Skip to main content

Heat Shock Proteins in Wild Barley at “Evolution Canyon”, Mount Carmel, Israel

  • Chapter
  • First Online:

Part of the book series: Heat Shock Proteins ((HESP,volume 10))

Abstract

The analysis of stress-responsiveness in cereal plants is an important route to the discovery of genes conferring stress tolerance and their use in breeding programs. High temperature is one of the environmental stress factors that can affect the growth and quality characteristics of barley (Hordeum vulgare). Almost all stresses induce the production of a group of proteins called heat-shock protein (HSPs) or stress-induced proteins. The induction of transcription of these different types of heat shock proteins reflects an adaptation to tolerate the heat stress. The “Evolution Canyon” I at lower Nahal Oren, Mount Carmel, Israel (EC I), reveals evolution in action across life at a microsite caused by interslope microclimatic divergence. The adaptation, speciation, domestication and rich genetic diversity of wild barley, H. spontaneum, was a good model to study the evolution and adaptation at both macro- and micro-scale levels. The genetic divergence and haplotype diversity of heat shock protein genes were significantly different among the populations at EC I. The diversity was also correlated with microclimatic divergence interslopes. We briefly review the remarkable interslope incipient adaptive sympatric speciation of wild barley at “Evolution Canyon”, focusing on HSPs which highlight barley improvement for stress tolerances.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ABA:

abscisic acid

ABRE:

abscisic acid responsive cis-elements

ACD:

alpha-crystallin domain

CRISPR:

clustered regularly interspaced short palindromic repeats

EC:

Evolution Canyon

EcoTILLING:

ecotype targeting induced local lesions in genomes

Hd:

haplotype diversity

Hsf:

heat shock factor

HSP:

heat shock proteins

NCBI:

National Center for Biotechnology Information

NFS:

north-facing slopes

OGCs:

orthologous gene clusters

QTL:

quantitative trait loci

SNP:

single nucleotide polymorphisms

SFS:

south-facing slopes

sHSPs:

small heat shock proteins

SSR:

simple sequence repeats

TE:

transposable element

References

  • Ashoub A, Baeumlisberger M, Neupaertl M, Karas M, Brüggemann W (2015) Characterization of common and distinctive adjustments of wild barley leaf proteome under drought acclimation, heat stress and their combination. Plant Mol Biol 87:459–471

    Article  CAS  PubMed  Google Scholar 

  • Badr A, Muller K, Schafer-Pregl R, El Rabey H, Effgen S, Ibrahim HH, Pozzi C, Rhode W, Salamini F (2000) On the origin and domestication history of barley (Hordeum vulgare). Mol Biol Evol 17:499–510

    Article  CAS  PubMed  Google Scholar 

  • Basak J, Nithin C (2015) Targeting non-coding RNAs in plants with the CRISPR-Cas technology is a challenge yet worth accepting. Front Plant Sci 6:1001

    Article  PubMed  PubMed Central  Google Scholar 

  • Basha E, Jones C, Blackwell AE, Cheng G, Waters ER, Samsel KA, Siddique M, Pett V, Wysocki V, Vierling E (2013) An unusual dimeric small heat shock protein provides insight into the mechanism of this class of chaperones. J Mol Biol 425:1683–1696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bedada G, Westerbergh A, Nevo E, Korol A, Schmid KJ (2014a) DNA sequence variation of wild barley Hordeum spontaneum (L.) across environmental gradients in Israel. Heredity (Edinb) 112:646–655

    Article  CAS  Google Scholar 

  • Bedada G, Westerbergh A, Müller T, Galkin E, Bdolach E, Moshelion M, Fridman E, Schmid KJ (2014b) Transcriptome sequencing of two wild barley (Hordeum spontaneum L.) ecotypes differentially adapted to drought stress reveals ecotype-specific transcripts. BMC Genomics 15:995

    Article  PubMed  PubMed Central  Google Scholar 

  • Bossolini E, Wicker T, Knobel PA, Keller B (2007) Comparison of orthologous loci from small grass genomes Brachypodium and rice, implications for wheat genomics and grass genome annotation. Plant J 49:704–717

