (2001) Overexpression of DnaK from a halotolerant cyanobacterium Aphanothece halophytica enhances the high‐temperature tolerance of tobacco during germination and early growth. Plant Sci 160:455–461

    Article  CAS  PubMed  Google Scholar 

  • Potocky M, Jones MA, Bezvoda R, Smirnoff N, Zarsky V (2007) Reactive oxygen species produced by NADPH oxidase are involved in pollen tube growth. New Phytol 174:742–751

    Article  CAS  PubMed  Google Scholar 

  • Qin F, Shinozaki K, Yamaguchi‐Shinozaki K (2011) Achievements and challenges in understanding plant abiotic stress responses and tolerance. Plant Cell Physiol 52:1569–1582

    Article  CAS  PubMed  Google Scholar 

  • Renaut J, Lutts S, Hoffmann L, Hausman JF (2004) Responses of poplar to chilling temperatures: proteomic and physiological aspects. Plant Biol (Stuttg) 6:81–90

    Article  CAS  Google Scholar 

  • Ritossa F (1962) A new puffing pattern induced by temperature shock and DNP in drosophila. Experientia 18:571–573

    Article  CAS  Google Scholar 

  • Rizhsky L, Liang H, Mittler R (2002) The combined effect of drought stress and heat shock on gene expression in tobacco. Plant Physiol 130:1143–1151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez‐Celma J, Rellan‐Alvarez R, Abadia A, Abadia J, Lopez‐Millan AF (2010) Changes induced by two levels of cadmium toxicity in the 2‐DE protein profile of tomato roots. J Proteomics 73:1694–1706

    Article  PubMed  CAS  Google Scholar 

  • Rodziewicz P, Swarcewicz B, Chmielewska K, Wojakowska A, Stobiecki M (2014) Influence of abiotic stresses on plant proteome and metabolome changes. Acta Physiol Plant 36:1–19

    Article  CAS  Google Scholar 

  • Saidi Y, Finka A, Goloubinoff P (2011) Heat perception and signalling in plants: a tortuous path to thermotolerance. New Phytol 190:556–565

    Article  CAS  PubMed  Google Scholar 

  • Sarkar NK, Kundnani P, Grover A (2013) Functional analysis of Hsp70 superfamily proteins of rice (Oryza sativa). Cell Stress Chaperones 18:427–437

    Article  CAS  PubMed  Google Scholar 

  • Sarry JE, Kuhn L, Ducruix C, Lafaye A, Junot C, Hugouvieux V, Jourdain A, Bastien O, Fievet JB, Vailhen D, Amekraz B, Moulin C, Ezan E, Garin J, Bourguignon J (2006) The early responses of Arabidopsis thaliana cells to cadmium exposure explored by protein and metabolite profiling analyses. Proteomics 6:2180–2198

    Article  CAS  PubMed  Google Scholar 

  • Scafaro AP, Haynes PA, Atwell BJ (2010) Physiological and molecular changes in Oryza meridionalis Ng., a heat‐tolerant species of wild rice. J Exp Bot 61:191–202

    Article  CAS  PubMed  Google Scholar 

  • Scharf KD, Berberich T, Ebersberger I, Nover L (2012) The plant heat stress transcription factor (Hsf) family: structure, function and evolution. Biochim Biophys Acta 1819:104–119

    Article  CAS  PubMed  Google Scholar 

  • Schroda M, Vallon O, Wollman FA, Beck CF (1999) A chloroplast‐targeted heat shock protein 70 (HSP70) contributes to the photoprotection and repair of photosystem II during and after photoinhibition. Plant Cell 11:1165–1178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schroda M, Kropat J, Oster U, Rudiger W, Vallon O, Wollman FA, Beck CF (2001) Possible role for molecular chaperones in assembly and repair of photosystem II. Biochem Soc Trans 29:413–418

    Article  CAS  PubMed  Google Scholar 

  • Sharma SS, Dietz KJ (2009) The relationship between metal toxicity and cellular redox imbalance. Trends Plant Sci 14:43–50

    Article  CAS  PubMed  Google Scholar 

  • Shu L, Lou Q, Ma C, Ding W, Zhou J, Wu J, Feng F, Lu X, Luo L, Xu G, Mei H (2011) Genetic, proteomic and metabolic analysis of the regulation of energy storage in rice seedlings in response to drought. Proteomics 11:4122–4138

    Article  CAS  PubMed  Google Scholar 

  • Sobhanian H, Aghaei K, Komatsu S (2011) Changes in the plant proteome resulting from salt stress: toward the creation of salt‐tolerant crops? J Proteomics 74:1323–1337

    Article  CAS  PubMed  Google Scholar 

  • Song A, Zhu X, Chen F, Gao H, Jiang J, Chen S (2014) A chrysanthemum heat shock protein confers tolerance to abiotic stress. Int J Mol Sci 15:5063–5078

