Skip to main content

The Involvement of HSP70 and HSP90 inTomato Yellow Leaf Curl Virus Infection in Tomato Plants and Insect Vectors

  • Chapter
  • First Online:
Heat Shock Proteins and Plants

Part of the book series: Heat Shock Proteins ((HESP,volume 10))

Abstract

Cellular chaperones HSP70 and HSP90 are involved in Tomato yellow leaf curl virus (TYLCV) infection. TYLCV is a begomovirus transmitted by the whitefly Bemisia tabaci to tomato and other crops. In infected tomato and B. tabaci vector, chaperones are redistributed, from soluble to aggregated state. Together with chaperones and viral proteins, ubiquitin, 26S proteasome subunits and autophagy protein ATG8, all were found in large protein aggregates. The appearance of these aggregates containing protein quality control elements and infectious virions can be considered as markers of a successful virus invasion. Capturing of HSP70/HSP90 in aggregates results in a decrease of the free chaperones pool, which triggers the transcription of HSP encoding genes under the control of heat stress transcription factors. Indeed, TYLCV infection downregulates the heat stress response of plants grown at high temperatures, and alleviates cell death caused by the other stresses. Stress response mitigation is used by TYLCV for successful multiplication. Even though HSP70 and HSP90 are similarly recruited in TYLCV aggregates, their roles in viral multiplication are different. HSP70, but not HSP90, is important for the viral coat protein shuttling from cytoplasm into nuclei. HSP70 impairment leads to decreased viral amounts, while HSP90 inhibition causes an inactivation of cellular protein degradation and consequently promotes the accumulation of viral proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Co-IP:

co-immunoprecipitation

HSF:

heat stress transcription factor

HSP:

heat stress protein

PQC:

protein quality control

TYLCV:

Tomato yellow leaf curl virus

VF:

viral factory

References

  • Anfoka G, Moshe A, Fridman L et al (2016) Tomato yellow leaf curl virus infection mitigates the heat stress response of plants grown at high temperatures. Sci Rep 6:19715. doi:10.1038/srep19715

    Article  Google Scholar 

  • Atkinson NJ, Urwin PE (2012) The interaction of plant biotic and abiotic stresses: from genes to the field. J Exp Bot 63:3523–3543

    Article  CAS  PubMed  Google Scholar 

  • Azevedo C, Sadanandom A, Kitagawa K, Freialdenhoven A, Shirasu K, Schulze-Lefert P (2002) The RAR1 interactor SGT1, an essential component of R gene-triggered disease resistance. Science 295:2073–2076

    Article  CAS  PubMed  Google Scholar 

  • Bale JS, Masters GJ, Hodkinson ID et al (2002) Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Glob Chang Boil 8:1–16

    Article  Google Scholar 

  • Burch AD, Weller SK (2005) Herpes simplex virus type 1 DNA polymerase requires the mammalian chaperone hsp90 for proper localization to the nucleus. J Virol 79:10740–10749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Czosnek H (2007) Tomato yellow leaf curl virus disease. In: Czosnek H (ed) Management, molecular biology, breeding for resistance. Springer, Dordrecht, p 440

    Google Scholar 

  • Czosnek H, Ghanim M, Ghanim M (2002) Circulative pathway of begomoviruses in the whitefly vector Bemisia tabaci – insights from studies with Tomato yellow leaf curl virus. Ann Appl Biol 140:215–231

    Article  Google Scholar 

  • Díaz F, Orobio RF, Chavarriaga P, Toro-Perea N (2015) Differential expression patterns among heat-shock protein genes and thermal responses in the whitefly Bemisia tabaci (MEAM1). J Therm Biol 52:199–207

    Article  PubMed  Google Scholar 

  • Díaz-Pendón JA, Cañizares MC, Moriones E, Bejarano ER, Czosnek H, Navas-Castillo J (2010) Tomato yellow leaf curl viruses: ménage à trois between the virus complex, the plant and the whitefly vector. Mol Plant Pathol 11:441–450