    Article  CAS  PubMed  Google Scholar 

  • Brooks C, Nekrasov V, Lippman ZB, Van Eck J (2014) Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR-associated 9 system. Plant Physiol 166:1292–1297

    Article  PubMed  PubMed Central  Google Scholar 

  • Carmel J, Rashkovetsky E, Nevo E, Korol A (2011) Differential expression of small heat shock protein genes Hsp23 and Hsp40, and heat shock gene Hsr-omega in fruit flies (Drosophila melanogaster) along a microclimatic gradient. J Hered 102:593–603

    Article  CAS  PubMed  Google Scholar 

  • Cattivelli L, Baldi P, Crosatti C, Di Fonzo N, Faccioli P, Grossi M, Mastrangelo AM, Pecchioni N, Stanca AM (2002) Chromosome regions and stress-related sequences involved in resistance to abiotic stress in Triticeae. Plant Mol Biol 48:649–665

    Article  CAS  Google Scholar 

  • Cronin JK, Bundock PC, Henry RJ, Nevo E (2007) Adaptive climatic molecular evolution in wild barley at the Isa defense locus. Proc Natl Acad Sci U S A 104:2773–2778

    Google Scholar 

  • Cuadrado A, Schwarzacher T (1998) The chromosomal organization of simple sequence repeats in wheat and rye genomes. Chromosoma 107:587–594

    Article  CAS  PubMed  Google Scholar 

  • Dai F, Nevo E, Wu D, Comadran J, Zhou M, Qiu L, Chen Z, Beiles A, Chen G, Zhang G (2012) Tibet is one of the centers of domestication of cultivated barley. Proc Natl Acad Sci U S A 109:16969–16973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai F, Chen ZH, Wang X, Li Z, Jin G, Wu D, Cai S, Wang N, Wu F, Nevo E, Zhang G (2014) Transcriptome profiling reveals mosaic genomic origins of modern cultivated barley. Proc Natl Acad Sci U S A 111:13403–13408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng Z, Mao Y, Xu N, Zhang B, Wei P, Yang DL, Wang Z, Zhang Z, Zheng R, Yang L, Zeng L, Liu X, Zhu JK (2014) Multigeneration analysis reveals the inheritance, specificity, and patterns of CRISPR/Cas-induced gene modifications in Arabidopsis. Proc Natl Acad Sci U S A 111:4632–4637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frydenberg J, Hoffmann AA, Loeschcke V (2003) DNA sequence variation and latitudinal associations in hsp23, hsp26 and hsp27 from natural populations of Drosophila melanogaster. Mol Ecol 12:2025–2032

    Article  CAS  PubMed  Google Scholar 

  • Gao J, Wang G, Ma S, Xie X, Wu X, Zhang X, Wu Y, Zhao P, Xia Q (2015) CRISPR/Cas9-mediated targeted mutagenesis in Nicotiana tabacum. Plant Mol Biol 87:99–110

    Article  CAS  PubMed  Google Scholar 

  • González J, Karasov TL, Messer PW, Petrov DA (2010) Genome-wide patterns of adaptation to temperate environments associated with transposable elements in Drosophila. PLoS Genet 6:e1000905

    Article  PubMed  PubMed Central  Google Scholar 

  • Grigorova B, Vaseva II, Demirevska K, Feller U (2011) Expression of selected heat shock proteins after individually applied and combined drought and heat stress. Acta Physiol Plant 33:2041–2049

    Article  CAS  Google Scholar 

  • Guo P, Baum M, Grando S, Ceccarelli S, Bai G, Li R, von Korff M, Varshney RK, Graner A, Valkoun J (2009) Differentially expressed genes between drought-tolerant and drought-sensitive barley genotypes in response to drought stress during the reproductive stage. J Exp Bot 12:3531–3544

    Article  Google Scholar 

  • Heslop-Harrison JS, Schwarzacher T (2011) Organisation of the plant genome in chromosomes. Plant J 66:18–33

