Empirically-Derived Behavioral Rules in Agent-Based Models Using Decision Trees Learned from Questionnaire Data

  • N. Sánchez-MaroñoEmail author
  • A. Alonso-Betanzos
  • O. Fontenla-Romero
  • J. Gary Polhill
  • T. Craig
Part of the Understanding Complex Systems book series (UCS)


With the increasing trend in exploring the use of agent-based models in empirical contexts, this paper reflects on the use of decision trees learned from questionnaire data as behavioral models for the agents. Decision trees are machine learning algorithms most commonly used in the data mining literature, especially for smaller datasets where other techniques such as Bayesian Networks cannot be applied. In agent-based modelling contexts, decision trees have the advantage over some other machine learning techniques in that the results are more transparent, and can be critiqued by domain experts without a background in computing or artificial intelligence. However, decision trees are sensitive to the way in which they are constructed, particularly with respect to preprocessing. We describe the processes by which the decision trees were derived in the context of a model of everyday pro-environmental behavior at work, comparing various preprocessing methods and exploring their differences.


Decision Tree Feature Selection Feature Selection Method Decision Tree Algorithm Injunctive Norm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was funded by the European Commission Framework Programme 7, grant agreement 265155 (Low Carbon at Work: Modelling Agents and Organisations to Achieve Transition to a Low-Carbon Europe) and by the Scottish Government Rural Affairs and the Environment Portfolio Strategic Research Theme 4 (Economic Adaptation).