    Article  PubMed  Google Scholar 

  • Edwardson JR (1966) Cylindrical inclusions in the cytoplasm of leaf cells infected with tobacco etch virus. Science 153:883–884

    Article  CAS  PubMed  Google Scholar 

  • Ghanim M, Czosnek H (2016) Interactions between the whitefly Bemisia tabaci and begomoviruses: biological and genomic perspectives. In: Czosnek H, Ghanim M (eds) Management of insect pests to agriculture: lessons learned from deciphering their genome, transcriptome and proteome. Springer, Cham

    Google Scholar 

  • Gorovits R, Czosnek H (2007) Biotic and abiotic stress responses in breeding tomato lines resistant and susceptible to tomato yellow leaf curl virus. In: Czosnek H (ed) Management, molecular biology, breeding for resistance. Springer, Dordrecht, pp 223–237

    Google Scholar 

  • Gorovits R, Akad F, Beery H, Vidavsky F, Mahadav A, Czosnek H (2007) Expression of stress-response proteins upon whitefly-mediated inoculation of tomato yellow leaf curl virus (TYLCV) in susceptible and resistant tomato plants. Mol Plant Microbe Interact 20:1376–1383

    Article  CAS  PubMed  Google Scholar 

  • Gorovits R, Moshe A, Kolot M, Sobol I, Czosnek H (2013a) Progressive aggregation of tomato yellow leaf curl virus coat protein in systemically infected tomato plants, susceptible and resistant to the virus. Virus Res 171:33–43

    Article  CAS  PubMed  Google Scholar 

  • Gorovits R, Moshe A, Ghanim M, Czosnek H (2013b) Recruitment of the host plant heat shock protein 70 by tomato yellow leaf curl virus coat protein is required for virus infection. PLoS One 8(7):e70280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorovits R, Moshe A, Ghanim M, Czosnek H (2014) Degradation mechanisms of the tomato yellow leaf curl virus coat protein following inoculation of tomato plants by the whitefly Bemisia tabaci. Pest Manag Sci 70:1632–1639

    Article  CAS  PubMed  Google Scholar 

  • Gorovits R, Fridman L, Kolot M et al (2016) Tomato yellow leaf curl virus confronts host degradation by sheltering in small/midsized protein aggregates. Virus Res 213:304–313. doi:10.1016/j.virusres

    Article  CAS  PubMed  Google Scholar 

  • Gottlieb Y, Zchori-Fein E, Mozes-Daube N et al (2010) The transmission efficiency of tomato yellow leaf curl virus by the whitefly Bemisia tabaci is correlated with the presence of a specific symbiotic bacterium species. J Virol 84:9310–9317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Götz M, Popovski S, Kollenberg M et al (2012) Implication of Bemisia tabaci heat shock protein 70 in begomovirus-whitefly interactions. J Virol 86:13241–13252

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang YW, Hu CC, Liou MR et al (2012) Hsp90 interacts specifically with viral RNA and differentially regulates replication initiation of Bamboo mosaic virus and associated satellite RNA. PLoS Pathog 8(5):e1002726. doi:10.1371/journal.ppat.1002726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwasaki S, Kobayashi M, Yoda M et al (2010) Hsc70/Hsp90 chaperone machinery mediates ATPdependent RISC loading of small RNA duplexes. Mol Cell 39:292–299

    Article  CAS  PubMed  Google Scholar 

  • Kim KS (1977) An ultrastructural study of inclusions and disease development in plant cells infected by cowpea chlorotic mottle virus. J Gen Virol 35:535–543

    Article  Google Scholar 

  • Komatsu K, Hashimoto M, Ozeki J, Yamaji Y, Maejima K, Senshu H (2010) Viral-induced systemic necrosis in plants involves both programmed cell death and the inhibition of viral multiplication, which are regulated by independent pathways. Mol Plant Microbe Interact 23:283–293

