Skip to main content

Small Heat Shock Proteins: Roles in Development, Desiccation Tolerance and Seed Longevity

  • Chapter
  • First Online:
Heat Shock Proteins and Plants

Part of the book series: Heat Shock Proteins ((HESP,volume 10))

Abstract

Small heat shock proteins are one of the five classes of heat shock proteins, a family named after their expression in response to heat shock. Despite their name some members of this family have been shown to express during a gamut of non-stress conditions in a variety of plant species. Small HSPs have been known to accumulate during plant developmental stages like pollen development, seed maturation stages, early seed germination and also in storage organs. Interestingly, aging induced accumulation of small HSPs has also been observed in a few species. The spatial and temporal accumulation pattern of small HSPs also correlates well with other seed abundant proteins like late embryogenesis abundant (LEA) proteins. Regulation of these developmental stages responsive and non-stress induced small HSPs is also distinct from the heat stress regulated transcript induction in terms of involvement of some novel and exclusive transcription activators like ABI3 and HsfA9. Small HSPs are known to function as molecular chaperone and thus their role in plant development especially during seed development has been discussed in the light of their functional implication during these stages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACD:

alpha crystalline domain

ATP:

adenosine triphosphate

DAP:

days after pollination

DPI:

days post imbibition

GUS:

β-glucuronidase

HSE:

heat shock element

HSF:

heat shock transcription factor

HSP:

heat shock proteins

LEA:

late embryogenesis abundant

ROS:

reactive oxygen species CDT controlled deterioration treatment

References

  • Alamillo J, Almogura C, Bartels D, Jordano J (1995) Constitutive expression of small heat shock proteins in vegetative tissues of the resurrection plant Craterostigma plantagineum. Plant Mol Biol 29:1093–1099

    Article  CAS  PubMed  Google Scholar 

  • Almoguera C, Jordano J (1992) Developmental and environmental concurrent expression of sunflower dry-seed-stored low-molecular-weight heat-shock protein and Lea mRNAs. Plant Mol Biol 19:781–792

    Article  CAS  PubMed  Google Scholar 

  • Almoguera C, Coca MA, Jordano J (1993) Tissue-specific expression of sunflower heat-shock proteins in response to water-stress. Plant J 4:947–958

    Article  CAS  Google Scholar 

  • Almoguera C, Prieto-Dapena P, Jordano J (1998) Dual regulation of a heat shock promoter during embryogenesis: stage-dependent role of heat shock elements. Plant J 13(4):437–446

    Article  CAS  PubMed  Google Scholar 

  • Arrigo AP (1998) Small heat shock proteins: chaperones that act as regulators of intracellular redox state and programmed cell death. J Biol Chem 379:19–26

    CAS  Google Scholar 

  • Bardel J, Louwagie M, Jaquinod M, Jourdain A, Luche S, Rabilloud T, Macherel D, Garin J, Bourguignon J (2002) A survey of plant mitochondria proteome in relation with development. Proteomics 2:880–898

    Article  CAS  PubMed  Google Scholar 

  • Basha E, Lee GJ, Demeler B, Vierling E (2004) Chaperone activity of cytosolic small heat shock proteins from wheat. Eur J Biochem 271(8):1426–1436

    Article  CAS  PubMed  Google Scholar 

  • Basha E, O’Neill H, Vierling E (2012) Small heat shock proteins and alpha-crystallins: dynamic proteins with flexible functions. Trends Biochem Sci 37:106–117

    Article  CAS  PubMed  Google Scholar 

  • Bernal-Lugo I, Leopold A (1998) The dynamics of seed mortality. J Exp Bot 49:1455–1461

    CAS  Google Scholar 

  • Bouchard RA (1990) Characterization of expressed meiotic prophase repeat transcript clones of Lilium: meiosis-specific expression, relatedness, and affinities to small heat shock protein genes. Genome 33(1):68–79

    Article  CAS  PubMed  Google Scholar 

  • Bouchard RA, Walden DB (1990) Stage-specific expression of small hsp gene RNA in anthers. Maize Gene Coop News Lett 64:122