    Article  CAS  PubMed  Google Scholar 

  • Hubner S, Rashkovetsky E, Kim YB, Oh JH, Michalak K, Weiner D, Michalak P (2013) Genome differentiation of Drosophila melanogaster from a microclimate contrast in “Evolution Canyon,” Israel. Proc Natl Acad Sci U S A 110:21059–21064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Islamovic E, Obert DE, Oliver RE, Marshall JM, Miclaus KJ, Hang A, Chao S, Lazo GR, Harrison SA, Ibrahim A, Jellen EN, Maughane PJ, Brown RH, Jackson EW (2013) A new genetic linkage map of barley (Hordeum vulgare L.) facilitates genetic dissection of height and spike length and angle. Field Crops Res 154:91–99

    Article  Google Scholar 

  • Jiang W, Zhou H, Bi H, Fromm M, Yang B, Weeks DP (2013) Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res 41:e188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalendar R, Tanskanen J, Immonen S, Nevo E, Schulman AH (2000) Genome evolution of wild barley (Hordeum spontaneum) by BARE-1 retrotransposon dynamics in response to sharp microclimatic divergence. Proc Natl Acad Sci U S A 97:6603–6607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim YB, Oh JH, McIver LJ, Rashkovetsky E, Michalak K, Garner HR, Kang L, Nevo E, Korol AB, Michalak P (2014) Divergence of Drosophila melanogaster repeatomes in response to a sharp microclimate contrast in Evolution Canyon, Israel. Proc Natl Acad Sci U S A 111:10630–10635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lawrenson T, Shorinola O, Stacey N, Li C, Østergaard L, Patron N, Uauy C, Harwood W (2015) Induction of targeted, heritable mutations in barley and Brassica oleracea using RNA-guided Cas9 nuclease. Genome Biol 16:258

    Article  PubMed  PubMed Central  Google Scholar 

  • Liao PC, Lin TP, Lan WC, Chung JD, Hwang SY (2010) Duplication of the class I cytosolic small heat shock protein gene and potential functional divergence revealed by sequence variations flanking the alpha-crystallin domain in the genus Rhododendron Ericaceae. Ann Bot 105:57–69

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Wang JR, Liu ZH, Wang Y, Chen X, Henry RJ, Wei YM, Nevo E, Zheng YL (2014) Adaptive evolution of a-amylase genes in wild barley (Hordeum spontaneum) on micro and macro scales. J Syst Evol 52:765–778

    Article  Google Scholar 

  • Lynch M, Conery JS (2000) The evolutionary fate and consequences of duplicate genes. Science 290:1151–1154

    Article  CAS  PubMed  Google Scholar 

  • Ma X, Sela H, Jiao G, Li C, Wang A, Pourkheirandish M, Weiner D, Sakuma S, Krugman T, Nevo E, Komatsuda T, Korol A, Chen G (2012) Population-genetic analysis of HvABCG31 promoter sequence in wild barley (Hordeum vulgare ssp. spontaneum). BMC Evol Biol 12:188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma Y, Shabala S, Li C, Liu C, Zhang W, Zhou M (2015) Quantitative trait loci for salinity tolerance identified under drained and waterlogged conditions and their association with flowering time in barley (Hordeum vulgare. L). PLoS One 10:e0134822

    Article  PubMed  PubMed Central  Google Scholar 

  • Maestri E, Klueva N, Perrotta C, Gulli M, Nguyen HT, Marmiroli N (2002) Molecular genetics of heat tolerance and heat shock proteins in cereals. Plant Mol Biol 48:667–681

    Article  CAS  PubMed  Google Scholar 

  • Mali P, Yang L, Esvelt KM, Aach J, Guell M, Dicarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mayer KF, Waugh R, Brown JW, Schulman A, Langridge P, Platzer M, Fincher GB, Muehlbauer GJ, Sato K, Close TJ, Wise RP, Stein N, International Barley Genome Sequencing Consortium (2012) A physical, genetic and functional sequence assembly of the barley genome. Nature 491:711–716