  1. 1.
    Agar, M.: My kingdom for a function: modeling misadventures of the innumerate. J. Artif. Soc. Soc. Simul. 6 (3) (2003).
  2. 2.
    Ajzen, I.: Constructing a theory of planned behavior questionnaire (2006). Google Scholar
  3. 3.
    Bolón-Canedo, V., Sánchez-Maroño, N., Alonso-Betanzos, A.: A review of feature selection methods on synthetic data. Knowl. Inf. Syst. 34 (3), 483–519 (2013)CrossRefGoogle Scholar
  4. 4.
    Bolón-Canedo, V., Sánchez-Maroño, N., Alonso-Betanzos, A.: Recent advances and emerging challenges of feature selection in the context of big data. Knowl.-Based Syst. 86, 33–45 (2015)CrossRefGoogle Scholar
  5. 5.
    Breiman, L., Friedman, J., Stone, C.J., Olshen, R.A.: Classification and Regression Trees. CRC Press, New York (1984)Google Scholar
  6. 6.
    Brown, D.G., Robinson, D.T.: Effects of heterogeneity in preferences on an agent-based model of urban sprawl. Ecol. Soc. 11 (1), 46 (2006)CrossRefGoogle Scholar
  7. 7.
    Caliński, T., Harabasz, J.: A dendrite method for cluster analysis. Commun. Stat.-Theory Methods 3 (1), 1–27 (1974)CrossRefGoogle Scholar
  8. 8.
    Carrus, G., Bonnes, M., Corral-Verdugo, V., Moser, G., Sinha, J.: Socio-Psychological and Contextual Predictors of Sustainable Water Consumption, pp. 43–60. Nova Science Publishers, New York (2010)Google Scholar
  9. 9.
    Castella, J.C., Trung, T.N., Boissau, S.: Participatory simulation on land-use changes in the northern mountains of Vietnam: the combined use of an agent-based model, a role-playing game, and a geographic information system. Ecol. Soc. 10 (1), 27 (2005)CrossRefGoogle Scholar
  10. 10.
    Cialdini, R.B., Reno, R.R., Kallgren, C.A.: A focus theory of normative conduct: recycling the concept of norms to reduce littering in public places. J. Personal. Soc. Psychol. 58, 1015–1026 (1990)CrossRefGoogle Scholar
  11. 11.
    Corral-Verdugo, V., Carrus, G., Bonnes, M., Moser, G., Sinha, J.B.: Environmental beliefs and endorsement of sustainable development principles in water conservation toward a new human interdependence paradigm scale. Environ. Behav. 40 (5), 703–725 (2008)CrossRefGoogle Scholar
  12. 12.
    Dash, M., Liu, H.: Consistency-based search in feature selection. Artif. Intell. 151 (1), 155–176 (2003)CrossRefGoogle Scholar
  13. 13.
    Davies, D.L., Bouldin, D.W.: A cluster separation measure. IEEE Trans. Pattern Anal. Mach. Intell. 1 (2), 224–227 (1979)CrossRefGoogle Scholar
  14. 14.
    Dubois, E., Barreteau, O., Souchére, V.: An agent-based model to explore game setting effects on attitude change during a role playing game session. J. Artif. Soc. Soc. Simul. 16 (1), 2 (2013)CrossRefGoogle Scholar
  15. 15.
    Evans, T.P., Sun, W., Kelley, H.: Spatially explicit experiments for the exploration of land-use decision-making dynamics. Int. J. Geogr. Inf. Sci. 20 (9), 1013–1037 (2006)CrossRefGoogle Scholar
  16. 16.
    Fayyad, U.M., Irani, K.B.: Multi-interval discretization of continuous-valued attributes for classification learning. In: Thirteenth International Joint Conference on Artificial Intelligence, vol. 2, pp. 1022–1027. Morgan Kaufmann Publishers, San Mateo, CA (1993)Google Scholar
  17. 17.
    Fornara, F., Carrus, G., Passafaro, P., Bonnes, M.: Distinguishing the sources of normative influence on pro-environmental behaviours: the role of local norms in household waste recycling. Group Process. Intergroup Relat. 14, 623–635 (2011)CrossRefGoogle Scholar
  18. 18.
    García, S., Luengo, J., Herrera, F.: DAta Preprocessing in Data Mining. Springer, New York (2015)CrossRefGoogle Scholar
  19. 19.
    Geller, A., Moss, S.: Growing Qawm: an evidence-driven declarative model of Afghan power structures. Adv. Complex Syst. 11 (2), 321–335 (2008)CrossRefGoogle Scholar
  20. 20.
    Gigerenzer, G., Goldstein, D.G.: Reasoning the fast and frugal way: models of bounded rationality. Psychol. Rev. 103 (4), 650–669 (1996)CrossRefGoogle Scholar
  21. 21.
    Gigerenzer, G., Hoffrage, U., Kleinbölting, H.: Probabilistic mental models: a Brunswikian theory of confidence. Psychol. Rev. 98 (4), 506 (1991)CrossRefGoogle Scholar
  22. 22.
    Gostoli, U.: A cognitively founded model of the social emergence of lexicon. J. Artif. Soc. Soc. Simul. 11 (1), 2 (2008)Google Scholar
  23. 23.
    Groot, J.I.M.D.: Mean or green? Value orientations, morality and prosocial behaviour. Ph.D. thesis, University of Groningen (2008)Google Scholar
  24. 24.
    Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classification using support vector machines. Mach. Learn. 46 (1–3), 389–422 (2002)CrossRefGoogle Scholar
  25. 25.
    Guyon, I., Gunn, S., Nikravesh, M., Zadeh, L.A.: Feature Extraction: Foundations and Applications, vol. 207. Springer, Berlin, Heidelberg (2008)Google Scholar
  26. 26.
    Hall, M.A.: Correlation-based feature selection for machine learning. Ph.D. thesis, The University of Waikato (1999)Google Scholar
  27. 27.
    Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: an update. ACM SIGKDD Explor. Newslett. 11 (1), 10–18 (2009)CrossRefGoogle Scholar
  28. 28.
    Holtz, G.: Generating social practices. J. Artif. Soc. Soc. Simul. 17 (1), 17 (2014)CrossRefGoogle Scholar
  29. 29.
    Izquierdo, L.R., Gotts, N.M., Polhill, J.G.: Case-based reasoning, social dilemmas, and a new equilibrium concept. J. Artif. Soc. Soc. Simul. 7 (3), 1 (2004)Google Scholar
  30. 30.
    Janssen, M.A., Ostrom, E.: Empirically based, agent-based models. Ecol. Soc. 11 (2), 37 (2006)CrossRefGoogle Scholar
  31. 31.
    Likert, R.: A technique for the measurement of attitudes. Arch. Psychol. 22 (140), 1–55 (1932)Google Scholar