    Google Scholar 

  • Buitink J, Claessens MMAE, Hemminga MA, Hoekstra FA (1998) Influence of water content and temperature on molecular mobility and intracellular glasses in seed and pollen. Plant Physiol 118:531–541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cabiscol E, Bellı́ G, Tamarit J, Echave P, Herrero E, Ros J (2002) Mitochondrial Hsp60, resistance to oxidative stress, and the labile iron pool are closely connected in Saccharomyces cerevisiae. J Biol Chem 277(46):44531–44538

    Article  CAS  PubMed  Google Scholar 

  • Carranco R, Almoguera C, Jordano J (1997) A plant small heat shock protein gene expressed during zygotic embryogenesis but non inducible by heat stress. J Biol Chem 272:27470–27475

    Article  CAS  PubMed  Google Scholar 

  • Carranco R, Almoguera C, Jordano J (1999) An imperfect heat shock element and different upstream sequences are required for the seed specific expression of a small heat shock protein gene. Plant Physiol 121:723–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Charng YY, Liu HC, Liu NY, Hsu FC, Ko SS (2006) Arabidopsis Hsa32, a novel heat shock protein, is essential for acquired thermotolerance during long recovery after acclimation. Plant Physiol 140:1297–1305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chauhan H, Khurana N, Nijhavan A, Khurana JP, Khurana P (2012) The wheat chloroplastic small heat shock protein (sHSP26) is involved in seed maturation and germination and imparts tolerance to heat stress. Plant Cell Environ 35(11):1912–1931

    Article  CAS  PubMed  Google Scholar 

  • Coca MA, Almoguera C, Jordano J (1994) Expression of sunflower low molecular weight heat shock proteins during embryogenesis and persistence after germination: localization and possible functional implications. Plant Mol Biol 25:479–492

    Article  CAS  PubMed  Google Scholar 

  • Coca MA, Almoguera C, Thomas T, Jordano J (1996) Differential regulation of small heat-shock genes in plants: analysis of a water-stress-inducible and developmentally activated sunflower promoter. Plant Mol Biol 31:863–876

    Article  CAS  PubMed  Google Scholar 

  • Crowe JH, Crowe LM, Petrelski S, Hoekstra FA, Araujo PD, Panek AD (1997) Anhydrobiosis: cellular adaptation to extreme dehydration. In: Dantzler WH (ed) Handbook of physiology, vol II. Oxford University Press, New York, pp 1445–1477

    Google Scholar 

  • DeRocher AE, Vierling E (1994) Developmental control of small heat shock protein expression during pea seed maturation. Plant J 5:93–102

    Article  CAS  Google Scholar 

  • DeRocher AE, Vierling E (1995) Cytoplasmic HSP70 homologues of pea: differential expression in vegetative and embryonic organs. Plant Mol Biol 27:441–456

    Article  CAS  PubMed  Google Scholar 

  • DeRocher AE, Helm KW, Lauzon LM, Vierling E (1991) Expression of a conserved family of cytoplasmic low molecular weight heat shock proteins during heat stress and recovery. Plant Physiol 96:1038–1047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dietrich PS, Bouchard RA, Casey ES, Sinibaldi RM (1991) Isolation and characterization of a small heat shock protein gene from maize. Plant Physiol 96:1268–1276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ehrnsperger M, Gräber S, Gaestel M, Buchner J (1997) Binding of non-native protein to Hsp25 during heat shock creates a reservoir of folding intermediates for reactivation. EMBO J 16:221–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fray RG, Lycett GW, Grierson D (1990) Nucleotide sequence of a heat-shock and ripening-related cDNA from tomato. Nucleic Acids Res 18(23):7148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldenberg CJ, Luo Y, Fenna M, Baler R, Weinmann R, Voellmy R (1988) Purified human factor activates heat shock promoter in a HeLa cell-free transcription system. J Biol Chem 2(63):19734–19739