    Article  CAS  PubMed  Google Scholar 

  • Laliberte J-F, Sanfacon H (2010) Cellular remodeling during plant virus infection. Annu Rev Phytopathol 48:69–91

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Schiff M, Serino G, Deng XW, Dinesh-Kumar SP (2002) Role of SCF ubiquitin-ligase and the COP9 signalosome in the N gene-mediated resistance response to Tobacco mosaic virus. Plant Cell 14:1483–1496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Burch-Smith T, Schiff M, Feng S, Dinesh-Kumar SP (2004) Molecular chaperone Hsp90 associates with resistance protein N and its signaling proteins SGT1 and Rar1 to modulate an innate immune response in plants. J Biol Chem 279:2101–2108

    Article  CAS  PubMed  Google Scholar 

  • Livingston CM, Ifrim MF, Cowan AE, Weller SK (2009) Virus-Induced Chaperone-Enriched (VICE) domains function as nuclear protein quality control centers during HSV-1 infection. PLoS Pathog 10:e1000619

    Article  Google Scholar 

  • Luck J, Spackman M, Freeman A et al (2011) Climate change and diseases of food crops. Plant Pathol 60:113–121

    Article  Google Scholar 

  • Mahadav A, Kontsedalov S, Czosnek H, Ghanim M (2009) Thermotolerance and gene expression following heat stress in the whitefly Bemisia tabaci B and Q biotypes. Insect Biochem Mol Biol 39:668–676

    Article  CAS  PubMed  Google Scholar 

  • Mine A, Hyodo K, Tajima Y et al (2012) Differential roles of Hsp70 and Hsp90 in the assembly of the replicase complex of a positive-strand RNA plant virus. J Virol 86:12091–12104. doi:10.1128/JVI.01659-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyoshi T, Takeuchi A, Siomi H, Siomi MC (2010) A direct role for Hsp90 in pre-RISC formation in Drosophila. Nat Struct Mol Biol 17:1024–1026

    Article  CAS  PubMed  Google Scholar 

  • Morin S, Ghanim M, Zeidan M, Czosnek H, Verbeek M, van den Heuvel JFJM (1999) A GroEL homologue from endosymbiotic bacteria of the whitefly Bemisia tabaci is implicated in the circulative transmission of Tomato yellow leaf curl virus. Virol 256:75–84

    Article  CAS  Google Scholar 

  • Moshe A, Gorovits R (2012) Virus-induced aggregates in infected cells. Viruses 4:2218–2232. doi:10.3390/v4102218

    Article  PubMed  PubMed Central  Google Scholar 

  • Moshe A, Pfannstiel J, Brotman Y, et al (2012) Stress responses to Tomato yellow leaf curl virus (TYLCV) infection of resistant and susceptible tomato plants are different. Metabolom S1:006.

    Google Scholar 

  • Moshe A, Belausov E, Niehl A, Heinlein M, Czosnek H, Gorovits R (2015a) The tomato yellow leaf curl virus V2 protein forms aggregates depending on the cytoskeleton integrity and binds viral genomic DNA. Sci Rep 5:9967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moshe A, Gorovits R, Liu Y and Czosnek H (2015b) Tomato plant cell death induced by inhibition of HSP90 is alleviated by Tomato yellow leaf curl virus infection. Mol Plant Pathol 17(2): 247–260. doi: 10.1111/mpp

  • Muskett P, Parker J (2003) Role of SGT1 in the regulation of plant R gene signalling. Microbiol Infect 5(11):969–976

    Article  CAS  Google Scholar 

  • Nagy PD, Wang RY, Pogany J, Hafren A, Makinen K (2011) Emerging picture of host chaperone and cyclophilin roles in RNA virus replication. Virol 411:374–382

    Article  CAS  Google Scholar 

  • Netherton C, Wileman T (2011) Virus factories, double membrane vesicles and viroplasm generated in animal cells. Curr Opin Virol 1:381–387. doi:10.1016/j.coviro