    CAS  PubMed  Google Scholar 

  • Middleton CP, Stein N, Keller B, Kilian B, Wicker T (2013) Comparative analysis of genome composition in Triticeae reveals strong variation in transposable element dynamics and nucleotide diversity. Plant J 73:347–356

    Article  CAS  PubMed  Google Scholar 

  • Montfort RL, Basha E, Friedrich KL, Slingsby C, Vierling E (2001) Crystal structure and assembly of a eukaryotic small heat shock protein. Nat Struct Biol 8:1025–1030

    Article  PubMed  Google Scholar 

  • Moore C, Purugganan MD (2005) The evolutionary dynamics of plant duplicate genes. Curr Opin Plant Biol 8:122–128

    Article  CAS  PubMed  Google Scholar 

  • Morrell PL, Clegg MT (2007) Genetic evidence for a second domestication of barley (Hordeum vulgare) east of the Fertile Crescent. Proc Natl Acad Sci U S A 104:3289–3294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morrell PL, Lundy KE, Clegg MT (2003) Distinct geographic patterns of genetic diversity are maintained in wild barley (Hordeum vulgare ssp. spontaneum) despite migration. Proc Natl Acad Sci U S A 100:10812–10817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • Nevo E (1992) Origin, evolution, population genetics and resources for breeding of wild barley, Hordeum spontaneum, in the Fertile Crescent. In: Shewry P (ed) Barley, genetics, molecular biology and biotechnology. CAB International, Wallingford, pp 19–43

    Google Scholar 

  • Nevo E (1995) Asian, African and European biota meet at ‘Evolution Canyon’, Israel, local tests of global biodiversity and genetic diversity patterns. Proc R Soc B Biol Sci 262:149–155

    Article  Google Scholar 

  • Nevo E (1997) Evolution in action across phylogeny caused by microclimatic stresses at “Evolution Canyon”. Theor Popul Biol 52:231–243

    Article  CAS  PubMed  Google Scholar 

  • Nevo E (1998) Genetic diversity in wild cereals, regional and local studies and their bearing on conservation ex situ and in situ. Genet Resour Crop Evol 45:355–370

    Google Scholar 

  • Nevo E (2001) Evolution of genome-phenome diversity under environmental stress. Proc Natl Acad Sci U S A 98:6233–6240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nevo E (2006) ‘Evolution Canyon’, a microcosm of life’s evolution. Isr J Ecol Evol 52:183–184

    Google Scholar 

  • Nevo E (2009) Evolution in action across life at “Evolution Canyons”, Israel. Trends Evol Biol 1:e-3

    Article  Google Scholar 

  • Nevo E (2011) Evolution under environmental stress at macro-and microscales. Genome Biol Evol 2:1039–1052

    Article  Google Scholar 

  • Nevo E (2012) “Evolution Canyon,” a potential microscale monitor of global warming across life. Proc Natl Acad Sci U S A 109:2960–2965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nevo E (2014) Evolution in action, adaptation and incipient sympatric speciation with gene flow across life at “Evolution Canyon”, Israel. Isr J Ecol Evol 60:85–98

    Article  Google Scholar 

  • Nevo E (2015) Evolution of wild barley at “Evolution Canyon”, adaptation, speciation, pre-agricultural collection, and barley improvement. Isr J Plant Sci 62:22–32

    Article  Google Scholar 

  • Nevo E, Chen G (2010) Drought and salt tolerances in wild relatives for wheat and barley improvement. Plant Cell Environ 33:670–685

    Article  CAS  PubMed  Google Scholar 

  • Nevo E, Zohary D, Brown A, Haber M (1979) Genetic diversity and environmental associations of wild barley, Hordeum spontaneum in Israel. Evolution 33:815–833

    Article  CAS  Google Scholar 

  • Nevo E, Apelbaum-Elkaher I, Garty J, Beiles A (1997) Natural selection causes microscale allozyme diversity in wild barley and a lichen at ‘Evolution Canyon’ Mt Carmel, Israel. Heredity 78:373–382