  32. 32.
    Liu, H., Hussain, F., Tan, C.L., Dash, M.: Discretization: an enabling technique. Data Min. Knowl. Discov. 6 (4), 393–423 (2002)CrossRefGoogle Scholar
  33. 33.
    MacQueen, J., et al.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Oakland, CA, vol. 1(14), pp. 281–297 (1967)Google Scholar
  34. 34.
    Murtagh, F., Legendre, P.: Ward’s hierarchical agglomerative clustering method: which algorithms implement ward’s criterion? J. Classif. 31, 274–295 (2014)CrossRefGoogle Scholar
  35. 35.
    Parker, D.C., Hessl, A., Davis, S.C.: Complexity, land-use modeling, and the human dimension: fundamental challenges for mapping unknown outcome spaces. Geoforum 39, 789–804 (2008)CrossRefGoogle Scholar
  36. 36.
    Perlich, C., Provost, F., Simonoff, J.S.: Tree induction vs. logistic regression: a learning-curve analysis. J. Mach. Learn. Res. 4, 211–255 (2003)Google Scholar
  37. 37.
    Polhill, G., Craig, T., Alonso-Betanzos, A., Sanchez-Maroño, N., Fontenla-Romero, Ó., Dumitru, A., Bonnes, M., Bonaiuto, M., Carrus, G., Fornara, F., Maricchiolo, F., Steg, L., Ruepert, A., Kaizer, K., García-Mira, R.: Empirical agent-based modelling of everyday pro-environmental behaviours at work. In: Ames, D.P., Quinn, N.W.T., Rizzoli, A.E. (eds.) International Environmental Modelling and Software Society (iEMSs) Seventh International Congress on Environmental Modelling and Software, San Diego, CA (2014).
  38. 38.
    Quinlan, J.R.: C4. 5: Programs for Machine Learning. Elsevier, San Francisco (2014)Google Scholar
  39. 39.
    Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987)CrossRefGoogle Scholar
  40. 40.
    Ruepert, A., Keizer, K., Steg, L., García Mira, R., Dumitru, A., Vega Marcote, P., Muñoz, M., Ilin, C., Docea, A., Moza, D., Carrus, G., Maricchiolo, F., Fornara, F., Bonaiuto, M., Bonnes, M.: D4.3 final report on the role of individual factors in promoting or hindering GHG reduction behaviours and practices – four case studies: University of Corunna, the municipality of Groningen, Aquatim & Enel Green Power. Tech. rep., Department of Psychology, University of Groningen, Groningen (2013).
  41. 41.
    Sánchez-Maroño, N., Alonso-Betanzos, A., Fontenla-Romero, O., Brinquis-Núñez, C., Polhill, J.G., Craig, T.: Influence of internal values and social networks for achieving sustainable organizations. In: ECAI, pp. 1179–1184 (2014)Google Scholar
  42. 42.
    Sánchez-Maroño, N., Alonso-Betanzos, A., Fontenla-Romero, O., Brinquis-Núñez, C., Polhill, J., Craig, T., Dumitru, A., García-Mira, R.: An agent-based model for simulating environmental behavior in an educational organization. Neural Process. Lett. 42 (1), 1–30 (2015)CrossRefGoogle Scholar
  43. 43.
    Sánchez-Maroño, N., Alonso-Betanzos, A., Fontenla-Romero, O., Polhill, J., Craig, T.: Designing decision trees for representing sustainable behaviours in agents. In: Trends in Practical Applications of Agents, Multi-Agent Systems and Sustainability, pp. 169–176. Springer International Publishing, Switzerland (2015). doi: 10.1007/978-3-319-19629-9
  44. 44.
    Schreinemachers, P., Berger, T.: Land use decisions in developing countries and their representation in multi-agent systems. J. Land Use Sci. 1 (1), 29–44 (2006)CrossRefGoogle Scholar
  45. 45.
    Schwartz, S.H.: Normative Influences on Altruism, vol. 10, pp. 221–279. Academic, New York (1977)Google Scholar
  46. 46.
    Schwartz, S.H.: Universals in the content and structures of values: theoretical advances and empirical tests in 20 countries. Adv. Exp. Psychol. 25, 1–65 (1992)CrossRefGoogle Scholar
  47. 47.
    Smajgl, A., Bohensky, E.: Behaviour and space in agent-based modelling: poverty patterns in east Kalimantan, Indonesia. Environ. Modell. Softw. 45, 8–14 (2013)CrossRefGoogle Scholar
  48. 48.
    Steg, L., De Groot, J.I.: Environmental values. In: The Oxford Handbook of Environmental and Conservation Psychology. Oxford University Press, Oxford (2012)Google Scholar
  49. 49.
    Steg, L., Perlaviciute, G., Van der Werff, E., Lurvink, J.: The significance of hedonic values for environmentally relevant attitudes, preferences, and actions. Environ. Behav. (2012). doi: 10.1177/0013916512454730
  50. 50.
    Stern, P.C., Dietz, T., Abel, T., Guagnano, G.A., Kalof, L.: A value-belief-norm theory of support for social movements: the case of environmental concern. Hum. Ecol. Rev. 6, 81–97 (1999)Google Scholar
  51. 51.
    van der Werff, E., Steg, L., Keizer, K.: The value of environmental self-identity: the relationship between biospheric values, environmental self-identity and environmental preferences, intentions and behaviour. J. Environ. Psychol. 34, 55–63 (2013)Google Scholar
  52. 52.
    Yu, L., Liu, H.: Efficient feature selection via analysis of relevance and redundancy. J. Mach. Learn. Res. 5, 1205–1224 (2004)Google Scholar
  53. 53.
    Zeileis, A., Hothorn, T., Hornik, K.: Model-based recursive partitioning. J. Comput. Graph. Stat. 17 (2), 492–514 (2008)CrossRefGoogle Scholar
  54. 54.
    Zhao, Z., Liu, H.: Searching for interacting features. In: International Joint Conference on Artificial Intelligence (IJCAI), vol. 7, pp. 1156–1161 (2007)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • N. Sánchez-Maroño
    • 1
    Email author
  • A. Alonso-Betanzos
    • 1
  • O. Fontenla-Romero
    • 1
  • J. Gary Polhill
    • 2
  • T. Craig
    • 3
  1. 1.University of A CoruñaA CoruñaSpain
  2. 2.Information and Computational ScienceThe James Hutton InstituteAberdeenUK
  3. 3.The James Hutton InstituteCraigiebuckler, AberdeenUK

Personalised recommendations