Advertisement

Psychologically Plausible Models in Agent-Based Simulations of Sustainable Behavior

  • Samer SchaatEmail author
  • Wander Jager
  • Stephan Dickert
Chapter
Part of the Understanding Complex Systems book series (UCS)

Abstract

Agent-based modelling (ABM) proves successful as a methodology for the social sciences. To continue bridging the micro-macro link in social simulations and applying ABM in real-world conditions, conventional and often simplified models of decision-making have to be utilized and extended into psychologically plausible models. We demonstrate the contribution of such models to enhance validation and forecasts in social simulations with two examples concerned with sustainable behavior. We start with the Consumat framework to demonstrate the contribution of an established psychological plausible decision-making model in various scenarios of sustainable behavior. Then we use the SiMA-C model to explain how different psychological factors generate social behavior and show how a detailed model of decision-making supports realistic empirical validation and experimentation. A scenario of social media prompting of environmental-friendly behavior exemplifies the details of how individual decision-making is influenced by the social context. Both examples, Consumat and SiMA-C, emphasize the importance of psychological realism in modelling behavioral dynamics for simulations of sustainable behavior and provide explanations on the psychological level that enable the development of social policies on the individual level.

Keywords

Agent-based models Social simulations Psychological plausible ABM Cognitive models Sustainable behavior Environmental-friendly behavior Consumat SiMA-C 