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Su PH, Li HM (2008) Arabidopsis stromal 70‐kD heat shock proteins are essential for plant development and important for thermotolerance of germinating seeds. Plant Physiol 146:1231–1241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su PH, Li HM (2010) Stromal Hsp70 is important for protein translocation into Pea and Arabidopsis chloroplasts. Plant Cell 22:1516–1531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sung DY, Guy CL (2003) Physiological and molecular assessment of altered expression of Hsc70–1 in Arabidopsis. Evidence for pleiotropic consequences. Plant Physiol 132:979–987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki N, Rivero RM, Shulaev V, Blumwald E, Mittler R (2014) Abiotic and biotic stress combinations. New Phytol 203:32–43

    Article  PubMed  Google Scholar 

  • Taylor NL, Heazlewood JL, Day DA, Millar AH (2005) Differential impact of environmental stresses on the pea mitochondrial proteome. Mol Cell Proteomics 4:1122–1133

    Article  CAS  PubMed  Google Scholar 

  • Timperio AM, Egidi MG, Zolla L (2008) Proteomics applied on plant abiotic stresses: role of heat shock proteins (HSP). J Proteomics 71:391–411

    Article  CAS  PubMed  Google Scholar 

  • Uchida A, Hibino T, Shimada T, Saigusa M, Takabe T, Araki E, Kajita H, Takabe T (2008) Overexpression of DnaK chaperone from a halotolerant cyanobacterium Aphanothece halophytica increases seed yield in rice and tobacco. Plant Biotechnol 25:141–150

    Article  CAS  Google Scholar 

  • Umezawa T, Nakashima K, Miyakawa T, Kuromori T, Tanokura M, Shinozaki K, Yamaguchi‐Shinozaki K (2010) Molecular basis of the core regulatory network in ABA responses: sensing, signaling and transport. Plant Cell Physiol 51:1821–1839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Virdi AS, Singh S, Singh P (2015) Abiotic stress responses in plants: roles of calmodulin‐regulated proteins. Front Plant Sci 6:809

    Article  PubMed  PubMed Central  Google Scholar 

  • Wakasa Y, Yasuda H, Oono Y, Kawakatsu T, Hirose S, Takahashi H, Hayashi S, Yang L, Takaiwa F (2011) Expression of ER quality control‐related genes in response to changes in BiP1 levels in developing rice endosperm. Plant J 65:675–689

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14

    Article  CAS  PubMed  Google Scholar 

  • Wang WX, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat‐shock proteins and molecular chaperones in the abiotic stress response. Trends in Plant sci 9:244–252

    Article  CAS  Google Scholar 

  • Wang MC, Peng ZY, Li CL, Li F, Liu C, Xia GM (2008) Proteomic analysis on a high salt tolerance introgression strain of Triticum aestivum/Thinopyrum ponticum. Proteomics 8:1470–1489

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Lin S, Song Q, Li K, Tao H, Huang J, Chen X, Que S, He H (2014) Genome‐wide identification of heat shock proteins (Hsps) and Hsp interactors in rice: Hsp70s as a case study. BMC Genomics 15:344

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu CH, Caspar T, Browse J, Lindquist S, Somerville C (1988) Characterization of an HSP70 cognate gene family in Arabidopsis. Plant Physiol 88:731–740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao X, Yang F, Zhang S, Korpelainen H, Li C (2009) Physiological and proteomic responses of two contrasting Populus cathayana populations to drought stress. Physiol Plant 136:150–168

    Article  CAS  PubMed  Google Scholar 

  • Xin H, Zhang H, Chen L, Li X, Lian Q, Yuan X, Hu X, Cao L, He X, Yi M (2010) Cloning and characterization of HsfA2 from Lily (Lilium longiflorum). Plant Cell Rep 29:875–885

    Article  CAS  PubMed  Google Scholar 

  • Zhou W, Zhou T, Li MX, Zhao CL, Jia N, Wang XX, Sun YZ, Li GL, Xu M, Zhou RG, Li B (2012) The Arabidopsis J‐protein AtDjB1 facilitates thermotolerance by protecting cells against heat‐induced oxidative damage. New Phytol 194:364–378

    Article  CAS  PubMed  Google Scholar 

  • Zhu B, Ye C, Lu H, Chen X, Chai G, Chen J, Wang C (2006) Identification and characterization of a novel heat shock transcription factor gene, GmHsfA1, in soybeans (Glycine max). J Plant Res 119:247–256

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

D.R. acknowledges financial support from CSIR, Govt. of India in the form of Senior Research Associateship (Scientists’ Pool Scheme). D.R. would like to thank Dr. Andrew M Lynn, School of Computational and Integrative Sciences, Jawaharlal Nehru University for his kind support and encouragement. A.G. acknowledges the financial support of the Dept. of Science and Technology, Govt. of India for DST inspire faculty fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanghamitra Raha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ray, D., Ghosh, A., Mustafi, S.B., Raha, S. (2016). Plant Stress Response: Hsp70 in the Spotlight. In: Asea, A., Kaur, P., Calderwood, S. (eds) Heat Shock Proteins and Plants. Heat Shock Proteins, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-319-46340-7_7

Download citation

Publish with us

Policies and ethics