    Article  CAS  PubMed  Google Scholar 

  • Netherton CL, Wileman TE (2013) African swine fever virus organelle rearrangements. Virus Res 173(1):76–86. doi:10.1016/j.virusres

    Article  CAS  PubMed  Google Scholar 

  • Netherton C, Moffat K, Brooks E, Wileman T (2007) A guide to viral inclusions, membrane rearrangements, factories, and viroplasm produced during virus replication. Adv Virus Res 70:101–182

    Article  CAS  PubMed  Google Scholar 

  • Noel LD, Cagna G, Stuttmann J et al (2007) Interaction between SGT1 and cytosolic/nuclear HSC70 chaperones regulates Arabidopsis immune responses. Plant Cell 19:4061–4076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pakkianathan BC, Kontsedalov S, Lebedev G et al (2015) Replication of tomato yellow leaf curl in its whitefly vector Bemisia tabaci. J Virol 89:9791–9803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rubinstein G, Czosnek H (1997) Long-term association of tomato yellow leaf curl virus with its whitefly vector Bemisia tabaci: effect on the insect transmission capacity, longevity and fecundity. J Gen Virol 78:2683–2689

    Article  CAS  PubMed  Google Scholar 

  • Russo M, Di Franco A, Martelli GP (1983) The fine structure of Cymbidium ringspot virus infections in host tissues. III. Role of peroxisomes in the genesis of multivesicular bodies. J Ultrastruct Res 82:52–63

    Article  CAS  PubMed  Google Scholar 

  • Scharf KD, Berberich T, Ebersberger I, Nover L (2012) The plant heat stress transcription factor (Hsf) family: structure, function and evolution. Biochim Biophys Acta 1819:104–119

    Article  CAS  PubMed  Google Scholar 

  • van der Scheer C, Groenewegen J (1971) Structure in cells of Vigna unguiculata infected with cowpea mosaic virus. Virol 46:493–497

    Article  Google Scholar 

  • Vogel F, Hofius D, Sonnewald U (2007) Intracellular trafficking of potato leafroll virus movement protein in transgenic Arabidopsis. Traffic 8:1205–1214

    Article  CAS  PubMed  Google Scholar 

  • Wang RY, Stork J, Nagy PD (2009) A key role for heat shock protein 70 in the localization and insertion of tombusvirus replication proteins to intracellular membranes. J Virol 83:3276–3287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weller SK (2010) Herpes simplex virus reorganizes the cellular DNA repair and protein quality control machinery. PLoS Pathog 6(11):e1001105

    Article  PubMed  PubMed Central  Google Scholar 

  • Wileman T (2006) Aggresomes and autophagy generate sites for virus replication. Science 312:875–878

    Article  CAS  PubMed  Google Scholar 

  • Wileman T (2007) Aggresomes and pericentriolar sites of virus assembly: cellular defense or viral design? Annu Rev Microbiol 61:149–617

    Article  CAS  PubMed  Google Scholar 

  • Willison JH (1976) The hexagonal lattice spacing of intracellular crystalline tobacco mosaic virus. J Ultrastruct Res 54:176–182

    Article  CAS  PubMed  Google Scholar 

  • Ye CM, Kelly V, Payton M, Dickman MB, Verchot J (2012) SGT1 is induced by the Potatovirus X TGBp3and enhances virus accumulation in Nicotiana benthamiana. Mol Plant 5:1151–1153

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by a grant from the Israel Science Foundation Award 1037/13.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rena Gorovits .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gorovits, R., Liu, Y., Czosnek, H. (2016). The Involvement of HSP70 and HSP90 inTomato Yellow Leaf Curl Virus Infection in Tomato Plants and Insect Vectors. In: Asea, A., Kaur, P., Calderwood, S. (eds) Heat Shock Proteins and Plants. Heat Shock Proteins, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-319-46340-7_10

Download citation

Publish with us

Policies and ethics