    Article  Google Scholar 

  • Nevo E, Fragman O, Dafni A, Beiles A (1999) Biodiversity and interslope divergence of vascular plants caused by microclimatic differences at ‘Evolution Canyon’, Lower Nahal Oren, Mount Carmel, Israel. Isr J Plant Sci 47:49–59

    Article  Google Scholar 

  • Nevo E, Beharav A, Meyer RC, Hackett CA, Forster BP, Russell JR, Powell W (2005) Genomic microsatellite adaptive divergence of wild barley by microclimatic stress in ‘Evolution Canyon’, Israel. Biol J Linnean Soc 84:205–224

    Article  Google Scholar 

  • Nevo E, Lu Z, Pavlicek T (2006) Global evolutionary strategies across life caused by shared ecological stress, fact or fancy? Isr J Plant Sci 54:1–8

    Article  CAS  Google Scholar 

  • Nevo E, Fu YB, Pavlicek T, Khalifa S, Tavasi M, Beiles A (2012) Evolution of wild cereals during 28 years of global warming in Israel. Proc Natl Acad Sci U S A 109:3412–3415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohnu S (1970) Evolution by gene duplication. Springer, Berlin

    Book  Google Scholar 

  • Pandey B, Kaur A, Gupta OP, Sharma I, Sharma P (2015) Identification of HSP20 gene family in wheat and barley and their differential expression profiling under heat stress. Appl Biochem Biotechnol 175:2427–2446

    Article  CAS  PubMed  Google Scholar 

  • Pavlicek T, Sharon D, Kravchenko V, Saaroni H, Nevo E (2003) Microclimatic interslope differences underlying biodiversity contrasts in ‘Evolution Canyon’, Mt Carmel, Israel. Isr J Earth Sci 52:1–9

    Article  Google Scholar 

  • Poukheirandish M, Komatsuda T (2007) The importance of barley genetics and domestication in a global perspective. Ann Bot 100:999–1008

    Article  Google Scholar 

  • Pourkheirandish M, Hensel G, Kilian B, Senthil N, Chen G, Sameri M, Azhaguvel P, Sakuma S, Dhanagond S, Sharma R, Mascher M, Himmelbach A, Gottwald S, Nair SK, Tagiri A, Yukuhiro F, Nagamura Y, Kanamori H, Matsumoto T, Willcox G, Middleton CP, Wicker T, Walther A, Waugh R, Fincher GB, Stein N, Kumlehn J, Sato K, Komatsuda T (2015) Evolution of the grain dispersal system in barley. Cell 162:527–539

    Article  CAS  PubMed  Google Scholar 

  • Reddy PS, Kavi Kishor PB, Seiler C, Kuhlmann M, Eschen-Lippold L, Lee J, Reddy MK, Sreenivasulu N (2014) Unraveling regulation of the small heat shock proteins by the heat shock factor HvHsfB2c in barley, its implications in drought stress response and seed development. PLoS One 9:e89125

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodin SN, Riggs AD (2003) Epigenetic silencing may aid evolution by gene duplication. J Mol Evol 56:718–729

    Article  CAS  PubMed  Google Scholar 

  • Sakuma S, Salomon B, Komatsuda T (2011) The domestication syndrome genes responsible for the major changes in plant form in the Triticeae crops. Plant Cell Physiol 52:738–749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santhanagopalan I, Basha E, Ballard KN, Bopp NE, Vierling E (2015) Model chaperones, small heat shock proteins from plants. In: Tanguay RM, Hightower LE (eds) The big book on small heat shock proteins, vol 8, Heat shock proteins. Springer International Publishing, Cham

    Chapter  Google Scholar 

  • Sarkar NK, Kim YK, Grover A (2009) Rice sHsp genes, genomic organization and expression profiling under stress and development. BMC Genomics 10:339

    Article  Google Scholar 

  • Sato K, Shin-I T, Seki M, Shinozaki K, Yoshida H, Takeda K, Yamazaki Y, Conte M, Kohara Y (2009) Development of 5006 full-length cDNAs in barley, a tool for accessing cereal genomics resources. DNA Res 16:81–89