    Google Scholar 

  • Guo SJ, Zhou HY, Zhang XS, Li XG, Meng QW (2007) Overexpression of CaHSP26 in transgenic tobacco alleviates photoinhibition of PSII and PSI during chilling stress under low irradiance. J Plant Physiol 164:126–136

    Article  CAS  PubMed  Google Scholar 

  • Haslbeck M, Franzmann T, Weinfurtner D, Buchner J (2005) Some like it hot: the structure and function of small heat-shock proteins. Nat Struct Mol Biol 12:842–846

    Article  CAS  PubMed  Google Scholar 

  • Helm KW, Abernethy RH (1990) Heat shock proteins and their mRNAs in dry and early imbibing embryos of wheat. Plant Physiol 93:1626–1633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hendrick JP, Hartl FU (1995) The role of molecular chaperones in protein folding. FASEB J 9:1559–1569

    CAS  PubMed  Google Scholar 

  • Hernandez LD, Vierling E (1993) Expression of low molecular weight heat shock proteins under field conditions. Plant Physiol 101:1209–1216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoekstra FA, Golovina EA, Buitink J (2001) Mechanisms of plant desiccation tolerance. Trends Plant Sci 6(9):431–438

    Article  CAS  PubMed  Google Scholar 

  • Kalemba EM, Pukacka S (2008) Changes in late embryogenesis abundant proteins and a small heat shock protein during storage of beech (Fagus sylvatica L.) seeds. Environ Exp Bot 63:274–280

    Article  CAS  Google Scholar 

  • Kaur H, Petla BP, Kamble NU, Singh A, Rao V, Salvi P, Ghosh S, Majee M (2015) Differentially expressed seed aging responsive heat shock protein OsHSP18.2 implicates in seed vigor, longevity and improves germination and seedling establishment under abiotic stress. Front Plant Sci 6:713

    PubMed  PubMed Central  Google Scholar 

  • Koo HJ, Park SM, Kim KP, Suh MC, Lee MO, Lee SK, Xinli X, Hong CB (2015) Small heat shock proteins can release light dependence of tobacco seed during germination. Plant Physiol 167(3):1030–1038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kotak S, Vierling E, Baumlein H, von Koskull-Doring P (2007) A novel transcriptional cascade regulating expression of heat stress proteins during seed development of Arabidopsis. Plant Cell 19:182–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kruse E, Liu Z, Kloppstech K (1993) Expression of heat shock proteins during development of barley. Plant Mol Biol 23:111–122

    Article  CAS  PubMed  Google Scholar 

  • Kurtz S, Rossi J, Petko L, Lindquist S (1986) An ancient development induction: heat-shock proteins induced in sporulation and oogenesis. Science 231:1154–1157

    Article  CAS  PubMed  Google Scholar 

  • Lee GJ, Vierling E (2000) A small heat shock protein cooperates with heat shock protein 70 systems to reactivate a heat-denatured protein. Plant Physiol 122:189–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee GJ, Pokala N, Vierling E (1995) Structural and in vitro molecular chaperone activity of cytosolic small heat shock proteins from pea. J Biol Chem 270:10432–10438

    Article  CAS  PubMed  Google Scholar 

  • Lee GJ, Roseman AM, Saibil HR, Vierling E (1997) A small heat shock protein stably binds heat-denatured model substrates and can maintain a substrate in a folding-competent state. EMBO J 16:659–671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leopold AC, Sun WQ, Bernal-Lugo I (1994) The glassy state in seeds: analysis and function. Seed Sci Res 4:267–274

    Article  Google Scholar 

  • Lindquist S, Craig EA (1988) The heat shock proteins. Annu Rev Genet 22:631–677

    Article  CAS  PubMed  Google Scholar 

  • Lubaretz O, zur Nieden U (2002) Accumulation of plant small heat-stress proteins in storage organs. Planta 215:220–228