References

  1. 1.
    Castelfranchi, C.: Cognitive architecture and contents for social structures and interactions. In: Cognition and Multi-Agent Interaction. Cambridge University Press, New York (2006)Google Scholar
  2. 2.
    Viale, R.: Methodological Cognitivism: Vol. 1: Mind, Rationality, and Society. Springer, Berlin (2012)CrossRefGoogle Scholar
  3. 3.
    Gilbert, N.: When does social simulation need cognitive models? In: Sun, R. (ed.) Cognition and Multi-Agent Interaction. Cambridge University Press, New York (2006)Google Scholar
  4. 4.
    Jager, W., Janssen, M.: The need for and development of behaviourally realistic agents. In: Multi-Agent Simulations, I.I. (ed.) Lecture Notes in Computer Science, vol. 2581, pp. 36–49. Springer, Heidelberg (2003)Google Scholar
  5. 5.
    Sun, R.: Cognition and Multi-Agent Interaction. Cambridge University Press, New York (2006)Google Scholar
  6. 6.
    Maslow, A.H.: Motivation and Personality. Harper and Row, New York (1954)Google Scholar
  7. 7.
    Max-Neef, M.: Development and human needs. In: Ekins, P., Max-Neef, M. (eds.) Real-life Economics: Understanding Wealth Creation. Routledge, London/New York (1992)Google Scholar
  8. 8.
    Jager, W., Janssen, M.A., De Vries, H.J.M., De Greef, J., Vlek, C.A.J.: Behaviour in commons dilemmas: Homo economicus and Homo psychologicus in an ecological-economic model. Ecol. Econ. 35, 357–379 (2000)CrossRefGoogle Scholar
  9. 9.
    Cialdini, R.B., Goldstein, N.J.: Social influence: compliance and conformity. Anu. Rev. Psychol. 55, 591–621 (2004)CrossRefGoogle Scholar
  10. 10.
    Janssen, M.A., Jager, W.: Stimulating diffusion of green products—co-evolution between firms and consumers. J. Evol. Econ. 12(3), 283–306 (2002)CrossRefGoogle Scholar
  11. 11.
    Bravo, G., Vallino, E., Cerutti, A.K., Pairotti, M.B.: Alternative scenarios of green consumption in Italy: an empirically grounded model. Environ. Model. Software 47, 225–234 (2013)CrossRefGoogle Scholar
  12. 12.
    Natalini, D., Bravo, G.: Encouraging sustainable transport choices in american households: results from an empirically grounded agent-based model. Sustainability 6(1), 50–69 (2014)CrossRefGoogle Scholar
  13. 13.
    Schoenmacker, G.H.: Agent-based consumer modeling. Master thesis, Department of Artificial Intelligence, Faculty of Mathematics and Natural Sciences, University of Groningen (2013). http://scripties.fwn.eldoc.ub.rug.nl/scripties/Kunstmatigeintellige/Master/2014/Schoenmacker.G./
  14. 14.
    Kangur, A.: STECCAR: simulating the transition to electric cars using the consumat agent rationale. Master’s thesis, Institute of Artificial Intelligence, University of Groningen (2014) http://scripties.fwn.eldoc.ub.rug.nl/scripties/Kunstmatigeintellige/Master/2014/Kangur.A.M.A./
  15. 15.
    Kangur, A., Jager, W., Verbrugge, R., Bockarjova, M.: Hybrid or full electric, that’s the question: an agent-based model exploring the diffusion of electric vehicles. Journal of Environmental Psychology. In: Jager, W., Ernst, A. (eds.) Special issue “Social simulation in environmental psychology” (accepted)Google Scholar
  16. 16.
    Jager, W., Janssen, M.A., Vlek, C.A.J.: How uncertainty stimulates over-harvesting in a resource dilemma: three process explanations. J. Environ. Psychol. 22(3), 247–263 (2002)CrossRefGoogle Scholar
  17. 17.
    Brouwers, L., Verhagen, H.: Applying the CONSUMAT model to flood management policies. In: Müller, J., Seidel, M. (eds.) 4th Workshop on Agent-Based Simulation, pp. 29–34. SCS, Montpellier (2003)Google Scholar
  18. 18.
    Speelman, E.N.: Gaming and simulation to explore resilience in contested agricultural landscapes. PhD thesis, Wageningen University, Wageningen, the Netherlands, p. 221. ISBN: 978-90-6173-904-9 (2014). See http://edepot.wur.nl/301294
  19. 19.
    Acosta-Michlik, L., Espaldon, V.: Assessing vulnerability of selected farming communities in the Philippines based on a behavioural model of agent’s adaptation to global environmental change. Glob. Environ. Chang. 18, 554–563 (2008)CrossRefGoogle Scholar
  20. 20.
    Mialhe, F., Becuc, N., Gunnelld, Y.: An agent-based model for analyzing land use dynamics in response to farmer behaviour and environmental change in the Pampanga delta (Philippines). Agric. Ecosyst. Environ. 161, 55–69 (2012)CrossRefGoogle Scholar
  21. 21.
    Van Duinen, R., Filatova, T., Jager, W., Van der Veen, A.: Going beyond perfect rationality: drought risk, economic choices and the influence of social networks. Ann. Reg. Sci. pp 1–35 (2015)Google Scholar
  22. 22.
    Verhagen, H., Johansson, M., Jager, W.: Games and online research methods. Fielding, N.G., Lee, R.M., Blank, G. (eds) The SAGE Handbook of Online Research Methods, 2nd edn. Sage Publications Inc. (2016)Google Scholar
  23. 23.
    Dietrich, D., Fodor, G., Zucker, G., Bruckner, D.: Simulating the Mind—A Technical Neuropsychoanalytic Approach. Springer, Vienna (2009)CrossRefGoogle Scholar
  24. 24.
    Schaat, S., et al.: ARS: An AGI Architecture. Proceedings of the 7th conference on Artificial General Intelligence, LNAIC, pp. 155–164. Springer, Switzerland (2014)Google Scholar
  25. 25.
    Schaat, S., et al.: Socio-cognitive agents for the simulation of environmental-friendly consumer decisions. In: International Conference on Affective Computing and Intelligent Interaction, pp. 851–856, Xian (2015)Google Scholar
  26. 26.
    Schaat, S.: SiMA-C: a foundational mental architecture. In: Proceedings of the Conference on Brain Inspired Cognitive Architectures, July 2016Google Scholar
  27. 27.
    Damasio, A.R.: Descartes’ error and the future of human life. Sci. Am. 271(4), 15–20 (1994)CrossRefGoogle Scholar
  28. 28.
    Slovic, P., Finucane, M., Peters, E., MacGregor, D.G.: The affect heuristic. In: Gilovich, T., Griffin, D., Kahneman, D. (eds.) Heuristics and Biases: The Psychology of Intuitive Judgment, pp. 397–420. Cambridge University Press, New York (2002)CrossRefGoogle Scholar
  29. 29.
    Kahneman, D.: Thinking, Fast and Slow. Penguin, London (2011)Google Scholar
  30. 30.
    Simon, H.A.: Rational choice and the structure of the environment. Psychol. Rev. 63(2), 129–138 (1956)CrossRefGoogle Scholar
  31. 31.
    Schaat, S., et al.: Emotion in consumer simulations for the development and testing of recommendations for marketing strategies. In: Proceedings of the 3rd Workshop on Emotions and Personality in Personalized Systems, pp. 25–32, Vienna (2015)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Institute of Computer Technology, TU WienViennaAustria
  2. 2.Center for Social Complexity StudiesUniversity of GroningenGroningenThe Netherlands
  3. 3.School of Business and Management, Queen Mary University of LondonLondonUK
  4. 4.Linköping UniversityLinköpingSweden

Personalised recommendations