    Article  PubMed  PubMed Central  Google Scholar 

  • Scharf KD, Siddique M, Vierling E (2001) The expanding family of Arabidopsis thaliana small heat stress proteins and a new family of proteins containing alpha-crystallin domains (Acd proteins). Cell Stress Chaperones 6:225–237

    Google Scholar 

  • Scharf KD, Berberich T, Ebersberger I, Nover L (2012) The plant heat stress transcription factor (Hsf) family, structure, function and evolution. Biochim Biophys Acta 1819:104–119

    Article  CAS  PubMed  Google Scholar 

  • Shan Q, Wang Y, Li J, Gao C (2014) Genome editing in rice and wheat using the CRISPR/Cas system. Nat Protoc 9:2395–2410

    Article  CAS  PubMed  Google Scholar 

  • Süle A, Vanrobaeys F, Hajós G, Van Beeumen J, Devreese B (2004) Proteomic analysis of small heat shock protein isoforms in barley shoots. Phytochemistry 65:1853–1863

    Article  PubMed  Google Scholar 

  • Sun W, Van Montagu M, Verbruggen N (2002) Small heat shock proteins and stress tolerance in plants. Biochimica Biophysica Acta 1577:1–9

    Article  CAS  Google Scholar 

  • Tang Z, Yang Z, Fu S (2014) Oligonucleotides replacing the roles of repetitive sequences pAs1, pSc119.2, pTa-535, pTa71, CCS1, and pAWRC.1 for FISH analysis. J Appl Genet 55:313–318

    Article  CAS  PubMed  Google Scholar 

  • Taylor JS, Raes J (2004) Duplication and divergence, the evolution of new genes and old ideas. Annu Rev Genet 38:615–643

    Article  CAS  PubMed  Google Scholar 

  • Tondelli A, Francia E, Barabaschi D, Aprile A, Skinner JS, Stockinger EJ, Stanca AM, Pecchioni N (2006) Mapping regulatory genes as candidates for cold and drought stress tolerance in barley. Theor Appl Genet 112:445–454

    Article  CAS  PubMed  Google Scholar 

  • Vanhala TK, van Rijn CPE, Buntjer J, Stam P, Nevo E, Poorter H, Eeuwijk FA (2004) Environmental, phenotypic and genetic variation of wild barley (Hordeum spontaneum) from Israel. Euphytica 137:297–309

    Article  CAS  Google Scholar 

  • Volis S, Mendlinger S, Ward D (2002a) Adaptive traits of wild barley plants of Mediterranean and desert origin. Oecologia 133:131–138

    Article  Google Scholar 

  • Volis S, Mendlinger S, Ward D (2002b) Differentiation in populations of Hordeum spontaneum Koch along a gradient of environmental productivity and predictability, plasticity in response to water and nutrient stress. Biol J Linn Soc 75:301–312

    Article  Google Scholar 

  • Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9:244–252

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Lin S, Song Q, Li K, Tao H, Huang J, Chen X, Que S, He H (2014) Genome-wide identification of heat shock proteins (Hsps) and Hsp interactors in rice, Hsp70s as a case study. BMC Genomics 15:344

    Article  PubMed  PubMed Central  Google Scholar 

  • Waters ER (1995) The molecular evolution of the small heat-shock proteins in plants. Genetics 141:785–795

    CAS  PubMed  PubMed Central  Google Scholar 

  • Waters ER (2013) The evolution, function, structure, and expression of the plant sHSPs. J Exp Bot 64:391–403

    Article  CAS  PubMed  Google Scholar 

  • Waters ER, Lee GJ, Vierling E (1996) Evolution, structure and function of the small heat shock proteins in plants. J Exp Bot 47:325–338