    Article  CAS  PubMed  Google Scholar 

  • Luo YT, Amin J, Voellmy R (1991) Ecdysterone receptor is a sequence-specific transcription factor involved in the developmental regulation of heat shock genes. Mol Cell Biol 7:3660–3675

    Article  Google Scholar 

  • Macherel D, Benamar A, Avelange-Macherel MH, Tolleter D (2007) Function and stress tolerance of seed mitochondria. Physiol Plant 129:233–241

    Article  CAS  Google Scholar 

  • Maimbo M, Ohnishi K, Hikichi Y, Yoshioka H, Kiba A (2007) Induction of a small heat shock protein and its functional roles in Nicotiana plants in the defense response against Ralstonia solanacearum. Plant Physiol 145:1588–1599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mtwisha L, Brandt W, McCready S, Lindsey GG (1998) HSP 12 is a LEA-like protein in Saccharomyces cerevisiae. Plant Mol Biol 37:513–521

    Article  CAS  PubMed  Google Scholar 

  • Mu C, Zhang S, Yu G, Chen N, Li X, Liu H (2013) Overexpression of small heat shock protein LimHSP16. 45 in Arabidopsis enhances tolerance to abiotic stresses. PLoS One 8(12):e82264

    Article  PubMed  PubMed Central  Google Scholar 

  • Parker CS, Topol J (1984) A Drosophila RNA polymerase II transcription factor contains a promoter-region-specific DNA binding activity. Cell 36:357–369

    Article  CAS  PubMed  Google Scholar 

  • Perez DE, Hoyer JS, Johnson AI, Moody ZR, Lopez J, Kaplinsky NJ (2009) BOBBER1 is a noncanonical Arabidopsis small heat shock protein required for both development and thermotolerance. Plant Physiol 151(1):241–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prändl R, Schöffl F (1996) Heat shock elements are involved in heat shock promoter activation during tobacco seed maturation. Plant Mol Biol 31:157–162

    Article  PubMed  Google Scholar 

  • Prändl R, Kloske E, Schöffl F (1995) Developmental regulation and tissue-specific differences of heat-shock gene-expression in transgenic tobacco and Arabidopsis plants. Plant Mol Biol 28:73–82

    Article  PubMed  Google Scholar 

  • Prieto-Dapena P, Castano R, Almoguera C, Jordano J (2006) Improved resistance to controlled deterioration in transgenic seeds. Plant Physiol 142:1102–1112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajjou L, Lovigny Y, Groot SPC, Belghazi M, Job C, Job D (2008) Proteome-wide characterization of seed aging in Arabidopsis: a comparison between artificial and natural aging protocols. Plant Physiol 148(1):620–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanmiya K, Suzuki K, Egawa Y, Shono M (2004) Mitochondrial small heat-shock protein enhances thermotolerance in tobacco plants. FEBS Lett 557(1–3):265–268

    Article  CAS  PubMed  Google Scholar 

  • Schöffl F, Key JL (1982) An analysis of mRNAs for a group of heat shock proteins of soybean using cloned cDNAs. J Mol Appl Genet 1:301–314

    PubMed  Google Scholar 

  • Shen-Miller J, Mudgett MB, Schopf JW, Clarke S, Berger R (1995) Exceptional seed longevity and robust growth: ancient sacred lotus from China. Am J Bot 82:1367–1380

    Article  Google Scholar 

  • Shen-Miller J, Lindner P, Xie Y, Villa S, Wooding K, Clarke SG, Loo RR, Loo JA (2013) Thermal-stable proteins of fruit of long-living Sacred Lotus Gaertn var. China Antique. Trop Plant Biol 6(2-3):69–84

    Article  CAS  Google Scholar 

  • Sun W, Bernard C, van de Cotte B, Van Montagu M, Verbruggen N (2001) At-HSP17.6A, encoding a small heat-shock protein in Arabidopsis, can enhance osmotolerance upon overexpression. Plant J 27(5):407–415

    Article  CAS  PubMed  Google Scholar 

  • Sun W, Van Montagu M, Verbruggen N (2002) Small heat shock proteins and stress tolerance in plants. Biochim Biophys Acta 1577:1–9

    Article  CAS  PubMed  Google Scholar 

  • Ukaji N, Kuwabara C, Takezawa D, Arakawa K, Yoshida S, Fujikawa S (1999) Accumulation of small heat‐shock protein homologs in the endoplasmic reticulum of cortical parenchyma cells in mulberry in association with seasonal cold acclimation. Plant Physiol 120(2):481–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vierling E (1997) The small heat shock proteins in plants are members of an ancient family of heat induced proteins. Acta Physiol Plant 19:539–547

    Article  CAS  Google Scholar 

  • Vierling E, Sun A (1989) Developmental expression of heat shock proteins in higher plants. In: Cherry J (ed) Environmental stress in plants. Springer, Berlin, pp 343–354

    Chapter  Google Scholar 

  • Volkov RA, Panchuk II, Schöffl F (2005) Small heat shock proteins are differentially regulated during pollen development and following heat stress in tobacco. Plant Mol Biol 57:487–502

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9(5):244–252

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Zhao CM, Wang YJ, Liu J (2005) Overexpression of chloroplast-localized small molecular heat-shock protein enhances chilling tolerance in tomato plant. J Plant Physiol Mol Biol 31:167–174

    CAS  Google Scholar 

  • Waters E, Lee G, Vierling E (1996) Evolution, structure and function of the small heat shock proteins in plants. J Exp Bot 47:325–338

    Article  CAS  Google Scholar 

  • Wehmeyer N, Vieling E (2000) The expression of small heat shock proteins in seeds responds to discrete developmental signals and suggests a general protective role in desiccation tolerance. Plant Physiol 122(4):1099–1108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wehmeyer N, Hernandez LD, Finkelstein RR, Vierling E (1996) Synthesis of small heat-shock proteins is part of the developmental program of late seed maturation. Plant Physiol 112(2):747–757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winter J, Sinibaldi R (1991) The expression of heat shock proteins and cognate genes during plant development. In: Hightower L, Nover L (eds) Heat shock and development. Springer, Berlin, pp 85–105

    Chapter  Google Scholar 

  • Wu C (1984a) Two protein-binding sites in chromatin implicated in the activation of heat shock genes. Nature 309:229–234

    Article  CAS  PubMed  Google Scholar 

  • Wu C (1984b) Activating protein factor binds in vitro to upstream control sequences in heat shock gene chromatin. Nature 311:81–84

    Article  CAS  PubMed  Google Scholar 

  • Zarsky V, Garrido D, Eller N, Tupy J, Vicente O, Schöffl F, Heberle-Bors E (1995) The expression of a small heat shock gene is activated during induction of tobacco pollen embryogenesis by starvation. Plant Cell Environ 18:139–147

    Article  CAS  Google Scholar 

  • Zhou Y, Chen H, Chu P, Li Y, Tan B, Ding Y, Tsang EW, Jiang L, Wu K, Huang S (2012) NnHSP17.5, a cytosolic class II small heat shock protein gene from Nelumbo nucifera, contributes to seed germination vigor and seedling thermotolerance in transgenic Arabidopsis. Plant Cell Rep 31(2):379–389

    Article  CAS  PubMed  Google Scholar 

  • Zou J, Liu C, Liu A, Zou D, Chen X (2012) Overexpression of OsHsp17. 0 and OsHsp23. 7 enhances drought and salt tolerance in rice. J Plant Physiol 169(6):628–635

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

B.P.P. and H.K. thank the Council of Scientific and Industrial Research and National Institute of Plant Genome Research, Government of India, for research fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoj Majee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kaur, H., Petla, B.P., Majee, M. (2016). Small Heat Shock Proteins: Roles in Development, Desiccation Tolerance and Seed Longevity. In: Asea, A., Kaur, P., Calderwood, S. (eds) Heat Shock Proteins and Plants. Heat Shock Proteins, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-319-46340-7_1

Download citation

Publish with us

Policies and ethics