    Article  CAS  Google Scholar 

  • Waters ER, Aevermann BD, Sanders-Reed Z (2008) Comparative analysis of the small heat shock proteins in three angiosperm genomes identifies new subfamilies and reveals diverse evolutionary patterns. Cell Stress Chaperones 13:127–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu ML, Lin TP, Lin MY, Cheng YP, Hwang SY (2007) Divergent evolution of the chloroplast small heat shock protein gene in the genera Rhododendron (Ericaceae) and Machilus (Lauraceae). Ann Bot 99:461–475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia Y, Li R, Ning Z, Bai G, Siddique KH, Yan G, Baum M, Varshney RK, Guo P (2013) Single nucleotide polymorphisms in HSP17.8 and their association with agronomic traits in barley. PLoS One 8:e56816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xue GP, Sadat S, Drenth J, McIntyre CL (2014) The heat shock factor family from Triticum aestivum in response to heat and other major abiotic stresses and their role in regulation of heat shock protein genes. J Exp Bot 65:539–557

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Zhang T, Bolshov A, Beharav A, Nevo E (2009) Adaptive microclimatic structural and expressional dehydrin 1 evolution in wild barley, Hordeum spontaneum, at ‘Evolution Canyon’, Mount Carmel, Israel. Mol Ecol 18:2063–2075

    Article  PubMed  Google Scholar 

  • Yang Z, Zhang T, Li G, Nevo E (2011) Adaptive microclimatic evolution of the dehydrin 6 gene on wild barely at “Evolution Canyon”, Israel. Genetica 139:1429–1438

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Wang Y, Gao Y, Zhou Y, Zhang E, Hu Y, Yuan Y, Liang G, Xu C (2014) Adaptive evolution and divergent expression of heat stress transcription factors in grasses. BMC Evol Biol 14:147

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu J, Buckler ES (2006) Genetic association mapping and genome organization of maize. Curr Opin Biotechnol 17:155–160

    Article  CAS  PubMed  Google Scholar 

  • Zeng X, Long H, Wang Z, Zhao S, Tang Y, Huang Z, Wang Y, Xu Q, Mao L, Deng G, Yao X, Li X, Bai L, Yuan H, Pan Z, Liu R, Chen X, WangMu Q, Chen M, Yu L, Liang J, DunZhu D, Zheng Y, Yu S, LuoBu Z, Guang X, Li J, Deng C, Hu W, Chen C, TaBa X, Gao L, Lv X, Abu YB, Fang X, Nevo E, Yu M, Wang J, Tashi N (2015) The draft genome of Tibetan hulless barley reveals adaptive patterns to the high stressful Tibetan Plateau. Proc Natl Acad Sci U S A 112:1095–1100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J (2003) Evolution by gene duplication, an update. Trends Ecol Evol 18:292–298

    Article  Google Scholar 

  • Zhang T, Li GR, Yang Z, Nevo E (2014) Adaptive evolution of duplicated hsp17 genes in wild barley from microclimatically divergent sites of Israel. Genet Mol Res 13:1220–1232

    Article  CAS  PubMed  Google Scholar 

  • Zhu C, Gore M, Buckler ES, Yu J (2008) Status and prospects of association mapping in plants. Plant Genome 1:5–20

    Article  CAS  Google Scholar 

  • Zohary D, Hopf M, Weiss E (2012) Domestication of plants in the Old World. Oxford University Press, Oxford

    Book  Google Scholar 

  • Zou C, Lehti-Shiu MD, Thomashow M, Shiu S (2009) Evolution of stress-regulated gene expression in duplicate genes of Arabidopsis thaliana. PLoS Genet 5:e1000581

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31171542) and the Ancell-Teicher Research Foundation for Genetics and Molecular Evolution. We are thankful for Dr. Avigdor Beiles of University of Haifa, Israel for reading and commenting on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eviatar Nevo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Yang, Z., Nevo, E. (2016). Heat Shock Proteins in Wild Barley at “Evolution Canyon”, Mount Carmel, Israel. In: Asea, A., Kaur, P., Calderwood, S. (eds) Heat Shock Proteins and Plants. Heat Shock Proteins, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-319-46340-7_5

Download citation

Publish with us

Policies and ethics